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Chapter 1

Introduction

The theory of double structures originated with the work of Pradines [72, 73], who introduced the concept

of a double vector bundle, defined in terms of local coordinate charts. This definition was reinterpreted

by Mackenzie, who showed that double vector bundles are equivalent to manifolds equipped with a pair

of compatible vector bundle structures. Grabowski-Rotkiewicz simplified the definition by showing that

it was enough to consider the two scalar multiplications associated to the pair of vector bundle structures

[23]. Thus in its most modern formulation, a double vector bundle is a manifold D equipped with two

scalar multiplications κh and κv that commute: κht κ
v
s = κvsκ

h
t for all t, s ∈ R. If we denote the base

manifolds for these scalar multiplications by A := κv0(D) and B := κh0 (D), then we can depict the double

vector bundle D as a commuting diagram

D //

��

B

��

A // M.

Loosely speaking, double vector bundles can be thought of as vector bundle objects in the category

of vector bundles. They form the basis of second-order differential geometry, since the quintessential

example of a double vector bundle is the double tangent bundle

TTM //

��

TM

��

TM // M.

More generally, the tangent bundle of a vector bundle V →M is a double vector bundle. The theory of

double structures was further developed by the pioneering work of Mackenzie [5, 52, 55, 56], where the

concepts of double Lie groupoids were introduced, along with their infinitesimal counterparts, double Lie

algebroids. A double Lie algebroid is a double vector bundle for which all the sides are equipped with Lie

algebroid structures, and with a certain compatibility condition between the horizontal and vertical Lie

algebroid structures. Here the most important example is the tangent bundle TA→M of a Lie algebroid

A→M (see [55, Example 4.6]), so, in particular, the double vector bundle TTM above is a double Lie

algebroid. This thesis is concerned with the development of the theory of double structures, as well as

their applications in Poisson geometry. Our focus lies on the construction of a bigraded bidifferential

1



Chapter 1. Introduction 2

algebra associated to any double Lie algebroid called the Weil algebra that completely determines the

double Lie algebroid structure. Along the way we will encounter many simplifications and additions to

the theories of double vector bundles and double linear Poisson structures, and we will finish with a

diverse range of applications throughout Poisson geometry that can be reinterpreted in our framework.

Before describing our constructions and main results in detail, let us review some of the foundations of

the theory of (ordinary) Lie algebras and Lie algebroids that will serve as motivation for our work.

1.1 The Chevalley-Eilenberg Complex

Throughout this section, let A → M be a Lie algebroid, and denote by ρ:A → TM its anchor map.

Then any section σ ∈ Γ(A) defines two kinds of derivations on the space

Γ(∧•A∗),

a contraction operator ισ of degree −1 and a Lie derivative operator Lσ of degree 0. By the usual Cartan

formula, these operators give rise to the Chevalley-Eilenberg differential dCE on Γ(∧•A∗), an operator

of degree 1 that satisfies

[ισ, dCE] = Lσ

for all σ ∈ Γ(A). This identity implies that d2
CE = 0, so for any Lie algebroid A → M , there is an

associated complex (Γ(∧•A∗), dCE) called the Chevalley-Eilenberg complex of A. Specific examples of

this complex include the de Rham complex of a manifold M (A = TM), the Chevalley-Eilenberg complex

of a Lie algebra (when M is a point), and the foliated de Rham complex of a foliated manifold (here

A ⊆ TM is obtained from the foliation using Frobenius’s theorem).

It is a fundamental result of Văıntrob [76] that this construction is reversible. That is, suppose

A→M is a vector bundle, and dA is a degree 1 derivation on the graded algebra Γ(∧•A∗) that satisfies

d2
A = 0. Then A→M inherits a Lie algebroid structure defined by

Lρ(σ)f = 〈dAf, σ〉, 〈α, [σ, τ ]〉 = 〈dA〈α, τ〉, σ〉 − 〈dA〈α, σ〉, τ〉 − dAα(σ, τ)

for all f ∈ C∞(M), σ, τ ∈ Γ(A), and α ∈ Γ(A∗). This characterization of Lie algebroids often sim-

plifies various constructions related to them. As a basic example, since maps on sections do not al-

ways correspond to bundle maps, the correct definition of a morphism Lie algebroids A → B is not

immediately obvious using the usual definition of Lie algebroids. However, in terms of the Chevalley-

Eilenberg complexes, such a morphism of Lie algebroids simply corresponds to a morphism of complexes

(Γ(∧•B∗), dB)→ (Γ(∧•A∗), dA).

Remark 1.1.1. If V →M is an A-module (i.e. it comes with a flat A-connection ∇), then one can define

the Chevalley-Eilenberg complex with coefficients in V . The underlying algebra is Γ(∧•A∗ ⊗ V ), and

one simply defines contractions, Lie derivatives, and a differential in the same way as indicated above,

but with the modification that Lσϑ = ∇σϑ for ϑ ∈ Γ(∧0A∗ ⊗ V ) = Γ(V ).
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1.2 The Weil Algebra of a Lie Algebra

Weil algebras have their roots in the theory of equivariant cohomology, where the Weil algebra W(g) of

a Lie algebra g is used as an algebraic model for the space of differential forms on the classifying bundle

EG→ BG, where G is a Lie group integrating g. It appears in the Chern-Weil theory of characteristic

classes, as well as in Cartan’s equivariant de Rham theory. Here we will review only the definition of

Wg, for information on its application in equivariant cohomology theory, see [30].

Let g be a Lie algebra, and fix a basis {e1, . . . , en} of g with structure constants λijk. The Weil

algebra of g is the bigraded algebra Wg := ∧•g∗ ⊗ S•g∗ generated by the elements

θi = ei ⊗ 1, µi = 1⊗ ei,

where each θi has bidegree (1, 0), and each µi has bidegree (1, 1). This bigraded algebra comes equipped

with two differentials. The first, denoted dK, is defined on generators by

dKθ
i = µi, dKµ

i = 0.

Note that because of the way we set up the bigrading, this derivation has bidegree (0, 1). We call dK

the Koszul differential since it is the differential of the Koszul complex of the vector space underlying g.

The second differential, which we denote dCE, is defined on generators by the formulas

dCEθ
i =

1

2
λijkθ

jθk, dCEµ
i = −λijkµjθk.

In terms of the bigrading described above, dCE has bidegree (1, 0). We call dCE the Chevalley-Eilenberg

differential, since it may be thought of as the differential of the Chevalley-Eilenberg complex of the

representation S•g∗ of g. These formulas allow for a direct verification that dK and dCE commute (in

the graded sense), making the Weil algebra Wg into a bicomplex.

Remark 1.2.1. Since the Weil algebra is in particular a Chevalley-Eilenberg complex, it comes equipped

with contractions ιx and Lie derivatives Lx by elements x ∈ g. In terms of the generators, these are

defined by

ιxθ
i = 〈ei, x〉, ιxµ

i = 0, Lxθ
i = −λijk〈ej , x〉θk, Lxµ

i = −λijk〈ej , x〉µk.

These make W•,•g into a so-called g-differential algebra, and it can be shown that W•,•g satisfies a

certain universal property among such objects.

1.3 The Weil Algebra of a Double Lie Algebroid

We are interested in generalizations of the theory discussed above to double Lie algebroids. Văıntrob’s

result that the Chevalley-Eilenberg complex on A completely determines the Lie algebroid structure was

generalized to the setting of double structures by Voronov [77], who proved that double Lie algebroid

structures on D were equivalent to pairs of commuting homological vector fields Qh, Qv, of bidegrees

(1, 0) and (0, 1), on the bigraded supermanifold D[1, 1] obtained from D by a parity shift in both vector

bundle directions. Put differently, the algebra of (double-polynomial) functions on D[1, 1] is a double

complex, generalizing the Chevalley-Eilenberg complex of a Lie algebroid. Our main goal in this thesis
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is to provide a classical description of this bicomplex that simultaneously generalizes the constructions

discussed in sections 1.1 and 1.2 above to the context of double structures. Specifically, to any double

vector bundle D we will associate a bigraded algebra W•,•(D) that we call the Weil algebra of D. This

algebra will model the space of double polynomial functions on D[1, 1] (and therefore generalize the

Chevalley-Eilenberg complex of a Lie algebroid) in the sense that double Lie algebroid structures on D

are equivalent to pairs of differentials dh, dv on the Weil algebra of D that make (W•,•(D), dh, dv) into

a bicomplex. Moreover, the notion of Weil algebras has been extended from the setting of Lie algebras

to the more general setting of Lie algebroids. This was first done in super-geometric terms by Mehta

[61] and in more classical terms by Abad and Crainic [3]. In the case that A → M is a Lie algebroid,

applying our construction to the double Lie algebroid

TA //

��

TM

��

A // M

gives the Weil algebra of A.

To explain our construction, let D be any double vector bundle with side bundles A,B. The sub-

manifold on which the two scalar multiplications coincide is itself a vector bundle over M , called the

core of D. We denote by

E = core(D)∗

its dual bundle. There is a vector bundle Ê →M whose space of sections consists of the smooth functions

on D that are double-linear, i.e., linear both horizontally and vertically. It fits into an exact sequence

0→ A∗ ⊗B∗
iÊ−→ Ê → E → 0,

where the map Ê → E is given by the restriction of double-linear functions to the core, while the map

iÊ is given by the multiplication of linear functions on A,B. The above sequence is the dual of the DVB

sequence of Chen-Liu-Sheng [13]. Our definition of the Weil algebra bundle is as follows:

Definition. The Weil algebra bundle of the double vector bundle D is the bundle (over M) of

bigraded super-commutative algebras

W (D) = (∧A∗ ⊗ ∧B∗ ⊗ ∨Ê)/∼ ,

taking the quotient by the (fibrewise) ideal generated by elements of the form

αβ − iÊ(α⊗ β)

for (α, β) ∈ A∗ ×M B∗. Here, generators α ∈ A∗ have bidegree (1, 0), generators β ∈ B∗ have bidegree

(0, 1), and generators ê ∈ Ê have bidegree (1, 1). The bigraded super-commutative algebra W(D) =

Γ(W (D)) will be called the Weil algebra of D.

Double vector bundles come in triples, with cyclic permutation of the roles of the vector bundles
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A,B,E over M :

D //

��

B

��

A // M

D′ //

��

E

��

B // M

D′′ //

��

A

��

E // M

The double vector bundle D′ is (essentially) obtained by taking the dual of D as a vector bundle over

B and interchanging the roles of horizontal and vertical structures; similarly D′′ ∼= (D′)′. (One has

(D′′)′ = D.) See section 2.6 for a more precise description. Accordingly, we have three Weil algebras

W(D), W(D′), W(D′′).

A linear Lie algebroid structure of D as a vector bundle over A, also known as a VB-algebroid

structure of D over A, is equivalent to a double-linear Poisson structure on D′′, and also to a VB-

algebroid structure of D′ over E. (See [51].) Chapter 5 explains in detail how these structures are

expressed in terms of the Weil algebras. In particular, one finds:

Theorem I. Let D be a double vector bundle. Then the following are equivalent:

1. a VB-algebroid structure of D over A,

2. a vertical differential dv on W(D),

3. a horizontal differential d′h on W(D′),

4. a Gerstenhaber bracket (of bidegree (−1,−1)) on W(D′′).

Using cyclic permutations of D,D′, D′′, one has similar results when starting out with a VB-algebroid

structure of D over B or with a double-linear Poisson structure on D. Chapter 7 deals with the situation

that D has any two of these structures; in particular we prove:

Theorem II. Let D be a double vector bundle, with VB-algebroid structures over B as well as over A.

Then the following are equivalent:

1. D is a double Lie algebroid,

2. the horizontal and vertical differentials dh,dv on W(D) commute,

3. the horizontal differential d′h on W(D′) is a derivation of the Gerstenhaber bracket,

4. the vertical differential d′′v on W(D′′) is a derivation of the Gerstenhaber bracket.

If one uses the identification of W(D) with functions on the supermanifold D[1, 1], the equivalence

(a) ⇔ (b) translates into Voronov’s result [77] mentioned above; however, we will give a direct proof of

this result, not using any super-geometry. More precisely, given vertical and horizontal VB-algebroid

structures, the proof will give an explicit relationship between their compatibility (or lack thereof) and

the super-commutator of the two differentials.



Chapter 1. Introduction 6

If D = Tg is the tangent bundle of a Lie algebra, viewed as a double Lie algebroid with A = g, B =

0, E = g∗, then the three Weil algebras are

W(Tg) = ∧g∗ ⊗ Sg∗, W((Tg)′) = ∧g⊗ Sg, W((Tg)′′) = ∧g∗ ⊗ ∧g.

Here W(Tg) is the standard Weil algebra discussed in section 1.2, with dh the Chevalley-Eilenberg

differential for the g-module Sg∗ and dv the Koszul differential. The differential d′h on W((Tg)′) is the

Koszul differential, and the Gerstenhaber bracket is a natural extension of the Lie bracket of the semi-

direct product gn g for the adjoint action. The differential d′′v on W((Tg)′′) is the Chevalley-Eilenberg

differential for the g-module ∧g, and the Gerstenhaber bracket extends the pairing between g∗ and g

(this is a special case of Kosmann-Schwarzbach’s big bracket [41, 42]). More generally, as mentioned

above, if D = TA is the tangent bundle of a Lie algebroid A, the double complex W(TA) coincides with

the Weil algebra of the Lie algebroid A.

We will also explore numerous relationships between the bigraded algebra W(D) and the existing

literature in Poisson geometry. Returning to a general double vector bundle, let ∧AD and ∧BD be

the exterior bundles of D viewed as vector bundles over A and B, respectively. By considering the

homogeneity of sections in the A-direction, one can define distinguished subspaces of of linear sections

of these bundles. In chapter 9, we show that these have descriptions in terms of the Weil algebras:

Γlin(∧•AD,A) = W•,1(D′′), Γlin(∧•BD,B) = W1,•(D′).

As a consequence of Theorem I above, a double-linear Poisson structure on D determines a degree 1

differential on these spaces, while a VB-algebroid structure on D over A (respectively over B) determines

a Gerstenhaber bracket. For the cotangent and tangent bundles of a vector bundle V → M (with the

DVB structures as in Section 2.2), some of these spaces have well-known interpretations:

W1,•(T ∗V ) = X•lin(V ), W1,•(TV ) = Ω•lin(V ).

Here Xlin(V ) are linear multi-vector fields with the Schouten bracket, while Ωlin(V ) are linear differential

forms with the de Rham differential. If V is a Lie algebroid over M , one also has horizontal differentials

on W(T ∗V ) and on W(TV ), coming from the VB-algebroid structures of T ∗V over V ∗ and TV over

TM , respectively. In Section 9.4, we will see that

W1,•(T ∗V ) ∩ ker(dh) = X•IM(V ), W1,•(TV ) ∩ ker(dh) = Ω•IM(V )

the space of infinitesimally multiplicative multi-vector fields [36] and infinitesimally multiplicative differ-

ential forms [6], respectively. On the other hand, the Lie algebroid structure of V over M also induces

a VB-algebroid structure on T ∗V ∗ over V ∗, and the corresponding differential dv on W1,•(T ∗V ∗) =

Xlin(V ∗) is the Poisson differential for the resulting Poisson structure on V ∗, identifying this space with

the deformation complex of Crainic-Moerdijk [16]. (This may also be seen as a consequence of a result

of Cabrera-Drummond [11] for the VB-algebroid T ∗V ∗.) Further applications relate the Weil algebra to

the Frölicher-Nijenhuis [22] and Nijenhuis-Richardson [70] brackets, to matched pairs of Lie algebroids

[67], and to the notion of representations up to homotopy [3, 26, 29].
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1.4 Outline

We begin in chapter 2 with a review of double vector bundles. Our treatment is entirely self-contained,

beginning with the basic definitions and progressing through the pillars of the theory such as splittings,

triality, and DVB sequences. Of particular importance to the rest of the thesis are the fat bundles Â, B̂,

and Ê as well as the pairings between them (see section 2.8). While most of the results of this section

were previously known, we emphasize a new point of view using associated bundles that simplifies the

proofs of many of the main results. We follow up this discussion by introducing a particular class of

examples in chapter 3: double normal bundles. Precisely, to any triple (M,N1, N2) of manifolds for

which N1 and N2 are cleanly intersecting submanifolds of M (see section B.2), we associate a double

vector bundle ν(M,N1, N2) that should be thought of as the simultaneous linearization of the directions

normal to N1 and the directions normal to N2. We provide 3 alternative constructions of ν(M,N1, N2)

and establish their equivalence. We finish the chapter with a doubled version of the deformation to the

normal cone construction from algebraic geometry.

Chapter 4 presents our main construction, the Weil algebra W(D) of a DVB. We start with a discus-

sion of the space S(D) of double polynomial functions on D, and introduce W(D) as a supercommutative

version of S(D). Following the lead of the classical constructions discussed in sections 1.1and 1.2, we

proceed to study the space of derivations of W(D). Finally, we introduce alternative characterizations

of the Weil algebra in terms of linear and core sequences and in terms of vector fields on the total space

D.

The next step is to study the Weil algebras in the presence of additional structure. We begin

this endeavour in chapter 5, where we suppose our DVB comes equipped with a double-linear Poisson

structure. As in the case of the classical Weil algebra, the presence of Lie theoretic structures introduces

a new collection of derivations on the Weil algebra W(D), leading us to Theorem I described above.

Chapter 6 is devoted to studying the relations between these derivations to establish a Cartan calculus

on W(D) analogous to the Chevalley-Eilenberg complex of a Lie algebroid. Finally, in chapter 7, we

apply this Cartan calculus to the situation that D is a double Lie algebroid, resulting in our main result

Theorem II above. We finish off the chapter with a detailed analysis of the Lie algebroid structure on

the core of D.

The final chapters are devoted to connections with the literature. In chapter 8, we illustrate the

constructions of the thesis by computing them for the fundamental example of a double Lie algebroid:

the tangent prolongation of a Lie algebroid. We then use these results in chapter 9 to relate Weil

algebroids to various notions appearing in the literature on Lie algebroids, including ta more detailed

investigation of the applications described above. We conclude with chapter 10, where we describe

further directions of study, with a particular emphasis on the idea of a van Est map for double Lie

groupoids.



Chapter 2

Double Vector Bundles

2.1 Definitions

As mentioned in the introuction, the concept of a double vector bundle was introduced by Pradines

[72, 73] in terms of local charts, and later reformulated as manifolds with ‘commuting’ vector bundle

structures [51]. We shall work with an elegant approach due to Grabowski-Rotkiewicz [23], who observed

that vector bundle structures on manifolds V are completely determined by their scalar multiplications

κt:V → V, t ∈ R, and vector bundle morphisms V → V ′ are exactly the smooth maps intertwining

scalar multiplications. To state these definitions precisely, we will need to make explicit what we mean

by a scalar multiplication. For this, we recall the following theorem.

Theorem 2.1.1. [23] Let V be a manifold equipped with an action of the multiplicative monoid (R, ·),

with the action by t ∈ R denoted κt:V → V , and let M := κ0(V ). Then κt is the scalar multiplication

for a vector bundle structure V →M if and only if the map V → TV |M given by

v 7→ d

dt
(κtv)|t=0

is injective.

Remark 2.1.2. The vector bundle structure having κt as its scalar multiplication is unique, since the

map v 7→ d
dt (κtv)|t=0 is an embedding V ↪→ TV |M as a subbundle.

Any action of the monoid (R, ·) on a manifold V that satisfies the condition of theorem 2.1.1 will

from now on be called a scalar multiplication on V . We can now state the definition of a double vector

bundle.

Definition 2.1.3. 1. A double vector bundle (DVB) is a smooth manifoldD equipped with two scalar

multiplications κh (the horizontal scalar multiplication) and κv (the vertical scalar multiplication)

such that for all s, t ∈ R we have

κht κ
v
s = κvsκ

h
t . (2.1)

2. A morphism of double vector bundles (DVB morphism) from (D1, A1, B1) to (D2, A2, B2) is a

smooth map ϕ:D1 → D2 that satisfies κh2,t ◦ ϕ = ϕ ◦ κh1,t and κv2,s ◦ ϕ = ϕ ◦ κv2,s for all s, t ∈ R.

8
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For a given D, let A = κv0(D) and B = κh0 (D) denote the base submanifolds for the scalar multipli-

cations. It is easy to see that κh restricts to a scalar multiplication on A making it a vector bundle over

M := A ∩B (and similarly for B), and so we will represent the double vector bundle D as a square:

D //

��

B

��

A // M.

(2.2)

One calls A,B the side bundles, and M the base of the double vector bundle. It is worth noting that A

and B can also be defined as the fixed point sets of the scalar multiplications:

A = {d ∈ D | κvs(d) = d ∀s ∈ R}, B = {d ∈ D | κht (d) = d ∀t ∈ R}.

Since κh and κv commute, we get a map

ψ:D → A×M B, (2.3)

given by ϕ(d) = (κv0(d), κh0 (d)). If we consider A ×M B as a double vector bundle with scalar multipli-

cations κh × idB and idA×κv (see also example 2.2(1) below), then ψ is clearly a DVB morphism. It is

an important fact that ψ is also a surjective submersion.

Lemma 2.1.4. The DVB morphism ψ:D → A×M B is a surjective submersion.

Proof. To begin, fix m ∈ M . Note that the map Tmψ restricts to the identity map on both TmA and

TmB, and therefore it has maximal rank. This shows that ψ is a submersion on a neighbourhood of

M in D. To see that it is a submersion everywhere, note that limt,s→0 κ
h
t κ

v
s(D) = M and that for any

t, s ∈ R we have

ψ(κht κ
v
sd) = (κht × κvs) ◦ ψ(d), (2.4)

since ψ is a DVB morphism. For any d ∈ D, take s, t > 0 small enough so that κht κ
v
sd lies in a

neighbourhood of M on which ψ is known to be a submersion. Then by (2.4) we have

T(κv0(d),κh0 (d))(κ
h
t × κvs) ◦ Tdψ = Tκht κvs (d)ψ ◦ Tκbs(d)κ

h
t ◦ Tdκvs .

But κht , κ
v
s , and (κht × κvs) are all diffeomorphisms and Tκvsκht (d)ψ is surjective, so it follows that Tdψ is

surjective as well.

To see that ψ is surjective, note that its image certainly contains M . Being a submersion, ψ is an

open map, and hence its image is an open neighbourhood of M . Once again using the identity (2.4)

establishes that imψ is in fact all of A×M B.

A corollary of lemma 2.1.4 is that the preimage under ψ of any submanifold of A×MB is a submanifold

of D. Of particular importance is the preimage of M , which we call the core of D.

Definition 2.1.5 (Core). Given a double vector bundle D, the submanifold

core(D) = ψ−1(M) ⊆ D

is called the core of D.
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Note that core(D) is invariant under both κh and κv, and certainly κh0 (core(D)) = κv0(core(D)) = M .

Thus core(D) inherits two vector bundle structures over M , given by the restrictions of κh and κv. In

fact, these two vector bundle structures coincide.

Proposition 2.1.6. For a double vector bundle D, the core may alternatively be characterized as the

subset of D on which the horizontal and vertical scalar multiplications agree:

core(D) := {d ∈ D| κht (d) = κvt (d) ∀t ∈ R}. (2.5)

Proof. First let d ∈ D be such that κht (d) = κvt (d) for every t ∈ R. Then note that κh0 (d) = κv0(d) lies in

both A and B by definition, and since A ∩B = M we conclude that

{d ∈ D| κht (d) = κvt (d) ∀t ∈ R} ⊆ core(D).

For the converse, let Eh denote the Euler vector field for the vector bundle structure κh|core(D), and let

Ev denote the Euler vector field for κv|core(D). The linear approximation of Eh

ν(Eh): ν(core(D),M)→ Tν(core(D),M)

is simply the Euler vector field for the vector bundle Tν(core(D),M). Therefore, if we denote by ϕ the

isomorphism ν(core(D),M) ∼= core(D) induced by κv, we find that ϕ∗ν(Eh) = Ev. On the other hand,

since κh and κv commute, Eh is linear in κv (precisely: (κvs)
∗Eh = Eh for all s ∈ R). But then we have

ϕ∗ν(Eh) = Eh. We conclude that Eh = Ev, which completes the proof.

From now on, we will reserve the notation

E = core(D)∗

for the dual bundle of the core.

Remark 2.1.7. We would prefer the letter C, since we will make extensive use of a cyclic symmetry

interchanging the bundles A,B, and core(D)∗; see Section 2.6 below. However, since C is commonly

used to denote the core itself, this might cause confusion with the existing literature.

2.2 Examples

Here are some examples of double vector bundles:

1. If A,B,E are vector bundles over M , then A×M B ×M E∗ is a double vector bundle

A×M B ×M E∗ //

��

B

��

A // M

with core given by E∗. The horizontal and vertical scalar multiplications are given by κht (a, b, ε) =
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(ta, b, tε) and κvt (a, b, ε) = (a, tb, tε), respectively. The two additions are defined by

(a1, b, ε1) +h (a2, b, ε2) = (a1 + a2, b, ε1 + ε2), (a, b1, ε1) +v (a, b2, ε2) = (a, b1 + b2, ε1 + ε2).

In particular, any vector bundle V →M can be regarded as a DVB in three ways, by playing the

role of A,B or E∗. Moreover, if we take E = 0, then we obtain the double vector bundle A×M B

mentioned above.

2. If V → M is any vector bundle, then its tangent bundle and cotangent bundle are double vector

bundles

TV //

��

TM

��

V // M

T ∗V //

��

V ∗

��

V // M

with core(TV ) = V (thought of as the vertical bundle of TV |M ) and core(T ∗V ) = T ∗M . The

DVB structure on TV appeared in [73]; the DVB structure on T ∗V was first discussed in [57].

3. Suppose V → M is a subbundle of a vector bundle W → Q. Then the normal and conormal

bundle of V in W are double vector bundles

ν(W,V ) //

��

ν(Q,M)

��

V // M

ν∗(W,V ) //

��

(W |M/V )∗

��

V // M

with core(ν(W,V )) = W |M/V and core(ν∗(W,V )) = ν∗(Q,M).

4. Let N1, N2 be submanifolds of a manifold M , with clean intersection (see appendix B.2). Then

there is a double normal bundle with base N = N1 ∩N2,

ν(M,N1, N2) //

��

ν(N1, N)

��

ν(N2, N) // N

with core TM |N/(TN1|N+TN2|N ). Note that the core is trivial if and only if the intersection is

transverse. More details on this example are given in chapter 3.

2.3 New DVBs from old

As with many categories, given one or more double vector bundles there are numerous ways to construct

new ones. Here we briefly outline a few of these constructions, some of which we will discuss more deeply

in later sections.

1. Diagonal flips. Given a double vector bundle D as in (2.2), the simplest way to obtain another

DVB is to swap the horizontal and vertical scalar multiplications, which results in the diagonal
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flip of D, denoted flip(D). Thus we have κhflip(D) = κvD and κvflip(D) = κhD resulting in a DVB

flip(D) //

��

A

��

B // M

with core E∗.

2. Sub-DVBs. A sub-DVB of D is, as usual, a submanifold Q ⊆ D that is itself a double vector

bundle. By the results of [23], this happens precisely when Q is invariant under both κh and κv.

The side bundles and core of Q are subbundles of the side bundles and core of D, and the total

base of Q is a submanifold of the total base of D. As a specific instance of this, suppose that

ϕ:D1 → D2 is a DVB morphism. Then the kernel, kerϕ := ϕ−1(M) is a sub-DVB of D1 because

ϕ intertwines the scalar multiplications and elements of M are fixed by both κh2 and κv2. Similarly,

the image of ϕ is a sub-DVB. The diagrams for these DVB’s are

ϕ−1(M) //

��

(ϕ|B)−1(M)

��

(ϕ|A)−1(M) // M,

imϕ //

��

im(ϕ|B)

��

im(ϕ|A) // M,

with cores (ϕ|E∗)−1(M) and im(ϕ|E∗).

3. Pullbacks. Given a double vector bundle D with total base M and a smooth map f :N →M , one

can consider the pullback (as a fibre bundle) f∗D = {(n, d) ∈ N × D | κh0κv0(d) = f(n)}. This

space becomes a double vector bundle

f∗D //

��

f∗B

��

f∗A // N

with core f∗E∗. Here f∗A, f∗B, and f∗E∗ denote the pullbacks of A,B, and E∗ (as vector

bundles) along f , and the scalar multiplications on f∗D are given by κhf∗D = (idN ×κhD)|f∗D and

κvf∗D = (idN ×κvD)|f∗D. In the special case that f :N ↪→M is an embedding of N as a submanifold,

we denote f∗D as D|N and call it the restriction of D to N .

4. Products and direct sums. Suppose we have two double vector bundles Di with side bundles Ai

and Bi and core E∗i over total base Mi for i = 1, 2. The product D1 ×D2 becomes a DVB with

horizontal scalar multiplication κhD1
×κhD2

and vertical scalar multiplication κvD1
×κvD2

. Its diagram

is

D1 ×D2
//

��

B1 ×B2

��

A1 ×A2
// M1 ×M2

with core E∗1 × E∗2 . In the case that M1 = M2, we also define the direct sum of D1 and D2 as

D1 ⊕D2 = (D1 ×D2)|M , where M is identified with its diagonal in D1 ×D2. This gives a DVB
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of the form

D1 ⊕D2
//

��

B1 ⊕B2

��

A1 ⊕A2
// M

with core E∗1 ⊕ E∗2 . Here the ⊕ notation for the side bundles and the core is used to denote the

Whitney sum of vector bundles.

5. Horizontal and vertical duals. Recall that the total space D of a DVB has two vector bundle

structures, D → B and D → A. Dualizing each of these bundles, we obtain two new spaces Dh

(the horizontal dual of D) and Dv (the vertical dual of D) respectively. As it turns out, each of

these spaces defines a DVB:

Dh //

��

B

��

E // M,

Dv //

��

E

��

A // M.

Note that there are a wide range of different notations for these DVBs in the literature, including

D∗B and D∗A (e.g., [29]), and D BB and D BA (e.g.,[27]). The horizontal and vertical scalar

multiplication on Dh are characterized by the property

〈κht (φ), d〉 = t〈φ, d〉 = 〈κvt (φ), κvt (d)〉,

for φ ∈ Dh, d ∈ D in the same fibre over B. Similarly, for ψ ∈ Dv, d ∈ D in the same fibre over

A,

〈κht (ψ), κht (d)〉 = t〈ψ, d〉 = 〈κvt (ψ), d〉.

One finds core(Dh) = A∗, core(Dv) = B∗. Clearly, flip(Dv) = flip(D)h. Furthermore, it was

discovered by Mackenzie [53, Theorem 3.1] that the vector bundles Dh → E and Dv → E are dual

to one another. We will explore these structures more in section 2.6

6. Hom Spaces. Let D1 and D2 be two DVBs as in 4 above, and let f :M1 → M2 be a smooth

map. Denote by Homf (D1, D2) the set of DVB morphisms whose restriction to M1 is f . Then

Homf (D1, D2) determines a double vector bundle, with scalar multiplications defined by κhϕ =

ϕ ◦ κhD1
and κvϕ = ϕ ◦ κvD1

for all ϕ ∈ Homf (D1, D2). Its diagram is given by

Homf (D1, D2) //

��

Homf (B1, B2)

��

Homf (A1, A2) // M1

,

where the side bundles are spaces of vector bundle morphisms with base map f . It is straightforward

to check that the set of all maps on which the two scalar multiplications agree coincides with the

set of maps whose image lies in E∗2 , so the core is given by Homf (D1, E
∗
2 ) (here we view E∗2 as a

DVB with trivial side bundles).

7. Quotients. Contrary to the case of ordinary vector bundles, a sub-DVB of D is not enough on
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its own to determine a quotient. Indeed, an arbitrary sub-DVB does not, in general, induce any

natural equivalence relation on D for which the quotient is a double vector bundle. For this reason,

quotients of double vector bundles do not appear in the literature for the most part (although the

special case that the sub-DVB has the same side bundles as D is discussed in [48, Section 2.5.2]).

In section 2.10, we will determine the additional structure needed for a sub-DVB to determine a

quotient DVB.

2.4 Splittings

Let D be a double vector bundle over M , with side bundles A,B and with core(D) = E∗. A splitting

(or decomposition) of D is a DVB isomorphism

D → A×M B ×M E∗,

inducing the identity on A,B,E∗. Here the DVB structure on the right hand side is as in Example

2.2(1).

Example 2.4.1. Let V → M be a vector bundle, and TV its tangent bundle regarded as a DVB. A

splitting of TV is equivalent to a linear connection ∇ on V . (Cf. [29, Example 2.12].)

Theorem 2.4.2. Every double vector bundle admits a splitting.

Remark 2.4.3. This result was stated in [29] with a reference to [23]; a detailed proof was given in the

Ph.D. thesis of del Carpio-Marek [17]. (The recent paper [32] by Heuer and Jotz Lean generalizes this

result to n-fold vector bundles.) Below we present a somewhat shorter argument.

Proof. Regard D and A×M B as vector bundles over A; their restrictions to the submanifold M ⊆ A are

canonically B⊕E∗ and B, respectively. The surjective submersion ϕ:D → A×M B from (2.3), regarded

as a morphism of vector bundles over A, restricts along M to the obvious projection B⊕E∗ → B. This

restriction has a canonical splitting B → B ⊕ E∗, b 7→ (b, 0). Choose any extension to a splitting of

vector bundles over A,

ψ1:A×M B → D.

Then ψ1 intertwines the vertical scalar multiplications κvt , but not necessarily the horizontal scalar

multiplications. Applying the normal bundle functor, we obtain a DVB morphism

ν(ψ1): ν(A×M B,B)→ ν(D,B).

But recall that for any vector bundle V →M , one has a canonical isomorphism TV |M= V ⊕TM , giving

rise to an isomorphism of vector bundles ν(V,M) ∼= V . In a similar fashion, we have canonical DVB

isomorphisms ν(D,B) ∼= D and ν(A ×M B,B) ∼= A ×M B. Under these identifications, ν(ψ1) =: ψ is

the desired splitting A×M B → D.

Remark 2.4.4. As a consequence of the theorem above, any two double vector bundles with isomorphic

side bundles and isomorphic cores are isomorphic as DVBs. When we wish to emphasize a stronger

notion of equivalence, we will use the term canonical. By a canonical DVB isomorphism, we mean one

that does not depend on a choice of splittings.
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Combining the existence of splittings with local trivializations of A,B,E∗, we see in particular

that every double vector bundle D is a fibre bundle over its base manifold M , with bundle projection

q = κh0κ
v
0:D → M . Its fibres Dm = q−1(m) are double vector spaces (i.e., double vector bundles over a

point).

2.5 The associated principal bundle

Given non-negative integers n1, n2, n3 ∈ Z≥0, put A0 = Rn1 , B0 = Rn2 , E0 = Rn3 , and let D0 be the

double vector space

D0 = A0 ×B0 × E∗0 (2.6)

with κht (a, b, ε) = (a, tb, tε) and κvt (a, b, ε) = (ta, b, tε). (Cf. Example 2.2(1).) For any vector space V0,

we denote by GL(V0) its general linear group; it comes with standard representations on V0 and on the

dual space V ∗0 . Thus, GL(A0) × GL(B0) × GL(E0) has a standard action on the double vector space

(2.6).

Lemma 2.5.1. [28] The group of DVB automorphisms of D0 = A0 ×B0 ×E∗0 is a semi-direct product

Aut(D0) = ( GL(A0)×GL(B0)×GL(E0)) n (A∗0 ⊗B∗0 ⊗ E∗0 ). (2.7)

with the standard action of GL(A0)×GL(B0)×GL(E0), and with ω ∈ A∗0 ⊗B∗0 ⊗ E∗0 acting as

(a, b, ε) 7→ (a, b, ε+ ω(a, b)). (2.8)

Proof. First we define the abelian group of statomorphisms of D0 (this terminology comes from [28]):

Stat(D0) = {ϕ ∈ Aut(D0) | ϕ|A0
= idA0

, ϕ|B0
= idB0

, ϕ|E∗0 = idE∗0 }.

Then by definition, we get an exact sequence of Lie groups

1→ Stat(D0)→ Aut(D0)→ GL(A0)×GL(B0)×GL(E0)→ 1.

Since this sequence is right split (by the standard action of GL(A0)×GL(B0)×GL(E0) on D0), it will

be enough to prove that Stat(D0) = A∗0 ⊗ B∗0 ⊗ E∗0 . First note that any ω ∈ A∗0 ⊗ B∗0 ⊗ E∗0 clearly

defines a statomorphism via (2.8). Now let ϕ ∈ Stat(D0) and write ϕ = (ϕA, ϕB , ϕE∗). Since ϕ is

a DVB morphism, we get in particular that ϕA(a, sb, sε) = ϕA(a, b, ε) for all s ∈ R. Setting s = 0

yields ϕA(a, b, ε) = ϕA(a, 0, 0) = (a, 0, 0) since ϕ is a statomorphism. Similarly, ϕB(a, b, ε) = (0, b, 0), so

we are left with determining ϕE∗ . A calculation analogous to the one above shows that ϕE∗(a, 0, 0) =

ϕE∗(0, b, 0) = 0, and so we get

ϕE∗(a, b, ε) = ϕE∗(a, 0, ε) + ϕE∗(a, b, 0) = ϕE∗(0, 0, ε) + ϕE∗(a, b, 0) = ε+ ϕE∗(a, b, 0),

where we have used the fact that ϕ preserves the two additions in D0 (see example 1). But by

equivariance with respect to κh and κv, ϕE∗(ta, b, 0) = ϕE∗(0, tb, 0) = tϕE∗(a, b, 0), which shows that

ϕE∗(−,−, 0):A⊗B → E∗ is bilinear, completing the proof.
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As a consequence of this result, we obtain more information about the splitting of double vector

bundles, obtained by consider the space of statomorphisms from A×M B ×M E∗ to itself.

Corollary 2.5.2. The set of splittings of D is an affine space with Γ(A∗ ⊗ B∗ ⊗ E∗) as its space of

translations.

Given a double vector bundle D, take n1, n2, n3 to be the ranks of the bundles A,B,E. An iso-

morphism of double vector spaces Dm → D0 will be called a frame of D at m ∈ M . Clearly, any

two frames are related by the action of Aut(D0). We define the frame bundle of D to be the principal

Aut(D0)-bundle P →M whose fibres Pm are the set of frames at m.

Remark 2.5.3. In [44], the semi-direct product (2.7) is regarded as a double Lie group, and a general

theory of double principal bundles for double Lie groups is developed.

Many constructions with double vector bundles may be expressed in terms of bundles associated to

P . In particular, D is itself an associated bundle for the action (2.8),

D = (P ×D0)/Aut(D0). (2.9)

(Pradines’ original definition [72] of double vector bundles was in terms of local trivializations with

Aut(D0)-valued transition functions.) A splitting of D amounts to a reduction of the structure group

to GL(A0) × GL(B0) × GL(E0) ⊆ Aut(D0); the fibres Qm of the reduction Q ⊆ P are all those DVB

isomorphisms Dm → D0 that also preserve the splittings.

Let D−0 be equal to D0 as a double vector space, but with the new action of Aut(D0), where

ω ∈ A∗0 ⊗ B∗0 ⊗ E∗0 acts by (a, b, ε) 7→ (a, b, ε − ω(a, b)), while GL(A0) × GL(B0) × GL(E0) acts in the

standard way. The resulting double vector bundle

D− = (P ×D−0 )/Aut(D0).

will feature in some of the constructions below.

Lemma 2.5.4. There is a canonical DVB isomorphism D− → D that is the identity on the side bundles

but minus the identity on the core.

Proof. The isomorphism is induced by the Aut(D0)-equivariant isomorphism of double vector spaces

D−0 → D0, (a, b, ε) 7→ (a, b,−ε).

2.6 Triality of double vector bundles

By cyclic permutation of the roles of A0, B0, E0, the action (2.8) of Aut(D0) on D0 = A0 × B0 × E∗0
gives rise to similar actions on D′0 = B0 × E0 ×A∗0 and D′′0 = E0 ×A0 ×B∗0 . The bilinear pairings

D0 ×B0
D′0 → R, ((a, b, ε), (b, e, α)) 7→ α(a)− ε(e), (2.10)
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and similar maps given by cyclic permutation, are Aut(D0)-equivariant. Taking associated bundles, we

obtain three double vector bundles

D //

��

B

��

A // M

D′ //

��

E

��

B // M

D′′ //

��

A

��

E // M

with bilinear pairings

D ×B D′ → R, D′ ×E D′′ → R, D′′ ×A D → R (2.11)

The bundles D′, D′′ are closely related to the horizontal and vertical duals:

Proposition 2.6.1. There are canonical DVB isomorphisms

Dh ∼= flip(D′)−, Dv ∼= flip(D′′)−

that are the identity on the side bundles and on the core.

Proof. We give the proof for Dh (the argument for Dv is similar). It suffices to consider the double

vector space D0. Write D as an associated bundle (2.9). Then

Dh = (P ×Dh
0 )/Aut(D0)

where the Aut(D0)-action on Dh
0 = E0×B0×A∗0 is given by the standard action of GL(A0)×GL(B0)×

GL(E0), while ω ∈ A∗0 ⊗B∗0 ⊗ E∗0 acts as

(e, b, α) 7→ (e, b, α− ω(b, e)).

This action is dictated by invariance of the duality pairing

D0 ×B0
Dh

0 → R, ((a, b, ε), (e, b, α)) 7→ α(a) + ε(e).

The DVB-isomorphism Dh
0 → flip(D′0), (e, b, α) 7→ (e, b,−α) is Aut(D0)-equivariant, and induces a

DVB-isomorphism Dh → flip(D′) that is the identity on the sides but minus the identity on the core.

Now use Lemma 2.5.4.

Remark 2.6.2. Using the isomorphisms from Proposition 2.6.1, the second pairing in (2.11) translates

into Mackenzie’s pairing Dv ×EDh → R [53, Theorem 3.1]. We also recover the result of Mackenzie [53]

and Konieczna and Urbański [38], giving a canonical DVB isomorphism

((Dh)v)h ∼= ((Dv)h)v

that is the identity on the side bundles and on the core; indeed, by iteration of Proposition 2.6.1 we see

that both are identified with D−. As a special case, if D = T ∗V we have that Dv = TV , (Dv)h = TV ∗,
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((Dv)h)v = T ∗V ∗, and we recover the canonical DVB isomorphism

T ∗(V ∗) ∼= flip(T ∗V )− (2.12)

of Mackenzie-Xu [57].

Example 2.6.3. Consider D = TV as a double vector bundle with sides A = V and B = TM . The natural

pairing between tangent and cotangent vectors identifies Dv = T ∗V , while the tangent prolongation of

the pairing V ×M V ∗ → R identifies Dh = TV ∗. The three double vector bundles D,D′, D′′ are therefore,

TV //

��

TM

��

V // M

flip(T (V ∗))− //

��

V ∗

��

TM // M

flip(T ∗V )− //

��

V

��

V ∗ // M

Put differently, there is a canonical DVB isomorphism (TV )′ → flip(T (V ∗)) that is the identity on the

side bundles and minus identity on the core V ∗, and a canonical DVB isomorphism (TV )′′ → flip(T ∗V )

that is the identity on the side bundles and minus the identity on the core T ∗M .

2.7 Double-linear functions

For any vector bundle V → M , the fibrewise linear functions on V are identified with the sections of

the dual bundle V ∗. We will similarly associate to any double vector bundle D a vector bundle whose

space of sections are the functions on D that are double-linear, i.e., linear for both scalar multiplications.

Throughout this discussion, we will find it convenient to present D as an associated bundle D = (P ×
D0)/Aut(D0) with D0 = A0 ×M B0 ×M E∗0 . Consider the Aut(D0)-action on

Ê0 = (A∗0 ⊗B∗0)⊕ E0,

where GL(A0) × GL(B0) × GL(E0) acts in the standard way, while elements ω ∈ A∗0 ⊗ B∗0 ⊗ E∗0
∼=

Hom(E0, A
∗
0 ⊗B∗0) act as

(ν, e) 7→ (ν − ω(e), e).

The projection Ê0 → E0 is Aut(D0)-equivariant, with kernel A∗0 ⊗ B∗0 . Taking associated bundles, we

obtain a vector bundle

Ê = (P × Ê0)/Aut(D0)

with an exact sequence of vector bundles over M ,

0 −→ A∗ ⊗B∗
iÊ−→ Ê −→ E −→ 0. (2.13)

Proposition 2.7.1. The space of sections of Ê is canonically isomorphic to the space of double-linear

functions on D. Under this identification, the quotient map to E is given by restriction of double-linear

functions to core(D) = E∗, and the inclusion map iÊ is given by the multiplication of pull-backs of linear

functions on A and on B.

Proof. It suffices to prove these claims for the double vector space D0. Using a Taylor expansion, we

see that the double-linear functions on D0 = A0 × B0 × E∗0 are Ê0 = (A∗0 ⊗ B∗0) ⊕ E0, where E0 is
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interpreted as linear functions on E∗0 and A∗0⊗B∗0 as linear combinations of products of linear functions

on A0, B0.

In terms of this interpretation through double-linear functions, the exact sequence (2.13) was dis-

cussed by Chen-Liu-Sheng [13] as the dual of their DVB sequence. Since we prefer to work with (2.13)

rather than its dual, we will simply call (2.13) the DVB sequence of D. For clarity, we will emphasize

this point by making it a definition.

Definition 2.7.2 (DVB sequence). The sequence (2.13) (and not its dual) is called the DVB sequence

of D.

A central result of [13] is that the double vector bundle D may be recovered from its DVB sequence.

We will prove this result using the associated bundle construction.

Proposition 2.7.3. [13] The double vector bundle D is the sub-double vector bundle of

D̂ = A×M B ×M Ê∗

consisting of all (a, b, ε̂) ∈ A ×M B ×M Ê∗ such that i∗
Ê

(ε̂) = a ⊗ b. A splitting of D is equivalent to a

splitting of the exact sequence (2.13).

Proof. We will prove the first claim for the typical fibre D0, with the general result then being a

consequence of the associated bundle construction. Define

Ω(D0) = {(a, b, ε̂) ∈ A0 ×M B0 ×M Ê∗0 | i∗Ê(ε̂) = a⊗ b}.

Since the DVB sequence (2.13) for D0 is canonically split, i∗
Ê0

:A⊗B⊕E∗ → A⊗B is simply projection

to the first factor. This gives

Ω(D0) = {(a, b, a⊗ b+ ε) ∈ A0 ×M B0 ×M Ê∗0}.

Then the map D0 → A0×M B0×M Ê∗0 defined by (a, b, ε) 7→ (a, b, a⊗ b+ ε) is clearly an injective DVB

morphism with image Ω(D0).

For the second claim, note that any splitting of the sequence (2.13) induces an isomorphism Ê ∼=
A∗ ⊗ B∗ ⊕ E under which i∗

Ê
is simply projection. Then by what we have proven above, we obtain an

identification

D ∼= {(a, b, a⊗ b+ ε) | a ∈ A, b ∈ B, ε ∈ E∗}.

Composing this idenfication with the map (a, b, a ⊗ b + ε) 7→ (a, b, ε) yields the desired DVB splitting

D
∼−→ A×M B ×M E∗.

Remark 2.7.4. A direct consequence is that every double vector bundle D comes with a map

D → Ê∗ (2.14)

given by the inclusion D ↪→ D̂ followed by projection to Ê∗. This map is a DVB-morphism if the vector

bundle Ê∗ is regarded as a double vector bundle (with zero sides). In terms of the associated bundle
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construction, this is induced by the map

D0 = A0 ×B0 × E∗0 → Ê∗0 = (A0 ⊗B0)⊕ E∗0 , (a, b, ε) 7→ a⊗ b+ ε.

Remark 2.7.5. The inclusion D ↪→ D̂ dualizes to a surjective DVB morphism

D̂′ = B ×M Ê ×M A∗ → D′.

Replacing D′ with D (thus D with D′′), this shows that every double vector bundle also arises as a

quotient of a split double vector bundle.

Using a similar construction for the bundles D′, D′′, we obtain bundles Â and B̂, with inclusion

maps

iÊ :A∗ ⊗B∗ → Ê, iÂ:B∗ ⊗ E∗ → Â, iB̂ :E∗ ⊗A∗ → B̂, (2.15)

and exact sequences obtained from (2.13) by cyclic permutation of A,B,E. In Section 2.9 below we will

identify the bundles Â, B̂ with those introduced by Gracia-Saz and Mehta [29]; the corresponding exact

sequences appear as Equation (26) in that reference.

Remark 2.7.6. Since a splitting of D is equivalent to a splitting of D′, D′′, we see that a splitting of D

is equivalent to a splitting of any one of the three vector bundle maps Â→ A, B̂ → B or Ê → E.

2.8 The three pairings

In what follows, we will denote elements of the bundles Â, B̂, Ê by â, b̂, ê, and their images in A,B,E

by a, b, e.

Proposition 2.8.1. There are canonical bilinear pairings

〈·, ·〉E∗ :B̂ ×M Â→ E∗,

〈·, ·〉A∗ :Ê ×M B̂ → A∗, (2.16)

〈·, ·〉B∗ :Â×M Ê → B∗,

with the properties

〈̂b, iÂ(µ)〉E∗ = µ(b), µ ∈ B∗ ⊗ E∗, b̂ ∈ B̂, (2.17)

〈iB̂(ν), â〉E∗ = −ν(a), ν ∈ E∗ ⊗A∗, â ∈ Â, (2.18)

and similar properties obtained by cyclic permutations of A,B,E. The pairings are related by the identity

〈̂b, â〉E∗(e) + 〈ê, b̂〉A∗(a) + 〈â, ê〉B∗(b) = 0. (2.19)

Proof. Using the associated bundle construction, it suffices to define the corresponding pairings for the

double vector space D0, and check that they are Aut(D0)-equivariant. We have

Â0 = (B∗0 ⊗ E∗0 )⊕A0, B̂0 = (E∗0 ⊗A∗0)⊕B0, Ê0 = (A∗0 ⊗B∗0)⊕ E0.
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Put

〈·, ·〉E∗0 : B̂0 × Â0 → E∗0 , 〈(ν, b), (µ, a)〉E∗0 = µ(b)− ν(a); (2.20)

This is clearly equivariant for the actions of GL(A0) × GL(B0) × GL(E0). For the action of ω ∈
A∗0 ⊗B∗0 ⊗ E∗0 , observe that in the pairing between

ω.(µ, a) = (µ− ω(a), a), ω.(ν, b) = (ν − ω(b), b),

the terms involving ω cancel. The properties (2.17) and (2.18) hold by definition. Furthermore, given

â = (µ, a) ∈ Â0, b̂ = (ν, b) ∈ B̂0, ê = (ρ, e) ∈ Ê0 the three terms in (2.19) are µ(e, a) − ν(b, e),

ρ(a, b)− µ(e, a) and ν(b, e)− ρ(a, b), hence their sum is zero.

Replacing D with flip(D) reverses the role of A and B. Hence, the three inclusion maps (2.15) are

unchanged, but the three pairings (2.16) all change sign. On the other hand, for D− we have:

Proposition 2.8.2. The bundles Â, B̂, Ĉ for D are canonically isomorphic to those for D−. Under

this identification, replacing D with D− changes the signs of the inclusion maps (2.15) and also of the

pairings (2.16).

Proof. Let Â−, B̂−, Ê− be the corresponding bundles for D−. The Aut(D0)-equivariant isomorphism

Ê−0 → Ê0, (ν, c) 7→ (−ν, c)

gives the desired isomorphism Ê− → Ê, and similar for Â−, B̂−. One readily checks that these

isomorphisms give sign changes for the inclusions and pairings.

2.9 Geometric interpretations

The bundles Â, B̂, Ê and the pairings between them have various geometric interpretations, in terms of

functions and vector fields on D.

We begin by recalling analogous interpretations for vector bundles V → M . The space X(V )[r] of

vector fields on V that are homogeneous of degree r for the scalar multiplication (i.e., κ∗tX = trX for

t 6= 0) is trivial if r < −1, while the core and linear vector fields

X(V )[−1] := Xcore(V ), X(V )[0] =: Xlin(V ) (2.21)

are identified with sections of V (via the vertical lift, taking a section σ ∈ Γ(V ) to the corresponding

fibrewise constant vector field σ]), and infinitesimal automorphisms of V , respectively. On the other

hand, C∞(V )[0] = C∞(M) and C∞(V )[1] = Γ(V ∗).

The pairing V ×M V ∗ → R is realized as the map X(V )[−1] ⊗ C∞(V )[1] → C∞(V )[0] given by

Lie derivative, X ⊗ f 7→ LXf . We can also take a dual viewpoint (‘Fourier transform’), using the

identifications C∞(V ∗)[0] = C∞(M), C∞(V ∗)[1] = Γ(V ), X(V ∗)[−1] = Γ(V ∗). Here, we realize the

pairing V ×M V ∗ → R as minus the Lie derivative, h⊗ Z 7→ −LZh. (Working with multi-vector fields,

it is convenient to think of these pairings as Schouten brackets (see section A.1) between 1-vector fields

and 0-vector fields.)

For a double vector bundle, let X(D)[k,l] be the space of vector fields on D that are homogeneous

of degree k horizontally and of degree l vertically. Similar notation will be used for smooth functions,
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differential forms, and soon. Let Γ(D,A) be the sections of D as a vector bundle over A, and Γlin(D,A)

the subspace of sections that are homogeneous of degree 0 horizontally, i.e., such that the corresponding

map A→ D is κht -equivariant. Linear sections of D over B are defined similarly. We have

Γlin(D,A) ∼= X(D)[0,−1], Γlin(D,B) ∼= X(D)[−1,0], Γ(E∗) ∼= X(D)[−1,−1]. (2.22)

To verify (2.22), note that vector fields X ∈ X(D)[k,l] with k = −1 or l = −1 annihilate C∞(D)[0,0] =

C∞(M), and are thus vertical for the bundle projection D → M . Hence, it suffices to check for the

double vector space D0 = A0 ×B0 × E∗0 . But

X(D0)[0,−1]
∼= B0 ⊕ (A∗0 ⊗ E∗0 ), X(D0)[−1,0] = A0 ⊕ (B∗0 ⊗ E∗0 ), X(D0)[−1,−1]

∼= E∗0 ,

where elements of a vector space are seen as constant vector fields on the vector space, and elements of

the dual space as linear functions. Indeed, with this interpretation the elements of A0, B0, E
∗
0 have homo-

geneity bidegrees (−1, 0), (0,−1), (−1,−1) respectively, while elements of A∗0, B
∗
0 , E0 have homogeneity

bidegrees (1, 0), (0, 1), (1, 1).

Proposition 2.9.1. The space of sections of Ê is canonically isomorphic to

1. the space C∞(D)[1,1] of double-linear functions on D,

2. the space Γlin(D′, B) of linear sections of D′ over B,

3. the space Γlin(D′′, A) of linear sections of D′′ over A,

4. the space X(D′)[0,−1] of vector fields on D′ of homogeneity (0,−1),

5. the space X(D′′)[−1,0] of vector fields on D′′ of homogeneity (−1, 0).

Similar descriptions hold for sections of Â, B̂.

Proof. It suffices to prove these descriptions for the double vector spaces D0 = A0 ×B0 ×E∗0 . We have

already remarked that Ê0 is the space of double-linear functions on D0. For (b), note that sections of

D′0 = B0×E0×A∗0 over B0 are smooth functions B0 → E0×A∗0; such a function defines a linear section

if and only if its first component is a constant map B0 → E0, while its second component is a linear

map B0 → A∗0. Hence, we obtain Γlin(D′0, B0) = (A∗0 ⊗B∗0)⊕ E0 = Ê0. The proof of (c) is similar, and

by the counterparts of (2.22) for D′0, D
′′
0 the properties (b),(c) are equivalent to (d),(e).

Remark 2.9.2. In the work of Gracia-Saz and Mehta [29, Section 2.4], the isomorphism Γ(Â) ∼= Γlin(D,B)

is used as the definition of Â.

Using these geometric interpretations, the three inclusion maps (2.15) are realized as the bilinear

maps

iÊ : C∞(D)[1,0] × C∞(D)[0,1] → C∞(D)[1,1], (f, g) 7→ fg

iÂ: C∞(D)[0,1] × X(D)[−1,−1] → X(D)[−1,0], (g, Z) 7→ gZ (2.23)

iB̂ : X(D)[−1,−1] × C∞(D)[1,0] → X(D)[0,−1], (Z, f) 7→ fZ
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while the three pairings (2.16) are

〈·, ·〉E∗ X(D)[0,−1] × X(D)[−1,0] → X(D)[−1,−1], (X,Y ) 7→ [[X,Y ]]

〈·, ·〉A∗ C∞(D)[1,1] × X(D)[0,−1] → C∞(D)[1,0], (h,X) 7→ −LXh (2.24)

〈·, ·〉B∗ X(D)[−1,0] × C∞(D)[1,1] → C∞(D)[0,1], (Y, h) 7→ LY h.

The identity (2.19) just amounts to L[X,Y ] = [LX ,LY ]. To verify (2.23) and (2.24), it is enough to

consider the double vector space D0, but there it follows by a routine check from the definitions.

2.10 Quotients of double vector bundles

In [63], a theory of quotients is developed in the category of graded multi-bundles. The key insight is

that quotients are determined not by an action of the sub-object itself, but rather by the action of a

suitable Lie algebra bundle. Double vector bundles are a special case of graded multi-bundles, and so

in this section we review Meinrenken’s quotient construction for DVBs (theorem 2.10.1), and we apply

some of the machinery discussed earlier in this chapter to the study of such quotients. Suppose Q is

a sub-DVB of D with the same total base M . As mentioned in section 2.3, Q alone is not enough to

determine a quotient DVB. To understand the additional structure necessary, for any arbitrary double

vector bundle D, consider the bigraded vector bundle

g = Â⊕ B̂ ⊕ E∗.

Using the first pairing described in (2.16), we can give g the structure of a bundle of two-step nilpotent

Lie algebras. Specifically, the bracket is defined by

[(â1, b̂1, ε1), (â2, b̂2, ε2)] = (0, 0, 〈̂b1, â2〉E∗ − 〈̂b2, â1〉E∗).

On the other hand, by proposition 2.9.1 we have the isomorphisms Γ(Â) ∼= X[−1,0](D), Γ(B̂) ∼= X[0,−1](D),

and Γ(E∗) ∼= X[−1,−1](D). These identifications combine to define an action of the bigraded Lie algebra

bundle g on D. To describe the action explicitly, we will use the associated bundle construction. As

usual, let D0 denote a double vector space that will play the role of the generic fibre of D. Then the

vector bundle actions of E∗0 , Â0, and B̂0 on D0 are described below. For any (a, b, ε) ∈ D0:

1. the formula

ε1 · (a, b, ε) = (a, b, ε+ ε1), ε2 ∈ E∗0

defines the core action of E∗0 on D0.

2. The formula

(µ, a1) · (a, b, ε) = (a+ a1, b, ε− µ(b)), (µ, a1) ∈ Â0 = Hom(B0, E
∗
0 )⊕A0

defines the fat bundle action of Â0 on D0.
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3. The formula

(ν, b1) · (a, b, ε) = (a, b+ b1, ε− ν(a)), (ν, b1) ∈ B̂0 = Hom(A0, E
∗
0 )⊕B0

defines the fat bundle action of B̂0 on D0.

By taking associated bundles, we obtain the core action and fat bundle actions of E∗, Â, and B̂ on D. Let

us verify that these formulas lead to the correct commutator action. For (µ, a1) ∈ Â0 and (ν, b1) ∈ B̂0,

we compute

(µ, a1)(ν, b1)(−µ,−a1)(−ν,−b1) · (a, b, ε) = (µ, a1)(ν, b1)(−µ,−a1) · (a, b− b1, ε+ ν(a))

= (µ, a1)(ν, b1) · (a− a1, b− b1, ε+ ν(a) + µ(b)− µ(b1))

= (µ, a1) · (a− a1, b, ε+ µ(b)− µ(b1) + ν(a1))

= (a, b, ε+ ν(a1)− µ(b1))

= −〈(ν, b1), (µ, a1)〉E∗ · (a, b, ε)

= [(µ, a1), (ν, b1)] · (a, b, ε),

as required. Note that this calculation also explains our sign choice in the definition of the fat bundle

actions.

Now let us return to the situation above, with Q ⊆ D a sub-DVB, whose diagram is given by

Q //

��

V

��

H // M

(2.25)

with core K∗, and let g denote the Lie algebra bundle described above for D. Like any DVB, Q comes

equipped with a core action by the vector bundle K∗. In addition to Q, the extra data that determines

a quotient DVB amounts to a bigraded Lie subalgebra bundle h of g that preserves the core action of

K∗. More specifically, let gE∗ denote the bundle of abelian ideals that preserve the core E∗ of D:

gE∗ = Hom(B,E∗)⊕Hom(A,E∗)⊕ E∗.

Then since K ⊆ E∗, we can consider the subbundle

gK∗ = Hom(B,K∗)⊕Hom(A,K∗)⊕K∗.

The condition on h ⊆ g is that

h ∩ gE∗ = gK∗ .

We make these statements precise in the theorem below.

Theorem 2.10.1 (DVB quotients). [63] Let Q be a sub-DVB of D with diagram (2.25). Then surjective

DVB morphisms with domain D and kernel Q are in bijective correspondence with pairs of subbundles

H̃ ⊆ Â and Ṽ ⊆ B̂ such that:

1. the map Â→ A restricts to a surjection H̃ → H with kernel Hom(B,K∗), and
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2. the map B̂ → B restricts to a surjection Ṽ → V with kernel Hom(A,K∗).

The image of such a DVB morphism is given by the quotient of D by the action of the Lie subalgebra

bundle

h = H̃ ⊕ Ṽ ⊕K.

Proof. First choose any two splittings of D and Q. In terms of these splittings, the inclusion map

iQ:Q ↪→ D takes the form (h, v, k) 7→ (h, v, k + ω(h, v)) for some ω ∈ Hom(A ⊗ B,C). Using corollary

2.5.2, we may arrange that ω = 0. We will therefore assume that D = A ×M B ×M E∗ and that

Q = H×M V ×MK∗. If we suppose that such bundles H̃ and Ṽ exist, then the quotient of A×MB×ME∗

by the action of h is simply

D/h = A/H ×M B/V ×M E∗/K∗,

which is a decomposed DVB and comes along with an obvious quotient map.

Now suppose there exists a double vector bundle D/Q and a surjective DVB morphism π:D → D/Q

with kernel Q (the notation D/Q is meant to be merely suggestive). We define H̃ ⊆ Â and Ṽ ⊆ B̂

to be the subbundles whose action on D preserves the fibres of π. Analogous to above, a suitable

choice of splittings ensures that π takes the form π(a, b, ε) = (π1(a), π2(b), π3(ε)), and the subgroup of

Â = Hom(B,E∗)⊕A that preserves the fibres of π consists of those (h, µ) for which

(π1(a) + π1(h), π2(b), π3(ε)− π3(µ(b))) = π(a+ h, b, ε− µ(b)) = π(a, b, ε) = (π1(a), π2(b), π3(ε))

for all a ∈ A, b ∈ B, ε ∈ E∗. It follows that π(h) = 0 and π3(µ(b)) = 0, hence we find that h ∈ H
and µ(b) ∈ K∗ for all b ∈ B. Thus H̃ = Hom(B,K∗) ⊕ H, and a similar argument confirms that

Ṽ = Hom(A,K∗)⊕ V . To see that D/Q is indeed completely recovered as D/h, note that if

π(a1, b1, c1) = π(a2, b2, c2)

then a1 − a2 ∈ H, b1 − b2 ∈ V , and ε1 − ε2 ∈ K∗ so that the elements (a1, b1, ε1) and (a2, b2, ε2) are

related by the action of h.

Note that the two scalar multiplications on D/h, which we denote by κh,h and κv,h, are defined by

κh,ht ([d]) = [κht d], κv,hs ([d]) = [κvsd],

which are easily seen to be well-defined using the definition of the core and fat bundle actions above.

Let us now take a look at a few special cases of this construction.

Example 2.10.2. (i) Suppose that Q has a full core, in other words that K∗ = E∗. Then the subbun-

dles H̃ and Ṽ must necessarily be the preimages of H and V inside Â and B̂ respectively, and so

in this case there is a canonical quotient

D/Q //

��

B/V

��

A/H // M

with trivial core.
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(ii) On the other side of things, suppose that H = A and V = B. Then the quotient by h eliminates

the side bundles and takes the quotient of E∗ by K∗, producing the total quotient [48, Section

2.5.2]

E∗/K∗ //

��

M

��

M // M.

We will encounter a more specific example of DVB quotients in section 3.3.

Remark 2.10.3. Suppose now that Q has only one side bundle in common with D, say V = B. Then

Q→ B is a vector subbundle of D → B, and one can take the quotient as vector bundles over B. The

kernel of this quotient map (considered as a surjective DVB morphism) would be H ×M K∗, giving

Ṽ = Hom(H,K∗). Thus taking the quotient by this map would result in a DVB with vertical side

bundle equal to B. Note that this differs from any quotient of D by Q as described above, since any

such DVB quotient would have the zero bundle as its vertical side bundle.

There are a few equivalent ways to describe the additional data defining a DVB quotient. First,

observe that the subbundle H̃ ⊆ Â fits into an exact sequence

0→ B∗ ⊗K∗ → H̃ → H → 0,

and the subbundle Ṽ fits into a similar exact sequence. These sequences are examples of DVB sequences,

and so by the results of [13], they correspond to double vector bundles

Ω(H) //

��

V

��

K // M

Ω(V ) //

��

K

��

H // M,

with cores H∗ and V ∗ respectively. In order to see how these DVBs are related to D and Q, start by

choosing an extension of the subbundle Q → V of D → B to the whole base B. Then the quotient

(D/Q)B (taken as vector bundles over B) becomes a double vector bundle

D/QB //

��

B

��

A/H // M

with core E∗/K∗. Cyling once through the triality of this DVB gives the double vector bundle (in the

notation of section 2.6 this would be called (D/QB)′)

Ann(Q)B //

��

Ann(K∗)

��

B // M

with core Ann(H). We then recover Ω(H) by taking the quotient (as vector bundles over B) of D′

by Ann(Q)B . Similarly, one can produce a double vector bundle Ann(Q)A and recover Ω(V ) as the
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quotient D′′/Ann(Q)A taken as vector bundles over A. Thus we see that a DVB quotient is equivalent

to a vector bundle quotient of E∗, together with extensions to a pair of quotients of D′ (as a vector

bundle over B) and D′′ (as a vector bundle over A). We observe that this alternate viewpoint yields

a natural explanation for the case H = A and V = B having a canonical quotient, since no choices of

extensions are required in this case.

For yet another viewpoint, the extensions QB and QA of the subbundles Q → V and Q → H

that define the quotients discussed above actually determine DVBs themselves. Of course, we have the

inclusions Q ⊆ QB , QA ⊆ D, so we see that DVB quotients are equivalent to a choice of intermediate

DVBs

QB //

��

B

��

H // M

QA //

��

V

��

A // M,

(2.26)

that lie between Q and D. Let us relate these double vector bundles back to the data of theorem 2.10.1.

If we think of Γ(Â) as consisting of vector fields of bidegree (−1, 0) on D (see proposition 2.9.1), then

Γ(H̃) consists of those vector fields on D that are tangent to QB . Similarly, Γ(Ṽ ) consists of vector

fields that are tangent to QA.

In section 2.7 we stressed the importance of DVB sequences (see definition 2.7.2), so let us end our

discussion of quotients with a description of the corresponding sequence.

Proposition 2.10.4. Let Q ⊆ D be a sub-DVB, and let h be a Lie subalgebra bundle as in theorem

2.10.1. Then the space of double-linear functions on the quotient D/h can be identified with the collection

of all double-linear functions on D that are h-invariant:

C∞(D/h)[1,1] = (C∞(D)[1,1])
h.

Moreover, it fits into a commutative diagram with exact rows

0 Γ(Ann(H))⊗ Γ(Ann(V )) C∞(D/h)[1,1] Γ(Ann(K∗)) 0

0 Γ(A∗)⊗ Γ(B∗) C∞(D)[1,1] Γ(E) 0.

Proof. As in the proof of theorem 2.10.1, we will assume thatD = A×MB×ME∗ andQ = H×MV×MK∗

so that

D/h = A/H ×M B/V ×M E∗/K∗.

As usual, we identify smooth functions on D/h with smooth functions on D that are h-invariant. This

identification is given by C∞(D)h → C∞(D/h), f 7→ f̄ , where

f̄([a], [b], [ε]) = f(a, b, ε).

The inverse assignment is given by C∞(D/h)→ C∞(D)h, f 7→ f ◦ π, where π:D → D/h is the quotient

map. Both of these assignments preserve the property of being double-linear. Indeed, if f is a double-

linear function on D, then

(f̄ ◦ κh,ht )([a], [b], [ε]) = f([ta], [b], [tε]) = f(ta, b, tε) = tf(a, b, ε) = tf̄([a], [b], [ε])
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which shows that f̄ is horizontally linear. To show that it is vertically linear is similar. On the other

hand, if f is a double-linear function on D/h, then

f ◦ π ◦ κht = f ◦ κh,ht ◦ π = (tf) ◦ π = t(f ◦ π)

showing that f ◦ π is horizontally linear, and seeing that it is vertically linear is identical. This proves

that C∞(D/h)[1,1] = (C∞(D)[1,1])
h. Now consider the restriction of the map C∞(D)[1,1] → Γ(E) to

(C∞(D)[1,1])
h. We claim that the image of this restriction lies in Γ(Ann(K∗)). To see this, note that

any h-invariant function is in particular invariant under the core action of K∗, so for any k ∈ K∗ we

have

f(0, 0, k) = f(0, 0, 0) = 0

by invariance and double-linearity. Thus f |E∗∈ Γ(Ann(K∗)), as claimed. The corresponding map

resE∗: (C∞(D)[1,1])
h → Γ(Ann(K∗)) is surjective, since for any e ∈ Γ(Ann(K∗)) the function (a, b, ε) 7→

(0, 0, ε(e)) is double-linear and h-invariant. This gives a diagram with exact rows

0 ker(resE∗) C∞(D/h)[1,1] Γ(Ann(K∗)) 0

0 Γ(A∗)⊗ Γ(B∗) C∞(D)[1,1] Γ(E) 0,

so we are left only with determining the kernel ker(resE∗). This kernel consists of all maps of the form

(a, b, ε) 7→ α(a)β(b) for some α ∈ Γ(A∗), β ∈ Γ(B∗) that are h-invariant. But if a nonzero such map is

H̃-invariant, then for any h ∈ H we have

0 = α(a+ h)β(b) = α(a)β(b) + α(h)β(b)

for all a ∈ A, b ∈ B, from which we conclude that α(h) = 0. Similarly, one finds that β(v) = 0 for

all v ∈ V , so we conclude that α ∈ Γ(Ann(H)) and β ∈ Γ(Ann(V )). Conversely, any such function is

clearly h-invariant, so the proof of the proposition is complete.
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Example: The Double Normal

Bundle

In this section we will study the double normal functor. That is, let (M,N1, N2) be any triple of

manifolds for which N1 and N2 are cleanly intersecting submanifolds of M (see section B.2). Such a

triple will be called a manifold triple, and the double normal functor will associate to (M,N1, N2) a

double vector bundle ν(M,N1, N2) that simultaneously linearizes the directions normal to N1 and the

directions normal to N2. We will present three different constructions of ν(M,N1, N2), mirroring the

case of the classical normal functor.

3.1 First Construction: As the Spectrum of an Algebra

Our main construction of the double normal functor will be analogous to the construction of ν(M,N)

as the spectrum of an algebra described in section B.1. Before presenting this construction, it will be

helpful to review some preliminaries on smooth manifolds that arise as the spectra of algebras. Our

discussion of this material follows [31, Section 2], which the reader can consult for more information.

Let A be a commutative algebra over the real numbers, and consider the spectrum of A, defined as the

space of algebra homomorphisms to R:

SpecA = HomAlg(A,R).

We first topologize this space by giving it the topology with the fewest open sets for which the evaluation

map ev(a): Spec(A)→ R, ev(a)(ϕ) = ϕ(a) is continuous for every a ∈ A. Next we define the sheaf SA

to be the smallest subsheaf of the sheaf of continuous real-valued functions on SpecA that includes all

functions of the form

f = g(ev(a1), . . . , ev(ak))

for k ∈ N, a1, . . . , ak ∈ A, and g ∈ C∞(Rk). The main result we will need describes when the space

SpecA with the topology above can be made into a smooth manifold with sheaf of smooth functions

given by SA .

Lemma 3.1.1. [31, Lemma 2.4] Let A be a commutative algebra over the real numbers. Then SpecA

29
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is a smooth manifold of dimension n with sheaf of smooth functions given by SA if and only if for every

point in SpecA there exists an open neighbourhood Ω of that point and elements a1, . . . , an ∈ A such

that:

1. for every f ∈ SA(Ω), there exists some g ∈ C∞(Rn) with

f = g(ev(a1), . . . , ev(an)).

2. The map

(ev(a1), . . . , ev(an)): Ω→ Rn

is a homemomorphism onto an open subset of Rn.

Of couse, the main point is that if the elements a1, . . . , an ∈ A are as described in the lemma, then

the functions ev(a1), . . . , ev(an) act as coordinates for the manifold SpecA.

Now recall that we say a function f ∈ C∞(M) vanishes to order at least p on a submanifold N if it is

a sum of products of p or more functions on M that all vanish on N . For a manifold triple (M,N1, N2),

consider the bifiltration of the algebra of smooth functions on M :

C∞(M) =
⋃
p,q≥0

Ip,q(M,N1, N2), (3.1)

where Ip,q(M,N1, N2) denotes the set of smooth functions on M that vanish to order at least p on N1

and vanish to order at least q on N2. By convention we say that every function on M vanishes to order

at least 0 on any submanifold, so that Ip,0(M,N1, N2) consists of all functions on M that vanish to order

at least p on N1, I0,q(M,N1, N2) consists of all functions on M that vanish to order at least q on N2,

and I0,0(M,N1, N2) = C∞(M). By definition, the associated bigraded algebra of this bifiltration is

A(M,N1, N2) =
⊕
p,q≥0

Ap,q(M,N1, N2), (3.2)

where Ap,q(M,N1, N2) is defined to be

Ap,q(M,N1, N2) = Ip,q(M,N1, N2)/Ip+1,q(M,N1, N2) + Ip,q+1(M,N1, N2).

From now on we will simply write Ap,q and Ip,q, leaving the dependence on a manifold triple understood.

Our first definition of the double normal bundle will be as the spectrum of the algebra A. Before making

this definition official, let us prove that the spectrum of A is in fact a smooth manifold. For this, it will be

helpful to examine the degree (0, 0) component of A, which is by definition A0,0 = C∞(M)/(I1,0 +I0,1).

If we observe that the ideal I1,0 + I0,1 consists precisely of functions that vanish on the intersection

N1 ∩ N2, we see that A0,0 is given by Spec(C∞(N)) = N , where we have introduced the notation

N := N1 ∩N2.

Lemma 3.1.2. For a manifold triple (M,N1, N2), the spectrum of the algebra A(M,N1, N2) is a smooth

manifold with dimension equal to the dimension of M .

Proof. We will use lemma 3.1.1, so we begin by fixing a point ϕ ∈ SpecA. By restricting ϕ to A0,0 =

C∞(N), we obtain a point p ∈ N for which ϕ|A0,0 is given by evluation at p. Choose a neighbourhood
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U of p and smooth functions x1, . . . , xm on M that are local coordinates on U and are adapted to the

manifold triple (M,N1, N2), as in proposition B.2.2. If we define Ω ⊆ SpecA to be the open subset of

SpecA consisting of all characters whose restriction to A0,0 is given by evaluation at a point u ∈ U ,

then it follows from Taylor’s theorem that the elements [x1], . . . , [xm] satisfy property (1) from lemma

3.1.1, where by [xj ] we mean the class of xj in the appropriate bihomogeneous component of A:

[xj ] ∈



A1,1 for j = 1, . . . , e,

A1,0 for j = e+ 1, . . . , k,

A0,1 for j = k + 1, . . . , `,

A0,0 for j = `+ 1, . . . ,m.

Furthermore, the map

(ev([x1]), . . . , ev([xm])): SpecA → R` × Rm−`

maps Ω homeomorphically onto R`×W , where W ⊆ Rm−` is the range of the coordinates x`+1, . . . , xm

on N ∩ U .

Definition 3.1.3 (Double Normal Bundle). Let (M,N1, N2) be a manifold triple. Then the double

normal bundle of (M,N1, N2) is ν(M,N1, N2) := Spec(A).

When dealing with coordinates on ν(M,N1, N2), we will omit the square brackets from our notation,

and simply use

ev(x1), . . . , ev(xm) (3.3)

from now on. Our next claim is that the double normal bundle ν(M,N1, N2) is in fact a double vector

bundle, whose space of double polynomial functions coincides with A. We split the proof of these facts

across the next two lemmas.

Proposition 3.1.4. Let (M,N1, N2) be a manifold triple. Then the double normal bundle ν(M,N1, N2)

is the total space of a double vector bundle.

Proof. To show that Spec(A) is in fact a double vector bundle, it is enough to produce two commuting

scalar multiplications. For any t ∈ R, consider the map a 7→ t ·h a defined on homogeneous elements by

t ·h a = tpa, a ∈Ap,q.

This map is an algebra endomorphism for any t, so it induces a map κht on the spectrum by dualizing:

κht : Spec(A)→ Spec(A), κht ϕ(a) = ϕ(t ·h a).

To see that this map is smooth, let us examine its coordinate representation in the coordinates 3.3. If

κt(ϕ) lies in a neighbourhood on which these coordinates are defined, then for any i = 1, . . . ,m, we have

ev(xi) ◦ κht (ϕ) =

t ev(xi)(ϕ) i = 1, . . . , e

ev(xi)(ϕ) i = e+ 1, . . . ,m.

Therefore the coordinate representation of κht simply rescales the first e entries by t, which is certainly
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smooth. Note further that when t 6= 0, the map κht is in fact a diffeomorphism. Since κht·s = κht ◦ κhs ,

this defines an action of R>0 on Spec(A). The base κ0(SpecA) consists of characters that vanish on all

elements with p > 0, and hence it is idenified with SpecA0,•. The map SpecA → T SpecA|SpecA0,• ,

ϕ 7→ d
dt (κtϕ)|t=0 is given in terms of the coordinates ev(x1), . . . , ev(xm) by


ev(x1)(ϕ)

...

ev(xm)(ϕ)

 7→





0
...

0

ev(xe+1)(ϕ)
...

ev(xm)(ϕ)


,



ev(x1)(ϕ)
...

ev(xe)(ϕ)

0
...

0




which is clearly injective. Thus κht is a scalar multiplication on SpecA with base SpecA0,•. Using the

map a 7→ s ·v a defined by

s ·v a = sqa, a ∈Ap,q

for any s ∈ R, one similarly obtains a scalar multiplication κvs on SpecA with base Spec(A•,0). Since

κht and κvs clearly commute, we conclude that Spec(A) is a double vector bundle.

The proof of proposition 3.1.4 shows that the side bundles of ν(M,N1, N2) are given by Spec(A•,0)

and Spec(A0,•). Our first task will be to describe these side bundles in more conventional terms. First

consider the horizontal side bundle Spec(A0,•), with scalar multiplication given by restriction of the map

κht defined above. The base of this bundle is Spec(A0,0) = N . We claim that the only linear functions

on Spec(A0,•) are the maps ev(a) for a ∈ A0,1. Before we state this claim precisely, note that each

Ii,j is a module over I0,0 = C∞(M), from which it follows that A0,1 is a C∞(M)-module. But A0,1 is

annihilated by I1,0 + I0,1, and hence A0,1 is a module over A0,0 = C∞(N).

Lemma 3.1.5. The map A0,1 → C∞[1](Spec(A0,•)) given by a 7→ ev(a) is an isomorphism of C∞(N)-

modules.

Proof. It is clear that the map is an injective C∞(N)-module homomorphism, so we only need to show

that it is surjective. First note that by lemma 3.1.2, it is enough to prove surjectivity for functions f ∈
C∞(Spec(A0,•)) of the form f = g(ev(xk+1), . . . , ev(xm)) for some g ∈ C∞(Rm−k), where xk+1, . . . , xm

are the coordinates as in proposition B.2.2 that do not necessarily vanish on N1. Then linearity of f

means that for all yk+1, . . . , ym ∈ R we have

g(tyk+1, . . . , ty`, y`+1, . . . , ym) = tg(yk+1, . . . , ym). (3.4)

Taking the derivative with respect to t gives

∑̀
i=k+1

yi∂ig(tyk+1, . . . , ty`, y`+1, . . . , ym) = g(yk+1, . . . , ym).
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By setting t = 0 in the equation above, we see that g is a combination of linear monomials:

g(yk+1, . . . , ym) =
∑̀
i=k+1

yi∂ig(0, . . . , 0, y`+1, . . . ym).

Since x`+1, . . . , xm all have degree 0, the functions fi := ∂ig(0, . . . , 0, ev(x`+1), . . . , ev(xm)) are all smooth

functions on A0,0 = N . Moreover, the equation above shows that f = ev(a), where a =
∑`
i=k+1 fixi,

completing the proof.

Hence Spec(A0,•) is dual to the bundle whose space of sections is given by A0,1. Note that I1,0

is the vanishing ideal of N1, I0,1 is the vanishing ideal of N2, and I1,1 is their intersection. If we let

J ⊆ C∞(N2) denote the ideal consisting of functions on N1 that vanish on N , then since N1 and N2

intersect cleanly, we a have surjective map I0,1 → J given by restriction (see corollary B.2.3). The kernel

of this map is the intersection I1,1, and thus we have

A0,1 = I0,1/(I0,2 + I1,1) ∼=
(
I0,1/I1,1

)
/
(
I0,1/I1,1

)2 ∼= J/J2. (3.5)

This shows that the space of sections of ν(N1, N)∗ may be identified with A0,1 (see section B), and we

conclude that Spec(A0,•) = ν(N1, N). A similar discussion shows that the other side bundle Spec(A•,0)

is isomorphic to the vector bundle ν(N2, N)→ N . Putting everything together, we obtain the following

theorem.

Theorem 3.1.6. Let (M,N1, N2) be a manifold triple. Then the double normal bundle of (M,N1, N2)

is a double vector bundle

ν(M,N1, N2) //

��

ν(N2, N)

��

ν(N1, N) // N.

(3.6)

Our next goal is to compute the DVB sequence of the double normal bundle. As mentioned in

section 2.7, the DVB sequence of ν(M,N1, N2) encodes the structure of ν(M,N1, N2) completely, and

computing it will allow us to connect our construction with the other constructions to be presented

below. To this end, we compute the spaces C∞[1,1](SpecA) and Γ(E), where as usual E denotes the dual

bundle to core(Spec(A)). By comparing with lemma 3.1.5, one can identify C∞[1,1](SpecA).

Lemma 3.1.7. The map A1,1 → C∞[1,1](SpecA) given by a 7→ ev(a) is an isomorphism of C∞(N)-

modules.

Proof. As above, we will show that the map is surjective, and we will take f ∈ C∞[1,1](SpecA) to be of

the form f = g(ev(x1), . . . , ev(xm)) for some g ∈ C∞(Rk), and with x1, . . . , xm adapted corodinates as

in proposition B.2.2. By the argument of lemma 3.1.5, since f is linear in the “p-grading”, g takes the

form

g(y1, . . . , ym) =

k∑
j=1

yj∂jg(0, . . . , 0, yk+1, . . . , ym).
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Since f is also linear in the “q-grading”, we obtain the following condition on g:

t

k∑
j=1

yj∂jg(0, . . . , 0, yk+1, . . . , ym) =

e∑
j=1

tyj∂jg(0, . . . , 0, tyk+1, . . . , ty`, y`+1, . . . , ym)

+

k∑
j=e+1

yj∂jg(0, . . . , 0, tyk+1, . . . , ty`, y`+1, . . . , ym)

for all t. By differentiating this equation with respect to t, we get

k∑
j =1

yj∂jg(0, . . . , 0, yk+1, . . . , ym) =

e∑
j=1

yj∂jg(0, . . . , 0, tyk+1, . . . , ty`, y`+1, . . . , ym)

+

e∑
j=1

∑̀
i=k+1

tyjyi∂i∂jg(0, . . . , 0, tyk+1, . . . , ty`, y`+1, . . . , ym).

Since this equation must hold for all y1, . . . , ym, the quadratic terms on the right hand side must vanish.

So for each i = k + 1, . . . , ` we have ∂i∂jg(0, . . . , 0, yk+1, . . . , ym) = 0 for each j. But then the terms

∂jg(0, . . . , 0, yk+1, . . . , ym) do not depend on yi, and so if we denote by

fj = ∂jg(0, . . . , 0, ev(x`+1), . . . , ev(xm)) ∈ C∞(N)

we see that f = ev(a), where a =
∑e
j=1 fjxj ∈A1,1.

We now turn our attention to the linear functions on the core. Since the core of a double vector

bundle can be thought of as the submanifold on which the two scalar multiplications agree, we have

core(SpecA) = {ϕ ∈ SpecA | ϕ(a) = 0 for all a ∈Ap,q with p 6= q}.

By the argument of lemma 3.1.5, we see that the map A1,1 → C∞[1](core(SpecA)) given by a 7→ ev(a)

is a surjective homomorphism of C∞(N)-modules. However, this time the map is not injective, since

ev(a) = 0 if a = a1a2 for a1 ∈A1,0 and a2 ∈A0,1. Since A is generated by A0,0,A1,0,A0,1, and A1,1,

it follows that this is exactly the kernel so we have

Γ(E) ∼= A1,1/A1,0A0,1.

We have now arrived at the following result.

Theorem 3.1.8. On the level of sections, the DVB sequence of ν(M,N1, N2) is

0→A1,0 ⊗A0,1 →A1,1 →A1,1/A1,0A0,1 → 0. (3.7)

Before moving on to alternative constructions of ν(M,N1, N2), we will conclude this section with a

simple example. Recall that for a vector bundle V →M , there is a canonical isomorphism ν(V,M) ∼= V .

We claim that the situation of applying the double normal functor to a double vector bundle is analogous.

In order to make sense of this statement, we require the following lemma.
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Lemma 3.1.9. The submanifolds A,B of a double vector bundle D intersect cleanly (see B.2 for details

on clean intersections). That is, for any m ∈M we have

TmM = TmA ∩ TmB.

Proof. For any m ∈ M , we have a decomposition TmA = TmM ⊕ Am. On the first component, the

scalar multiplication Tmκ
h acts trivially, while it acts simply as κh on the second component. Hence the

fixed point set of Tmκ
h is precisely TmM . But B is the fixed point set of κh, and therefore TmB is the

fixed point set of Tmκ
h (inside TmD, so we conclude that TmA ∩ TmB = TmM , as claimed.

Example 3.1.10 (Double Vector Bundles). Let (D,A,B) be a double vector bundle with core E∗. By

lemma 3.1.9, we may consider the double normal bundle ν(D,A,B). We claim that there is a canonical

DVB isomorphism ν(D,A,B) ∼= D. To see this, introduce coordinates as in proposition B.2.2. Then by

considering Taylor expansions in these coordinates, one obtains isomorphisms

A1,0 ∼= B∗ A0,1 ∼= A∗ A1,1/A1,0A0,1 ∼= E.

Similar reasoning leads to the identification A1,1 ∼= (A∗⊗B∗)⊕E, which shows that the DVB sequences

(2.13) and (3.7) agree.

3.2 Second Construction: Iterating the Normal Functor

Our second construction of ν(M,N1, N2) will proceed by applying the classical normal functor twice.

First, suppose V → M is any vector bundle with scalar multiplication by t ∈ R≥0 denoted by κt, and

let W → N be a subbundle along a submanifold N . This means precisely that W is invariant under κt

for all t, with κ0(W ) = N (see [23]). Thus each κt induces a map ν(κt): ν(V,W )→ ν(V,W ), which we

claim defines a scalar multiplication for the pair (ν(V,W ), ν(M,N)). Indeed, recall that the tangent lift

Tκt defines a scalar multiplication on (TM, TN), and so injectivity of the map [X] 7→ d
dt (ν(κtX))|t=0

follows from the injectivity of the map X 7→ d
dt (TκtX)|t=0 and the fact that κ−1

t (W ) = W . We therefore

obtain the following diagram of vector bundles

ν(V,W ) //

��

W

��

ν(M,N) // N.

(3.8)

Since ν(κt) is linear in the structure ν(V,W )→ W for all t, it follows that the square (3.8) is a double

vector bundle. Viewing ν(V,W ) as a bundle over W , the restriction to the submanifold N is given by

ν(V,W )|N= TV |N/TW |N= (V |N⊕TM |N )/(W ⊕ TN) = V |N/W ⊕ ν(M,N).

This shows that on the restriction ν(V,W )|N , the map ν(κ0) is simply projection to the second factor,

and that the core of the double vector bundle (3.8) is given by E∗ = V |N/W .

Now let us return to our manifold triple (M,N1, N2), and consider the vector bundle ν(M,N1)→ N1.

Since N1 and N2 intersect cleanly, the bundle ν(N2, N)→ N is actually a subbundle of ν(M,N1)→ N1.
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While the proof of this fact is straightforward, we include it here to highlight the use of the clean

intersection assumption.

Lemma 3.2.1. Let M be a manifold and let N1 and N2 be cleanly intersecting submanifolds of M .

Then ν(N2, N) is a vector subbundle of ν(M,N1).

Proof. Consider the map of pairs ι: (N2, N) ↪→ (M,N1) given by inclusion. Applying the normal functor,

we obtain a map

ν(ι) : ν(N2, N)→ ν(M,N1).

We claim that this map is injective if and only if N1 and N2 intersect cleanly. Indeed, if v ∈ TN2|N ,

then v + TN lies in the kernel of ν(ι) precisely when Tι(v) ∈ TN1. In other words, we have ker ν(ι) =

TN1 ∩ TN2|N/TN , which is zero exactly if N1 and N2 intersect cleanly.

As a result of lemma 3.2.1 and the discussion above we obtain a double vector bundle

ν(ν(M,N1), ν(N2, N)) //

��

ν(N2, N)

��

ν(N1, N) // N

(3.9)

with core given by

ν(M,N1)|N/ν(N2, N) ∼= TM |N/(TN1|N+TN2|N ).

In section 3.4 below, we prove that there is an isomorphism of double vector bundles between (3.6) and

(3.9), and so this process of iterating the classical normal functor provides an alternate description of

the double normal bundle.

3.3 Third Construction: As a Quotient DVB

The most straightforward definition of the classical normal bundle is as a quotient of the usual tangent

bundle. Analogously, we can obtain the double normal bundle by starting with the double tangent

bundle TTM obtained by taking V = TM in example 2.22:

TTM //

��

TM

��

TM // M.

(3.10)

Just like with the usual tangent bundle (see A.2), there are various methods for lifting a smooth

function f ∈ C∞(M) to a smooth function on the double tangent bundle. To describe these lifting

processes, let us first recall an algebraic description of TTM . First, consider the algebra

A1 = R[ε]/ε2.

The (ordinary) tangent bundle TM can be defined as the space of algebra homomorphisms from C∞(M)

to A1:

TM = HomAlg(C∞(M),A1).
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Here the scalar multiplication κt is defined by κt(v) = mt ◦ v, where mt:A1 → A1 is the map a0 +a1ε 7→
a0 + ta1ε. Taking this one step further, we obtain the double tangent bundle TTM as a space of algebra

homomorphisms:

TTM = HomAlg(C∞(M),A1 ⊗ A1).

If we write an arbitrary element of A1⊗A2 as
∑

0≤i,j≤1 ai,jε
i
1ε
j
2, then the two scalar multiplications are

given by κht (v) = v ◦mh
t and κvs(v) = v ◦mv

s , where mh
t and mv

s are the maps

mh
t :

∑
0≤i,j≤1

ai,jε
i
1ε
j
2 7→

∑
0≤i,j≤1

tiai,jε
i
1ε
j
2,

mv
s :

∑
0≤i,j≤1

ai,jε
i
1ε
j
2 7→

∑
0≤i,j≤1

sjai,jε
i
1ε
j
2.

Now suppose f ∈ C∞(M). Then the action of v ∈ TTM on f can be resolved into component functions

f (i,j):TTM → R for 0 ≤ i, j ≤ 1 as follows:

X(f) = f (0,0)(v) + f (1,0)(v)ε1 + f (0,1)(v)ε2 + f (1,1)(v)ε1ε2.

Furthermore, the function f (i,j) is bihomogeneous of bidegree (i, j) since by construction we have

f (i,j)(κht v) = tif (i,j)(v), f (i,j)(κvsv) = sjf (i,j)(v)

for all t, s ∈ R. In this way we determine four different procedures for lifting a function f ∈ C∞(M)

to a bihomogeneous function f (i,j) ∈ C∞(TTM)[i,j] on the double tangent bundle TTM . Furthermore,

using the definition of f (i,j), we can obtain various results that establish how these lifts behave with

respect to the algebra structure on C∞(M). For example, we have

(fg)(1,1) = f (0,0)g(1,1) + f (1,0)g(0,1) + f (0,1)g(1,0) + f (1,1)g(0,0) (3.11)

For more information on the algebraic approach to tangent functors touched on above, see [37, Chapter

VIII].

Remark 3.3.1. 1. If x1, . . . , xm are smooth coordinates on the manifold M , then the functions

x
(0,0)
1 , . . . , x(0,0)

m , x
(1,0)
1 , . . . , x(1,0)

m , x
(0,1)
1 , . . . , x(0,1)

m , x
(1,1)
1 , . . . , x(1,1)

m (3.12)

constitute coordinates for the double tangent bundle TTM . Here the (0, 0) lifts correspond to

coordinates on the total base M , the (1, 0) lifts correspond to fibre coordinates on the vertical

base (similarly the (0, 1) lifts are for the horizontal base), and the (1, 1) lifts correspond to fibre

coordinates on the core.

2. The lifting processes described above can also be obtained by iterating the vertical and tangent lift

operations of section A.2. Specifically, any function f ∈ C∞(M) induces (a priori) eight functions

on TTM : first one lifts f to TM by using either a vertical lift (f ]) or a tangent lift (fT ) then

each of these two functions on TM can be lifted to TTM either along the vertical projection or

the horizontal one (in each case, one has again the choice of vertical lift or tangent lift). It turns

out that this only produces four unique functions, and these four functions coincide with the lifts
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described above. For example, f (1,0) can be obtained by first taking the tangent lift fT ∈ C∞(M),

and then taking the vertical lift along the horizontal projection (or vice versa).

Having established lifting procedures for smooth functions, one can then define the corresponding

lifts X 7→ X(k,`) for −1 ≤ k, ` ≤ 0 of a vector field X ∈ X(M)[k,`] to a vector field X(k,`) ∈ X(TTM) by

their actions on the generators of S(TTM):

LX(k,`)f (i,j) = (LXf)k+i,`+j .

Alternatively, as with the function lifts, one could define them by iterating the vertical and tangent lift

operations on vector fields. By the results of section 2.9, the space of sections of the bundle Â = T̂M

is given by X[−1,0](D). It is therefore C∞(M)-generated by vector fields of the forms X(−1,0) and

f (0,1)X(−1,−1) for X ∈ X(M), with the exact sequence

0→ Γ(T ∗M ⊗ TM)→ X[−1,0](D)→ Γ(TM)→ 0

being determined by the prescriptions f (0,1) ⊗X → f (0,1)X(−1,−1) and X(−1,0) 7→ X.

As with any double vector bundle (see lemma 2.1.4), there is a surjective submersion ψ:TTM →
TM ×M TM . The preimage of the sub-double vector bundle TN1 ×N TN2 under this map yields a

sub-DVB of TTM since ψ is a surjective submersion as well as a DVB morphism. We will denote this

preimage by TT (M,N1, N2), giving a DVB

TT (M,N1, N2) //

��

TN2|N

��

TN1|N // N.

(3.13)

The core of this DVB is simply ψ−1(N), and is therefore given by TM |N . Let us briefly describe a

few alternate descriptions of TT (M,N1, N2). In terms of coordinates, if x1, . . . , xm are coordinates for

the manifold triple (M,N1, N2) as in proposition B.2.2, then TT (M,N1, N2) can be described by the

vanishing of some of the associated lifted coordinates 3.12:

x
(0,0)
1 = · · · = x

(0,0)
` = x

(1,0)
1 = · · · = x

(1,0)
k = x

(0,1)
1 = · · · = x(0,1)

e = x
(0,1)
k+1 = · · · = x

(0,1)
` = 0.

Extending this idea, we may describe TT (M,N1, N2) by its vanishing ideal. If a function of the form f (0,0)

vanishes on TT (M,N1, N2), then f must vanish everywhere along N so that f ∈ I1,0 + I0,1. Meanwhile

if a function f (1,0) vanishes on TT (M,N1, N2), then its tangent lift fT must vanish on TN1|N , which

happens in particular if f ∈ I1,0 (and similarly for functions f (0,1)). Using the coordinate description

above, we see that these functions are sufficient to generate all functions that vanish on TT (M,N1, N2),

so the vanishing ideal is generated by the set

{f (0,0) | f ∈ I1,0 + I0,1} ∪ {f (1,0) | f ∈ I1,0} ∪ {f (0,1) | f ∈ I0,1}.

Our goal is to obtain ν(M,N1, N2) as a quotient of TT (M,N1, N2). To do this, we should find a

suitable Lie algebra of vector fields acting on TT (M,N1, N2), and quotient by the action of this Lie

subalgebra (see section 2.10). We will start by considering the vector fields X ∈ X[−1,0](TTM) that are
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tangent to TT (M,N1, N2). Note that all vector fields of the formX(−1,−1) are tangent to TT (M,N1, N2),

and for the vector fields of the form X(−1,0) we have the following lemma.

Lemma 3.3.2. A vector field on TTM of the form X(−1,0) for X ∈ X(M) is tangent to TT (M,N1, N2)

if and only if X|N∈ Γ(TN1|N ).

Proof. A vector field on TTM is tangent to TT (M,N1, N2) precisely when it preserves the vanishing

ideal of TT (M,N1, N2). For degree reasons, X(−1,0) always annihilates functions of the form f (0,0) and

f (0,1). Thus X(−1,0) is tangent to TT (M,N1, N2) if and only if LX(−1,0)f (1,0)|TT (M,N1,N2)= 0 for all

f ∈ I1,0. But we have LX(−1,0)f (1,0) = (LXf)(0,0), so this is equivalent to the condition LXf |N= 0 for

all f ∈ I1,0, which is in turn equivalent to X|N∈ Γ(TN1|N ).

Using this lemma, we see that the fat bundle T̂N1|N of TT (M,N1, N2) is generated by vector fields

of the form f (1,0)X(−1,−1) with no conditions on f,X, as well as vector fields of the form X(−1,0) for

X|N∈ Γ(TN1|N ), with corresponding exact sequence

0→ T ∗N2|N⊗TM |N→ T̂N1|N → TN1|N→ 0.

One has a similar description for the fat bundle T̂N2|N , leading to the Lie algebra bundle

g = T̂N1|N × T̂N2|N × Γ(TM |N ).

that acts on TT (M,N1, N2). To determine the quotient, we first take the subbundle H̃ ⊆ T̂N1|N defined

as

H̃ = 〈f (1,0)X(−1,−1), Y (−1,0) | X|N∈ Γ(TN1|N+TN2|N ), Y |N∈ Γ(TN)〉,

where the angled brackets enclose the generators as a C∞(N)-module. This bundle H̃ fits into an exact

sequence

0→ T ∗N2 ⊗ (TN1|N+TN2|N )→ H̃ → TN → 0.

By choosing Ṽ ⊆ T̂N2|N similarly, by theorem 2.10.1 we obtain the DVB quotient

TT (M,N1, N2)/h //

��

ν(N2, N)

��

ν(N1, N) // N.

(3.14)

with core TM |N/(TN1|N+TN2|N ), where h = H̃× Ṽ × (TN1|N+TN2|N ). This gives our third and final

description of the double normal bundle.

Remark 3.3.3. In section 2.10, we saw that one could also define DVB quotients using a sub double

vector bundle Q and extensions of Q to intermediate double vector bundles Q1 and Q2. In this context,

Q is the sub DVB

Q //

��

TN

��

TN // N.
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of TT (M,N1, N2) whose vanishing ideal is generated by

{f (0,0), f (1,0), f (0,1) | f ∈ I1,0 + I0,1} ∪ {f (1,1) | f ∈ I1,1}.

We can then obtain Q1 from Q by removing the functions of the form f (0,1) for f ∈ I1,0 from our

generators. In other words, Q1 is the sub DVB

Q1
//

��

TN2|N

��

TN // N.

of TT (M,N1, N2) whose vanishing ideal has

{f (0,0, f (1,0) | f ∈ I1,0 + I0,1} ∪ {f (0,1) | f ∈ I0,1} ∪ {f (1,1) | f ∈ I1,1}

as a set of generators. Using an argument similar to the proof of lemma 3.3.2, one can prove that H̃ as

defined above consists of those vector fields in X(TTM)[−1,0] that are tangent to Q1. The description

of Q2 and Ṽ is then similar.

3.4 Equivalence of Constructions

We will now prove that the three different constructions described above all yield canonically isomorphic

structures. Our strategy for this will to compute the DVB sequences associated to the constructions of

sections 3.2 and 3.3, and prove that they are both canonically isomorphic (as DVB sequences) to (3.7).

As mentioned above, our goal in this section is to establish the equivalence of the constructions in

sections 3.1 and 3.2. To avoid overly cumbersome notation, we will denote ν(ν(M,N1), ν(N2, N)) simply

by ν ◦ ν. We begin by stating the result precisely.

Theorem 3.4.1. Let (M,N1, N2) be a manifold triple. Then there exists a canonical map

ν(M,N1, N2)→ ν(ν(M,N1), ν(N2, N))

that is a double vector bundle isomorphism between (3.6) and (3.9).

By the results of [13], it is enough to construct the isomorphism on the level of DVB sequences. As

a first step, note that we have already shown that ν(N1, N)∗ ∼= A0,1 and ν(N2, N)∗ ∼= A1,0 in section

3.1 (see (3.5)). Thus we start by considering the space C∞[1,1](ν ◦ ν) of double linear functions on ν ◦ ν.

Lemma 3.4.2. There is an isomorphism of C∞(N)-modules

A1,1 → C∞[1,1](ν ◦ ν).

Proof. Any function in C∞[1,1](ν ◦ ν) is in particular a linear function for the horizontal structure, and is

therefore of the form ν(ϕ) for some function ϕ ∈ C∞(ν(M,N1)) that vanishes on ν(N2, N). Since ν(ϕ)

is homogeneous of degree one in the vertical structure as well, it follows that ϕ is homogeneous of degree

1 by functoriality of ν. But then ϕ itself is of the form ν(ψ) for some ψ ∈ I1,0 (see (3.1)). Since ν(ψ)
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vanishes on ν(N2, N), ψ itself must vanish on N2 as well. In other words, we have a surjective map

ν2: I1,1 → C∞[1,1](ν ◦ ν)

ψ 7→ ν(ν(ψ)).

There are two ways for ψ to lie in the kernel of this map: either ν(ψ) = 0 or ν(ψ) 6= 0 but ν(ν(ψ)) = 0. In

the former case, the derivatives of ψ in the directions tangent to N1 vanish, in which case ψ ∈ I2,0. In the

latter case, the derivatives of ν(ψ) in the directions tangent to ν(N2, N) vanish, which implies that the

derivatives of ψ vanish in directions tangent to N2 so that ψ ∈ I0,2. This shows that ker ν2 = I2,1 + I1,2

(the reverse inclusion being clear), which completes the proof.

Before proceeding to the proof of the theorem, it remains only to understand the space of linear

functions on the core. If, as usual, we denote the core of the double vector bundle ν ◦ ν by E∗, then the

lemma below represents the last piece of the DVB sequence for ν ◦ ν.

Lemma 3.4.3. There is an isomorphism of C∞(N)-modules

I1,1/I1,0I0,1 → C∞[1](E
∗).

Proof. Using standard linear algebra:

C∞[1](TM |N/(TN1|N+TN2|N )) = Γ(Ann(TN1|N+TN2|N ))

= Γ(Ann(TN1|N )) ∩ Γ(Ann(TN2|N )),

where Ann denotes an annihilator bundle inside T ∗M |N . Exterior differentiation gives a natural surjec-

tion

I1,1 → Γ(Ann(TN1|N )) ∩ Γ(Ann(TN2|N )).

The kernel of this map is I1,0 ∩ I0,1 ∩ J2, where J ⊆ C∞(M) denotes the ideal of functions that

vanish on N . Now since N1 and N2 intersect cleanly, it follows that J = I1,0 + I0,1 (simply dualize the

definition of clean intersection). Thus the kernel of the map above is

I1,1 ∩ (I2,0 + I1,0I0,1 + I0,2).

Since I2,0 ⊆ I1,0 and I0,2 ⊆ I0,1, this is just equal to I2,1 + I1,0I0,1 + I1,2. Moreover, the ideals I2,1

and I1,2 are contained in I1,0I0,1 (one way to see this is to check the generators of each ideal in the

coordinates of proposition B.2.2), and so in the end the kernel is simply I1,0I0,1.

Proof of theorem 3.4.1. By the results of the two lemmas above, the DVB sequence of (3.8) is determined

by the sequence of C∞(N) modules below. We note that the injection is given by [f ]⊗ [g] 7→ [fg], and

the surjection is the standard one induced by the inclusion I2,1 + I1,2 ⊆ I1,0I0,1.

0→A1,0 ⊗A0,1 →A1,1 → I1,1/I1,0I0,1 → 0 (3.15)

which we claim agrees with (3.7). To see this, consider the map obtained by the composition of quotient

maps I1,1 → A1,1 → A1,1/A1,0A0,1. Its kernel consists of all functions f ∈ I1,1 that lie in I1,2 + I2,1,
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as well as those functions that lie in I1,0I0,1. In other words, the kernel is I2,1 +I0,1I1,0 +I1,2. However,

as observed above, there is an inclusion of ideals I1,2 + I2,1 ⊆ I1,0I0,1, and so we get an isomorphism

I1,1/I1,0I0,1 ∼−→A1,1/A1,0A0,1.

Since this isomorphism is induced by a composition of quotient maps, it forms a canonical isomorphism

of DVB sequences from (3.15) to (3.7) when the left and middle morphisms are taken to be the identity

maps.

Next we will use a similar strategy to prove that ν(M,N1, N2) is canonically isomorphic to the

quotient TT (M,N1, N2)/h described in section 3.3. Fortunately, most of the work done above for the

previous equivalence can be reused here, so we can dive right in to the proof.

Theorem 3.4.4. Let (M,N1, N2) be a manifold triple. Then there exists a canonical map

ν(M,N1, N2)→ TT (M,N1, N2)/h

that is a double vector bundle isomorphism between (3.6) and (3.14).

Proof. By proposition 2.10.4, on the level of sections the DVB sequence of TT (M,N1, N2)/h is

0→A1,0 ⊗A0,1 → C∞(TT (M,N1, N2))h[1,1] →A1,1/A1,0A0,1 → 0,

where we have used the facts that A1,0 ∼= Γ(Ann(TN)) ⊆ Γ(T ∗N1|N ) and A0,1 ∼= Γ(Ann(TN)) ⊆
Γ(T ∗N2|N ) (see equation 3.5), and that Γ(Ann(TN1|N+TN2|N ) ∼= A1,1/A1,0A0,1 (see the proof of

theorem 3.4.1 above). Let us compute the middle term of the sequence above. By the definition of Q1,

a function of the form f (1,1) for f ∈ C∞(M) is H̃-invariant precisely when f ∈ I1,1. The same holds

true if we replace H̃ by Ṽ or by TN1|N+TN2|N , so we get a map

I1,1 → C∞(TT (M,N1, N2)[1,1])
h

f 7→ f (1,1).

This map is surjective, since if g(1,0)h(0,1) is h-invariant, then g ∈ I1,0 since it is H̃-invariant, h ∈ I0,1

since it is Ṽ -invariant, and it follows that g(1,0) and h(0,1) vanish on TT (M,N1, N2), so the double-linear

functions on TT (M,N1, N2) that are h-invariant are all of the form f (1,1). The kernel of this mapconsists

of those functions of the form f (1,1) that lie in the vanishing ideal of TT (M,N1, N2). Consulting the

generators of this ideal and using equation 3.11, we conclude that the kernel is generated by products of

smooth functions on M for which the terms on the right hand side of 3.11 all vanish. Now if fg ∈ I1,1,

there are four possibilities:

f ∈ I1,1, g ∈ I1,1, f ∈ I1,0 and g ∈ I0,1, f ∈ I0,1 and g ∈ I1,0.

In the first case, the only term on the right hand side of equation 3.11 that does not necessarily vanish

on TT (M,N1, N2) is f (1,1)g(0,0). In order for this term to be zero, we need g(0,0)|TT (M,N1,N2)= 0, which

means that g ∈ I1,0 + I0,1 and thus fg ∈ I1,2 + I2,1. The second case is similar. For the last case,

the only term that may be nonzero is f (1,0)g(0,1). For this term to vanish, we need either f ∈ I1,1 or
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g ∈ I1,1, landing us in one of the first two cases. The second to last case is handled similarly, and so we

conclude that the kernel is given by I1,2 + I2,1, completing the proof.

3.5 Lifting Processes for ν(M,N1, N2)

In section 3.3 we discussed various processes for lifting functions and vector fields on M to the total

space of the double tangent bundle TTM . In this section, we will adapt these lifts to the setting of the

double normal bundle ν(M,N1, N2) of a manifold triple (M,N1, N2). First suppose we have a function

f ∈ Ip,q, and let [f ]p,q denote its equivalence class in Ip,q/(Ip+1,q + Ip,q+1). This class determines a

function f (p,q) on ν(M,N1, N2) = SpecA by evaluation:

f (p,q): SpecA → R

ϕ 7→ ϕ([f ]p,q).

Note that by construction, the function f (p,q) is homogeneous of bidegree (p, q). To lift vector fields,

observe that the space X(M) inherits a bilfiltration from the one on C∞(M) that starts in degree

(−1,−1):

X(M) =
⋃

i,j≥−1

X(i,j)(M,N1, N2),

where X ∈ X(i,j)(M,N1, N2) if and only if the associated Lie derivative LX takes Ip,q to Ip+i,q+j . As

in the case of C∞(M), we will usually omit from our notation the dependence of the bifiltration on the

manifold triple (M,N1, N2) and simply write X(i,j)(M). As special cases, note that X(0,−1)(M) consists

of vector fields tangent to N1, and similarly X(−1,0)(M) consists of vector fields tangent to N2.

Lemma 3.5.1. Any vector field X ∈ X(i,j)(M) induces a vector field X(i,j) on ν(M,N1, N2) that is

bihomogeneous of degree (i, j). That is,

(κht )∗X(i,j) = tiX(i,j), (κvs)
∗X(i,j) = sjX(i,j), ∀t, s ∈ R.

Moreover, the assignment X 7→ X(i,j) is compatible with the Lie bracket of vector fields. Specifically, for

X ∈ X(i1,j1)(M) and Y ∈ X(i2,j2)(M) we have

[X(i1,j1), Y (i2,j2)] = [X,Y ](i1+i2,j1+j2).

Proof. Any double vector bundle D is completely determined by the bigraded algebra bundle S•,•(D)

consisting of double polynomial functions on D. In the case of ν(M,N1, N2), theorem 3.1.8 implies that

S•,•(ν(M,N1, N2)) ∼= A, so to define a vector field on ν(M,N1, N2) it is enough to define a derivation

on A. Given X ∈ X(i,j)(M), define X(i,j) ∈ X(ν(M,N1, N2) by

LX(i,j)
([f ]p,q) = [LX(f)] f ∈ Ip,q.

This is well-defined by definition of X(i,j)(M), and the fact that it is a derivation follows from the fact

that X is. The compatibility of the assignment X 7→ X(i,j) with Lie brackets is due to the equation

L[X,Y ] = LXLY −LYLX .
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The story above transports to the setting of multi-vector fields in a straightforward way. That is,

the spaces Xk(M) come equipped with a bifiltration

Xk(M) =
⋃

n,m≥−k

Xk(n,m)(M),

and any π ∈ Xk(n,m)(M) defines a multi-vector field π(n,m) on ν(M,N1, N2) that satisfies

(κht )∗π(n,m) = tnπ(n,m), (κvs)
∗π(n,m) = smπ(n,m)

for all t, s ∈ R. Here Xk(n,m)(M) is spanned by those X1 ∧ . . . ∧ Xk with X` ∈ X(i`,j`)(M) satisfying

i1 + · · ·+ ik = n and j1 + · · ·+ jk = m. The existence of π(n,m) then follows from the lemma above and

the fact that the wedge product of multi-vector fields on a double vector bundle is compatible with the

bihomogeneous grading. Moreover, the assignment π 7→ π(n,m) is compatible with the Schouten bracket

of multi-vector fields.

Remark 3.5.2. 1. Given a function f ∈ Ip,q for 0 ≤ p, q ≤ 1, we now have two different lifts: one to the

double tangent bundle TTM , and another to the double normal bundle ν(M,N1, N2). Observe

that we have chosen to use the same notation f (p,q) for both of these operations. This can be

justified by the fact that the lift to the double tangent bundle induces the corresponding lift to the

double normal bundle through the quotient construction described in section 3.3. In any case, we

will rely on context to make it clear which lift we are using.

2. Dual to the discussion of multi-vector fields above, there is a similar theory for differential forms

on M . In particular, Ω(M) inherits a bifiltration

Ω(M) =
⋃
i,j≥0

Ω(i,j)(M),

where Ω(i,j)(M) is spanned by forms df1∧ . . .∧dfn with fk ∈ Ipk,qk and such that p1 + · · ·+pn = i

and q1 + · · · + qn = j. Then any form α ∈ Ω(i,j)(M) induces a form α(i,j) on ν(M,N1, N2) that

is bihomogeneous of degree (i, j). By construction, the bifiltrations on C∞(M), X(M) and Ω(M)

are compatible with the usual operators of calculus: the exterior derivative, contractions, and Lie

derivatives.

3.6 The Double Deformation Space

Recall that for a manifold pair (M,N), the deformation to the normal cone is a manifold D(M,N)

fibred over R that can be thought of as stretching out the directions normal to N as t→ 0. Specifically,

as a set it is given by

D(M,N) = ν(M,N) t (M × R∗),

while its smooth structure is determined by the following properties:

1. The map π:D(M,N)→ R that is the zero map on ν(M,N) and acts as (m, t) 7→ t on M × R∗ is

a surjective submersion.
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2. The map γ:D(M,N) → M defined to be the composition ν(M,N) → N ↪→ M for t = 0 and by

(m, t) 7→ m on M × R∗ is smooth.

3. For any f ∈ C∞(M) such that f |N= 0, the map f̃ given by ν(f) on ν(M,N) and by f(m, t) =

t−1f(m) on M × R∗ is smooth.

Put another way, the smooth structure is such that C∞(D(M,N)) is generated by π as well as functions

of the form

f (p)(x, t) =

f (p)(x), t = 0,

1
tp f(x), t 6= 0,

where f ∈ C∞(M) is a function that vanishes on N to order p. Here we are using the lifts (B.1) to

the normal bundle, so note that using the language above, we have f (0) = κ∗f and f (1) = f̃ . For more

information on this approach to deformation spaces, see [4] or [33]. As with the normal bundle, the

deformation space D(M,N) may also be described as the spectrum of a suitable algebra. Specifically,

let L(M,N) denote the algebra consisting of Laurent polynomials∑
n∈Z

ant
−n

whose coefficients are smooth functions an ∈ C∞(M) that vanish to order n on N , where by convention

this puts no restrictions on an for n ≤ 0. Then Spec(A(M,N)) is a manifold, and moreover it is equal

to D(M,N) (see [31, Section 3]).

We will present an analogous construction in the setting of double structures. Given a manifold triple

(M,N1, N2), the double deformation space D(M,N1, N2) will be a manifold fibred over R2, where the

fibre over (0, 0) is ν(M,N1, N2), the fibres over 0×R∗ are isomorphic to ν(M,N1), the fibres over 0×R∗

are isomorphic to ν(M,N2), and the fibres everywhere else are diffeomorphic to M itself. Thus as a set

it is given by

D(M,N1, N2) = ν(M,N1, N2) t (ν(M,N1)× R∗) t (R∗ × ν(M,N2)) t (M × R∗ × R∗),

and we will denote the fibration D(M,N1, N2) → R2 by (s, t). To understand the smooth structure

on this space, let us extend some of the lifting processes discussed in section 3.5 above to the set

D(M,N1, N2). Once again we will continue to use the same notation for these lifts even though we have

changed the domain of the lift, and rely on context to distinguish which one we mean. For any smooth

function f ∈ Ip,q, we define the function f (p,q) on D(M,N1, N2) by the formulas

f (p,q)(s, t, x) =



f (p,q)(x) s = t = 0,

1
tq f

(p)(x) s = 0, t 6= 0,

1
sp f

(q)(x) s 6= 0, t = 0,

1
sptq f(x) s 6= 0, t 6= 0.

Here we have used to lifting processes related to the usual normal bundle explained in section B.1, for

convenience we recall that f (0) is the pullback along the map ν(M,Ni)→ Ni ↪→M , while f (1) denotes

ν(f) ∈ C∞(ν(M,Ni)), which is defined whenever f |Ni= 0. We also note that f (0,0) may alternatively be
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defined as the pullback of f along the map γ:D(M,N1, N2)→M that is built out of the natural maps

γs,t:M →M, γ0,t: ν(M,N1)→ N1 ↪→M, γs,0: ν(M,N2)→ N2 ↪→M, γ0,0: ν(M,N1, N2)→ N ↪→M,

for s, t 6= 0. With all of this machinery in place, we now topologize D(M,N1, N2) by giving it the topology

with the fewest sets for which the functions f (p,q) for f ∈ Ip,q as well as the map γ:D(M,N1, N2)→M

and the fibration (s, t) are all continuous. Our first claim is that this topology leads to a smooth structure

on D(M,N1, N2).

Theorem 3.6.1. Given a manifold triple (M,N1, N2), the space D(M,N1, N2) is a smooth manifold.

Proof. Choose coordinates x1, . . . , xm on M such that (see proposition B.2.2)

N1 = {x1 = · · · = xe = 0, xe+1 = · · · = xk = 0},

N2 = {x1 = · · · = xe = 0, xk+1 = · · · = x` = 0}.

and let U ⊆M be the open subset on which these coordinates are defined. Then the subset D(U,N1 ∩
U,N2 ∩ U) = γ−1(U) is an open subset of D(M,N1, N2) since γ is continuous, and the functions

x
(1,1)
1 , . . . , x(1,1)

e , x
(1,0)
e+1 , . . . , x

(1,0)
k , x

(0,1)
k+1 , . . . , x

(0,1)
` , x

(0,0)
`+1 , . . . , x

(0,0)
m , s, t (3.16)

are all defined on γ−1(U). These functions define a map

γ−1(U)→ Rm × R∗ × R∗

that is continuous, injective, and has open image. Let us use the coordinates xm to identify U with a

subset of Rm = Rm−`−k−e × Re × Rk−e × R`−k−e, and to identify ν(U,N1 ∩ U,N2 ∩ U) with N ∩ U ×
Re ×Rk−e ×R`−k−e, as well as similar identifications for ν(M,N1) and ν(M,N2). Then we can give an

explicit formula for the inverse of the map above:

(u, x, y, z, s, t) 7→



(u, x, y, z, 0, 0) s = 0, t = 0,

(u, sx, y, sz, s, 0), s 6= 0, t = 0,

(u, x, ty, tz, 0, t), s = 0, t 6= 0,

(u, sx, ty, stz, s, t) s 6= 0, t 6= 0.

To see that this map is continuous, it is enough to check that it’s composition with the fibration (s, t),

the map γ, and the maps f (p,q) for f ∈ Ip,q (one can even restrict to 0 ≤ p, q ≤ 1) are all continuous,

which can be verified directly. Thus the functions (3.16) give D(M,N1, N2) the structure of a topological

manifold. In fact, they define a smooth structure on D(M,N1, N2), which follows from the fact that

x1, . . . , xm forms a smooth coordinate system since s, t are global coordinates.

It is worth noting that it follows from the proof of the theorem above that the algebra of smooth

functions C∞(D(M,N1, N2)) is generated by functions of the form f (p,q) for f ∈ Ip,q along with the

maps s, t. Having confirmed that D(M,N1, N2) is smooth, we now give it a name.

Definition 3.6.2 (Double Deformation Space). Let (M,N1, N2) be a manifold triple. Then the double

deformation space of (M,N1, N2) is the smooth manifold D(M,N1, N2).
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In complete analogy with the double normal bundle, the double deformation space admits two alter-

native characterizations, one in terms of iterated functors and another in terms of algebra spectra. First

let us understand the iterated functor approach. Using lemma 3.2.1, we may identify the deformation

space D(N2, N) as a submanifold of the space D(M,N1). We claim that by taking another deformation

space, we end up with the double deformation space. To start with, we observe that the underlying sets

of D(M,N1, N2) and D(D(M,N1),D(N2, N)) are equal, which can be seen easily through the following

diagram

D(D(M,N1),D(N2, N))

ν(D(M,N1),D(N2, N)) D(M,N1)

ν(ν(M,N1), ν(N2, N)) ν(M,N2) ν(M,N1) M

t = 0 t 6= 0

s = 0 s 6= 0 s = 0 s 6= 0

This now gives two smooth structures on the underlying set of D(M,N1, N2): the one described

above and another by thinking of it as a (usual) deformation space. In fact, these two structures are the

same.

Proposition 3.6.3. The smooth structure on D(M,N1, N2) described in theorem 3.6.1 agrees with the

smooth structure on D(D(M,N1),D(N2, N)) coming from the usual deformation to the normal cone

construction.

Proof. The smooth functions on D(M,N1, N2) are generated by functions of the form f (p,q) for f ∈ Ip,q.
On the other hand, smooth functions on D(D(M,N1),D(N2, N)) are generated by functions of the form

f (q) for f ∈ Jq, where J denotes the ideal of smooth functions on D(M,N1) that vanish on D(N2, N).

In turn, smooth functions on D(M,N1) are generated by functions of the form f (p) for f ∈ Ip,0. But we

have f (p) ∈ J precisely when f ∈ Ip,1, and so in order to prove the proposition, it suffices to show that

the functions f (p,q) and (f (p))(q) for f ∈ Ip,q generate the same collection of smooth functions. At all

points x away from the (0, 0)-fibre we have equality f (p,q)(x) = (f (p))(q)(x), so we need only consider the

analogous question for the lifts to ν(M,N1, N2) and ν(ν(M,N1), ν(N2, N). But functions of the form

f (p,q) generate the smooth functions on ν(M,N1, N2) while functions of the form (f (p))(q) generate the

smooth functions on ν(ν(M,N1), ν(N2, N)), and so the result follows from theorem 3.4.1.

Remark 3.6.4. For some time now, deformation spaces have been a tool used in index theory, see for

example [33]. Recently, in [66], iterated deformations spaces were introduced as a means of generalizing

various index theorems, relating in particular to hypoelliptic pseudo-differential operators. The con-

struction outlined there begins with a manifold M , a submanifold N ⊆ M , and another submanifold

V ⊆ D(M,N). The iterated deformation space is then defined to be D(D(M,N), V ). The discus-

sion above shows that our double deformation spaces D(M,N1, N2) provide an alternate description of

these iterated deformation spaces in the setting where the submanifold V can itself be identified with a

deformation space.
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Each fibre of the double deformation space D(M,N1, N2) is a smooth manifold that can be defined as

the spectrum of an appropriate algebra. Therefore it is natural to ask whether D(M,N1, N2) itself can

be described as a spectrum. This is indeed the case, which can be seen using the so-called Rees algebra

of the bifiltration 3.1. More specifically, let DL(M,N1, N2) denote the algebra consisting of Laurent

polynomials in two variables (or “double Laurent polynomials”) of the form∑
p,q

ap,qs
−pt−q,

where ap,q are smooth functions on M such that ap,q ∈ Ip,q whenever p, q > 0. As usual, we will omit the

dependence on the manifold triple whenever possible, writing simply DL. The spectrum of this algebra

comes with a fibration to R2, given by the map

SpecDL→ R2

ϕ 7→ (ϕ(s), ϕ(t)).

Note that the fibre over (λ, µ) is given by the spectrum of the algebra DL/〈t−λ, s−µ〉. Let us describe

these fibres in a more tangible way.

Lemma 3.6.5. Let (M,N1, N2) be a manifold triple. As a set, we have SpecDL = D(M,N1, N2), with

the fibration over R2 being given by the map ϕ 7→ (ϕ(s), ϕ(t)).

Proof. First we consider the case λ = µ = 0 by examining the map

DL→A∑
p,q

ap,qs
−pt−q 7→

∑
p,q≥0

[ap,q]p,q,

where A denotes the algebra (3.2), and [ap,q]p,q denotes the class of ap,q in Ip,q/(Ip+1,q + Ip,q+1). The

map is clearly surjective, and its kernel consists of all Laurent polynomials spanned by monomials of

the form ap,qs
−pt−q with p, q < 0 as well as those monomials of the form ap,qs

−pt−q for which we have

ap,q ∈ Ip
′,q′ with either p′ > p or q′ > q (or both). Monomials of the former kind clearly lie in 〈s, t〉,

as do monomials of the latter kind since then ap,qs
−pt−q = (ap,qs

−p′t−q
′
) · sp′−ptq′−q. Moreover, these

monomials span 〈s, t〉, so we have shown that DL/〈s, t〉 ∼= A, which in turn means that the fibre over

(0, 0) is given by SpecA = ν(M,N1, N2).

Now suppose that λ 6= 0 but µ = 0, and consider the map

DL→ L(M,N1)∑
p,q

ap,qs
−pt−q 7→

∑
q

(∑
p

λ−pap,q

)
t−q

given by evaluation at s = λ. Once again, this map is clearly surjective, and we claim its kernel is 〈s−λ〉.
To see this, we may use “long division” to write any Laurent polynomial as

∑
p,q

ap,qs
−pt−q = (s− λ)

∑
p,q

∑
j≥0

ap−j,qλ
j

 s−pt−q,
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as can be verified by expanding the right hand side. If this Laurent polynomial satisfies
∑
p,q ap,qλ

−pt−q =

0, then by multiplying this equation through by an approrpiate power of λ and reindexing if necessary,

we see that only finitely many terms of the form
∑
j≥0 ap−j,qλ

j can be nonzero, so the right hand

side of the equation above lies in 〈s − λ〉. Since the reverse inclusion is obvious, we conclude that

DL/〈s − λ〉 ∼= L(M,N1). Composing with evaluation at t = 0 then tells us that the fibre over (λ, 0) is

given by the 0-fibre of D(M,N1), in other words it is ν(M,N1). If λ = 0 but µ 6= 0, one similarly finds

that the fibre over (λ, µ) is given by ν(M,N2).

Finally, suppose that neither λ nor µ are equal to zero. Then the isomorphism DL/〈s−λ〉 ∼= L(M,N1)

described above still stands, and so the fibre over (λ, µ) is equal to the µ-fibre of D(M,N1), in other

words, it is M .

Recall that the topology on SpecDL is the topology with the fewest open sets for which the evaluation

maps are all continuous. Note that in this context, the map γ: SpecDL → SpecC∞(M) is induced by

the inclusion C∞(M) ↪→ DL, which is continuous since composing it with any evaluation map on

SpecC∞(M) yields an evaluation map on SpecDL. Observe that under the fibration described in

lemma 3.6.5, the functions f (p,q) on D(M,N1, N2) for f ∈ Ip,q are identified with the evaluation maps

ev(fs−pt−q). It follows that the two topologies on D(M,N1, N2) implied by the lemma above coincide.

Moreover, it is straightforwad to prove that SpecDL is in fact a smooth manifold. Away from the (0, 0)-

fibre, this follows from the fact that SpecL(M,N1), SpecL(M,N2), and SpecC∞(M) are all smooth.

Near the (0, 0)-fibre, one can simply replicate the proof of theorem 3.6.1, replacing the coordinates by

the evaluation functions

ev(x1s
−1t−1), . . . , ev(xes

−1t−1), ev(xe+1s
−1), . . . , ev(xks

−1),

ev(xk+1t
−1), . . . , ev(x`t

−1), ev(x`+1), . . . , ev(xm), s, t,

which as before are defined on the open set γ−1(U), where U ⊆M is an open set on which the coordinates

x1, . . . , xm are defined. As noted above, these coordinates are precisely the same as the coordinates

(3.16), and so we observe the following result.

Proposition 3.6.6. The smooth structure on D(M,N1, N2) described in theorem 3.6.1 agrees with the

smooth structure on SpecDL coming from the usual manifold structure on spectrums of suitable algebras.
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Weil Algebras

Recall that any vector bundle V → M may be recovered from its graded algebra S•(V ) = C∞(V )[•] ∼=
Γ(∧•V ∗) of fiberwise polynomial functions as the set of algebra morphisms (spectrum) V ∼= Homalg(S(V ),R);

the algebra endomorphism given as multiplication by tk on Sk(V ) corresponds to the scalar multiplica-

tion on V , its infinitesimal generator is the Euler vector field. In super-geometry, the super-commutative

graded algebra Γ(∧V ∗) is regarded as the algebra of functions on the graded manifold V [1], where the

[1] signifies a degree shift.

In a similar way, double vector bundles may be recovered for their bigraded algebra S•,•(D) of

double-polynomial functions, as D = Homalg(S(D),R). The two scalar multiplications correspond to

the two gradings on S(D). In this section we give a geometric model W(D) for the bigraded algebra of

double-polynomial functions on the supermanifold D[1, 1], obtained by parity change of the two vector

bundle directions. (See [77] for details.)

As we shall see, both S(D) and W(D) are generated by double-polynomial functions of bidegree (r, s)

with r, s ≤ 1, modulo a quadratic relation. As pointed out to us by a referee, the existence of this type

of presentation is an instance of a very general construction due to Grabowski-Jóźwikowski-Rotkievicz

[25].

Throughout this section, we consider a fixed double vector bundle D over M , with side bundles A,B

and with E = core(D)∗. It will be convenient to regard D as an associated bundle (P ×D0)/Aut(D0)

with D0 = A0 ×B0 × E∗0 .

4.1 Double-Polynomial Functions

A smooth function on a double vector bundle D will be called a (homogeneous) double-polynomial of

bidegree (k, `) if it is homogeneous of degree k for the horizontal scalar multiplication, and of degree ` for

the vertical scalar multiplication. The space of such functions is denoted Sk,`(D) = C∞(D)[k,`]; their

direct sum over all k, ` ≥ 0 is denoted S(D). In order to avoid confusion in this section, we will denote

the symmetric tensor powers of a vector space by ∨ rather than by S.

Lemma 4.1.1. The space Sk,`(D) of double-polynomial functions on D of bidegree (k, `) is the space of

sections of a vector bundle

Sk,`(D)→M.

50
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Proof. We will first construct the space Sk,`(D0), and appeal to the associated bundle construction to

obtain Sk,`(D). A function f ∈ C∞(D0) lies in Sk,`(D0) when

f(ta, b, tε) = tkf(a, b, ε), f(a, sb, sε) = s`f(a, b, ε), (4.1)

for all t, s ∈ R. Choosing bases of A0, B0, and E∗0 , we see that Sk,`(D0) is spanned by those monomials

of total degree k + ` that are of degree no more than k in the A0 and E∗0 coordinates and of degree no

more than ` in the B0 and E∗0 coordinates. In other words, we have

Sk,`(D0) =
⊕

i+n=k,j+n=`

∨iA∗0 ⊗ ∨jB∗0 ⊗ ∨nE0. (4.2)

The action of Aut(D0) on D0 (see lemma 2.5.1) induces a linear representation of Aut(D0) on C∞(D0)

via ϕ.f = f ◦ ϕ, for which the defining equations (4.1) of Sk,`(D) are clearly equivariant. The vector

bundle Sk,`(D) is then given by Sk,`(D) = (P × Sk,`(D0))/Aut(D0).

Summing over all bidegrees, we obtain a bundle of bigraded commutative algebras

S(D) =
⊕
k,`

Sk,`(D).

Moreover, the construction of S(D) is functorial. That is, given a DVB morphism ϕ:D1 → D2 with base

map Φ:M1 → M2, we get algebra morphisms S(ϕ)m:S(D2)F (m) → S(D1)m for every m ∈ M , which

induces a comorphism of bigraded algebra bundles S(ϕ):S(D1) 99K S(D2). On the level of sections, the

map S(D2) → S(D1) is simply given by the pullback of double polynomial functions along ϕ. In the

case that M1 = M2 with F = id, the comorphism S(ϕ) can be seen as an ordinary morphism of algebra

bundles: S(ϕ):S(D2) → S(D1). Applying this functoriality to the DVB morphism D ↪→ D̂ described

in proposition 2.7.3, we expect to be able to recover the bundle S(D) as a quotient of the bundle S(D̂),

which the next proposition confirms.

Proposition 4.1.2. The algebra bundle S(D) is the bundle of bigraded commutative algebras

S(D) = (∨A∗ ⊗ ∨B∗ ⊗ ∨Ê)/∼

where the generators α ∈ A∗, β ∈ B∗, ê ∈ Ê have bidegrees (1, 0), (0, 1), (1, 1), respectively. Here the

kernel of the quotient map is the ideal generated by elements of the form

αβ − iÊ(α⊗ β)

for (α, β) ∈ A∗ ×M B∗.

Proof. We consider the double vector space D0 and we let

S̄(D0) = ∨A∗0 ⊗ ∨B∗0 ⊗ ∨((A∗0 ⊗B∗0)⊕ E0)/∼

denote the proposed construction for S(D0). Since the DVB sequence for D0 is canonically split, the

quotient relation ∼ allows us to write the generators ê = (α ⊗ β, e) as ê = α ⊗ β ⊗ (0, e). Hence S̄(D)

is generated by A∗0 in bidegree (1, 0), by B∗0 in bidegree (0, 1), and by E0 ⊆ Ê0 in bidegree (1, 1), which
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agrees with (4.2). This shows that S̄(D0) = S(D0), and the general result follows by taking associated

bundles.

By applying a similar construction to the double vector bundles D′ and D′′, we also have the bigraded

algebra bundles S(D′) → M and S(D′′) → M . In the next section, we will anti-symmetrize the

construction of S(D) described in proposition 4.1.2 to obtain Weil algebra bundles W (D), W (D′), and

W (D′′). Before proceeding to the Weil algebra bundles, however, we record one more fact about double-

polynomial functions. Recall that a vector bundle is completely determined by its space of polynomial

functions. We observe that the situation for double vector bundles is analogous.

Lemma 4.1.3. The double vector bundle D may be recovered from S(D) via

D ∼= Spec(S(D)).

Proof. This follows from example 3.1.10, where it is show that the DVB sequences for D and ν(D,A,B)

coincide. Since S(D) is generated by Γ(A∗), Γ(B∗), and Γ(Ê) with relations defined by the DVB

sequence of D, it follows that S(D) = A(D,A,B) (see equation 3.2). This gives

Spec(S(D)) = Spec(A(D,A,B)) = ν(D,A,B) ∼= D.

4.2 Definition of W (D)

The Weil algebra bundle is obtained from the description of S(D), given in Proposition 4.1.2, by replacing

commutativity with super-commutativity:

Definition 4.2.1. The Weil algebra bundle W (D) is the bundle of bigraded super-commutative algebras

given as

W (D) = (∧A∗ ⊗ ∧B∗ ⊗ ∨Ê)/∼,

where the generators α ∈ A∗, β ∈ B∗, ê ∈ Ê have bidegrees (1, 0), (0, 1), (1, 1) respectively. Here the

kernel of the quotient map is the ideal generated by elements of the form

αβ − iÊ(α⊗ β)

with (α, β) ∈ A∗ ×M B∗.

In the definition above, ⊗ denotes the usual tensor product of superalgebras. For x ∈ W p,q(D) we

write

|x|= p+ q

for the total degree; thus super-commutativity means x1x2 = (−1)|x1||x2|x2x1. The bigraded algebra of

sections W(D) = Γ(W (D)) is called the Weil algebra of D. In super-geometric terms, it is the algebra

of smooth functions on the supermanifold D[1, 1]. Similar to the construction of S(D), we claim that

the association D 7→W(D) is functorial.
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Lemma 4.2.2. Given a morphism of double vector bundles ϕ:D1 → D2, there exists a morphism of

bigraded super-commutative algebras

W(ϕ):W(D2)→W(D1)

making the association D 7→W(D) a contravariant functor.

Proof. By the results of [13], any DVB morphism ϕ:D1 → D2 induces vector bundle morphisms A∗2 →
A∗1, B∗2 → B∗1 , and Ê2 → Ê1 that intertwine the DVB sequences of D2 and D1. Applying the exterior and

symmetric algebra functors appropriately to these maps and passing to the quotient yields a bigraded

algebra morphism W(ϕ):W(D2) → W(D1). Every step in this process is functorial (DVB sequence,

exterior and symmetric algebras, quotient), hence the Weil algebra assignment is as well.

In terms of bundles, we get a comorphism W (D1) 99K W (D2) that becomes an honest morphism of

bundles of super-commutative algebras W (ϕ):W (D2) → W (D1) in the case that the total bases of D1

and D2 are the same and ϕ restricts to the identity there.

The definition gives a number of straightforward properties of W (D):

1. In degree p ≤ 1, q ≤ 1, W p,q(D) coincides with Sp,q(D):

W 0,0,(D) = M, W 1,0(D) = A∗, W 0,1(D) = B∗, W 1,1(D) = Ê.

2. An argument identical to the proof of proposition 4.1.2 shows that the decomposed DVB given

by A ×M B ×M E∗ has Weil algebra ∧A∗ ⊗ ∧B∗ ⊗ ∨E. Therefore, by functoriality, a choice of

splitting D ∼= A×M B ×M E∗ gives an algebra bundle isomorphism

W (D) ∼= ∧A∗ ⊗ ∧B∗ ⊗ ∨E.

3. As a particular case of the observation above, we have W (D0) = ∧A∗0 ⊗ ∧B∗0 ⊗ ∨E0. This allows

for an alternative definition of the Weil algebra bundle as W (D) = (P ×W (D0))/Aut(D0).

Replacing D with D′ and D′′, we have three bigraded algebra bundles W (D),W (D′),W (D′′) over M ,

where the roles of A,B, and E are cyclically permuted. In particular,

W 1,1(D) = Ê, W 1,1(D′) = Â, W 1,1(D′′) = B̂.

The pairings (2.16) between these bundles extend to

〈·, ·〉E∗ :W p,1(D′′)×M W 1,q(D′)→ ∧p+q−1E∗,

〈·, ·〉A∗ :W p,1(D)×M W 1,q(D′′)→ ∧p+q−1A∗, (4.3)

〈·, ·〉B∗ :W p,1(D′)×M W 1,q(D)→ ∧p+q−1B∗.

Here 〈·, ·〉E∗ is the unique extension of the given pairing such that

〈α, â〉E∗ = −α(a), 〈̂b, β〉E∗ = β(b)
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for the cases p = 0, q = 1 and p = 1, q = 0, and such that the following bilinearity property holds:

〈λx, y〉E∗ = λ〈x, y〉E∗ , 〈x, yλ〉E∗ = 〈x, y〉E∗λ

for λ ∈ ∧E∗, x ∈W •,1(D′′), y ∈W 1,•(D′) (with the same base points). The discussion for the pairings

〈·, ·〉A∗ , 〈·, ·〉B∗ is similar. In Section 4.5, we will give geometric interpretations of these pairings.

4.3 Properties of W (D)

In this section we will discuss how the functor D 7→W(D) behaves with respect to some of the operations

between double vector bundles described in chapter 2. All of the following properties are verified by

tracing through the sequence of operations that make up the Weil algebra functor.

1. Core-negation. The description of the Weil algebra bundle for D− is obtained from that for D

by replacing the sign of the inclusion map iÊ . That is, W (D−) has the same generators, but the

defining relation becomes αβ = −iÊ(α ⊗ β). The map on generators α 7→ α, β 7→ β, ê 7→ −ê
extends to an isomorphism of algebra bundles W (D−)→W (D).

2. Diagonal flip. It is clear from the definitions that we have

Wp,q(D) = Wq,p(flip(D))

for any double vector bundle D.

3. Horizontal and vertical duals. By combining the previous two observations and proposition 2.6.1,

we obtain a description of the Weil algebras for the horizontal and vertical duals Dh and Dv of D.

Specifically we see that

Wp,q(Dh) = Wq,p(D′), Wp,q(Dv) = Wq,p(D′′)

but with the generators in bidegree (1, 1) appearing with opposite sign.

4. Direct sums. Given two double vector bundles D1 and D2 with total bases M1 and M2, the

bigraded algebra bundle for the product D1 ×D2 is given by the (graded) tensor product of the

two Weil algebras, thought of as a bundle over M1 ×M2:

W(D1 ×D2)(m1,m2) = W(D1)m1
⊗W(D2)m2

.

Similarly, in the case that M1 = M2 the Weil algebra of the direct sum D1 ⊕D2 is also described

as the graded tensor product of W(D1) and W(D2), this time thought of as a bundle over M :

W(D1 ⊕D2)m = W(D1)m ⊗W(D2)m

5. Sub-DVBs and quotients. By functoriality, any sub-DVB, Q ⊆ D determines a surjective map

W(D) → W(Q). Thus we may recover the Weil algebra of Q as a quotient of the Weil algebra of

D. Specifically, if Q takes the form (2.25), then W(Q) = W(D)/I, where I is the ideal generated

by Γ(Ann(H)) ⊆ Γ(A∗), Γ(Ann(V )) ⊆ Γ(B∗), and Γ(Ann(K̂)) ⊆ Γ(Ê). On the other side of the
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coin, a DVB quotient D/h determines an injection W(D/h) ↪→W(D) that identifies W(D/h) with

the subalgebra of W(D) generated by Γ(Ann(H)), Γ(Ann(V )), and those elements of Γ(Ê) that

are invariant under the action of h (see proposition 2.10.4).

4.4 Derivations of W (D)

For a vector bundle V → M , the graded bundle Der(∧V ∗) of fiberwise superderivations of ∧V ∗ is the

free ∧V ∗-module generated by contractions. Thus

Der(∧V ∗) = ∧V ∗ ⊗ V

as a bundle of graded super-Lie algebras, where the elements 1⊗ v have degree −1.

Given a double vector bundle D, we are interested in the structure of the bigraded bundle

Der(W (D)) =
⊕
r,s

Derr,s(W (D)).

Here Derr,s(W (D)) → M is the bundle of fiberwise superderivations of bidegree (r, s) of the algebra

bundle W (D) → M : its space of sections consists of bundle maps δ:W (D) → W (D) of bidegree (r, s)

with the superderivation property

δ(xy) = δ(x)y + (−1)|δ||x|xδ(y)

for homogeneous elements x, y, where |δ|= r + s and |x| are the total degrees of δ and x. The following

result describes the structure of Der(W (D)) as a W (D)-module and as a bundle of graded Lie algebras.

Theorem 4.4.1. Let m ∈M and â ∈ Âm, b̂ ∈ B̂m, and ε ∈ E∗m. There are unique contraction operators

ιh(â) ∈ Der−1,0(W (D))m, ιv (̂b) ∈ Der0,−1(W (D))m, ι(ε) ∈ Der−1,−1(W (D))m

such that

ιh(â)v = 〈â, v〉B∗ , ιv (̂b)u = (−1)|u|〈u, b̂〉A∗ , ι(ε)e = −ε(e) (4.4)

for all u ∈ W 1,•(D)m, v ∈ W •,1(D)m, e ∈ W 1,1(D)m = Êm. The contraction operators satisfy the

commutation relations

[ιv (̂b), ιh(â)] = ι(〈̂b, â〉E∗), â ∈ Â, b̂ ∈ B̂, (4.5)

while all other commutations of contractions are zero. The W (D)m-module Der(W (D))m is generated

by the three types of contraction operators, subject to the relations

ιh(iÂ(β ⊗ ε)) = mL(β) ◦ ι(ε), ιv(iB̂(ε⊗ α)) = −mR(α) ◦ ι(ε), α ∈ A∗m, β ∈ B∗m, ε ∈ E∗m, (4.6)

where mL(β) denotes left multiplication by β, and mR(α) denotes right multiplication by α.

Proof. For degree reasons, the proposed expressions for the contractions determine the formulas on

generators of W (D)m. Specifically, ιh(â) is given on generators α ∈ A∗m, β ∈ B∗m, ê ∈ Êm by

α 7→ α(a), β 7→ 0, ê 7→ 〈â, ê〉B∗ ,
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while ιv (̂b) is given by

α 7→ 0, β 7→ β(b), ê 7→ 〈ê, b̂〉A∗ ,

and ι(ε) is given by

α 7→ 0, β 7→ 0, ê 7→ −ε(e).

To see that these formulas hence extend to derivations on all of W (D)m, we need to verify that they are

compatible with the defining relations of the Weil algebra. For ιh(â) we have

ιh(â)(iÊ(α⊗ β)) = 〈â, iÊ(α⊗ β)〉B∗ = α(a)β = ιh(â)(α)β − αιh(â)(β).

The calculation for ιv (̂b) is similar:

ιv (̂b)(iÊ(α⊗ β)) = 〈iÊ(α⊗ β), b̂〉A∗ = −αβ(b) = ιv (̂b)(α)β − αιv (̂b)(β).

For the last alleged derivation, note that if ê ∈ im(iÊ) then e = 0 and so both sides of the desired

relation for ι(ε) are zero. Next we prove the relations (4.5). Since we have shown that ιh(â), ιv (̂b), and

ι(ε) extend to derivations, it is enough to check the formula on generators. Note that on the generators

α, β, both sides of the equation vanish for degree reasons, while for generators ê, we have

[ιv (̂b), ιh(â)](ê) = ιv (̂b)ιh(â)(ê) + ιh(â)ιv (̂b)(ê) = 〈â, ê〉B∗(b) + 〈ê, b̂〉A∗(a) = −〈̂b, â〉E∗(e) = ι(〈̂b, â〉E∗)(ê),

where we have used the identity (2.19). The other two possible commutations result in a derivation of

total degree −3, and therefore vanish identically (see below).

For the final claim, note that the three types of contraction operators define a W (D)m-module

morphism

W (D)m ⊗ (Âm ⊕ B̂m ⊕ E∗m)→ Der(W (D))m (4.7)

whose kernel contains elements of the form

1⊗ iÂ(β ⊗ ε)− β ⊗ ε, 1⊗ iB̂(ε⊗ α) + α⊗ ε (4.8)

with α ∈ A∗m, β ∈ B∗m, ε ∈ E∗m. We have to show that (4.7) is surjective, with kernel the submodule

generated by elements of the form (4.8).

It suffices to prove this for the double vector space D0 = A0 × B0 × E∗0 . Here W (D0) is simply

a tensor product ∧A∗0 ⊗ ∧B∗0 ⊗ ∨E0, and hence Der(W (D0)) = W (D0) ⊗ (A0 ⊕ B0 ⊕ E∗0 ). Since

Â0 = A0 ⊕ (B∗0 ⊗ E∗0 ) and B̂0 = B0 ⊕ (E∗0 ⊗ A∗0), it is immediate that the module map (4.7) (with

D replaced by D0) is surjective. Its kernel contains elements of the form (4.8); hence it also contains

the W (D0)-submodule generated by elements of this form. But this submodule is a complement to the

submodule W (D0)⊗ (A0 ⊕B0 ⊕ E∗0 ), and is therefore the entire kernel of (4.7).

In particular, we see that the bundle Derr,s(W (D)) is zero if r < −1 or s < −1, while

Der−1,0(W (D)) = Â, Der0,−1(W (D)) = B̂, Der−1,−1(W (D)) = E∗. (4.9)
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Proposition 4.4.2. The horizontal contractions extend to an isomorphism of left ∧B∗-modules

ιh:W •,1(D′)→ Der−1,−1+•(W (D)), x 7→ ιh(x) (4.10)

such that

ιh(x)z = 〈x, z〉B∗ , x ∈W •,1(D′), z ∈W 1,•(D). (4.11)

The vertical contractions extend to an isomorphism of left ∧A∗-modules

ιv:W
1,•(D′′)→ Der−1+•,−1(W (D)), y 7→ ιv(y) (4.12)

given by

ιv(y)z = −(−1)(|y|+1)(|z|+1) 〈z, y〉A∗ , y ∈W 1,•(D′′), z ∈W •,1(D) (4.13)

Proof. The proposed formulas determine ιh(x), ιv(y) on generators. To show that the formula (4.13)

for ιv(y) gives a well-defined ∧A∗-module homomorphism, it suffices to check that the right hand side

is linear in the argument y for the left ∧A∗-module structure and linear in the argument z for the right

∧A∗-module structure. Indeed, replacing y with αy changes the right hand side to

(−1)|y|(|z|+1)〈z, αy〉A∗ = (−1)|y| |z|〈z, y〉A∗α = (−1)(|y|+1)(|z|+1)α〈z, y〉A∗ .

Similarly, replacing z with zα for α ∈ A∗ changes the right hand side to

(−1)(|y|+1)|z|〈zα, y〉A∗ = (−1)|y| |z|α〈z, y〉A∗ = (−1)(|y|+1)(|z|+1)〈z, y〉A∗α

as required. The argument for ιh(x) is similar.

Remark 4.4.3. The sign in (4.13) comes from the fact that we are using the left ∧A∗-module structures,

whereas the pairing is bilinear for the right ∧A∗-module structure in the second argument. It is also

worth noting that ιh(ε) = ιv(ε) = ι(ε) for ε ∈ E∗.

4.5 Linear and core sections of ∧AD

We have already encountered the linear and core sections of a double vector bundle D over its side

bundles. We shall now consider the generalization to the exterior algebra bundles, and relate it to the

Weil algebra bundles. Throughout, D will denote a double vector bundle with sides A,B and with

core(D) = E∗. Given a double vector bundle D, we denote by

∧nAD → A

its exterior powers as a vector bundle over A. The horizontal scalar multiplications κht :D → D are

vector bundle endomorphisms of D → A, hence they extend to algebra bundle endomorphisms ∧•κht of

∧•AD → A. A section σ:A→ ∧nAD is homogeneous of degree k if it satisfies

σ(κht (a)) = tk (∧nκht )(σ(a))

for all t ∈ R; the space of such sections is denoted Γ(∧nAD,A)[k].
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Definition 4.5.1. The spaces of core sections and linear sections of ∧nAD over A are defined as follows:

Γcore(∧nAD,A) = Γ(∧nAD,A)[−n],

Γlin(∧nAD,A) = Γ(∧nAD,A)[−n+1].

The spaces Γcore(∧nBD,B) and Γlin(∧nBD,B) are defined similarly.

The core sections Γcore(∧•AD,A) are a super-commutative graded algebra under the wedge product,

and Γlin(∧•AD,A) is a graded module over this algebra. The significance of these spaces is clarified by

the following result.

Proposition 4.5.2. The space Γ(∧nAD,A)[k] is zero if k < −n, and for k = −n is given by

Γcore(∧nAD,A) ∼= Γ(∧nE∗). (4.14)

The space of linear sections fits into a short exact sequence

0→ Γ(∧nE∗ ⊗A∗)→ Γlin(∧nAD,A)→ Γ(∧n−1E∗ ⊗B)→ 0. (4.15)

Proof. Recall that when D is viewed as a vector bundle over A, its restriction to the submanifold M is

the direct sum D = E∗ ⊕B. Hence, the restriction of sections to M ⊆ A gives a map

Γ(∧AD,A)→ Γ(∧(E∗ ⊕B)) = Γ(∧E∗ ⊗ ∧B).

We claim that the restriction of core sections gives the isomorphism (4.14), while restriction of linear

sections gives a map from Γlin(∧nAD,A) onto Γ(∧n−1E∗ ⊗ B), with kernel Γ(∧nE∗ ⊗ A∗) spanned by

products of core sections with linear functions on the base A. Using the associated bundle construction,

it suffices to prove these claims for the double vector space D0 = A0 ×B0 × E∗0 . We have

Γ(∧nA0
D0, A0) = C∞(A0,

⊕
i+j=n

∧jE∗0 ⊗ ∧iB0).

The elements of ∧jE∗0 ⊗ ∧n−jB0 → M (regarded as constant sections of ∧nA0
D0) are homogeneous of

degree −j. To obtain a section that is homogeneous of degree k, we must multiply by a polynomial on

A0 of degree k + j. Thus,

Γ(∧nA0
D0, A0)[k] =

⊕
j

∧jE∗0 ⊗ ∧n−jB0 ⊗ ∨k+jA∗0

where the sum is over all j with 0 ≤ j ≤ n and k + j ≥ 0. In particular, this space is zero if k < −n,

and is equal to ∧nE∗0 for k = −n. Specializing to k = −n+ 1 this shows

Γlin(∧nA0
D0, A0) = (∧nE∗0 ⊗A∗0)⊕ (∧n−1E∗0 ⊗B0). (4.16)

Hence, the map Γlin(∧nA0
D0, A0)→ ∧n−1E∗0 ⊗B0 is surjective, with kernel ∧nE∗0 ⊗A∗0.

The linear and core sections of ∧AD → A are graded subspaces of Weil algebras, as follows.
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Proposition 4.5.3. There is a canonical isomorphism Γcore(∧•AD,A) ∼= W•,0(D′′) = Γ(∧•E∗) as graded

algebras, and an isomorphism of graded left modules over this algebra,

Γlin(∧•AD,A) ∼= W•,1(D′′).

Similarly, there is a canonical isomorphism of graded algebras, Γcore(∧•BD,B) ∼= W0,•(D′) = Γ(∧•E∗)
and an isomorphism of right modules over this algebra,

Γlin(∧•BD,B) ∼= W1,•(D′).

Proof. It suffices to prove the claim for the double vector space D0 = A0 × B0 × E∗0 . But W •,0(D′′0 ) =

∧•E∗0 , W 0,•(D′0) = ∧•E∗0 as graded algebras. Furthermore, the isomorphism of graded left ∧E∗0 -

modules

W •,1(D′′0 ) = (∧•E∗0 ⊗A∗0)⊕ (∧•−1E∗0 ⊗B0)

is exactly the description of linear sections of ∧nA0
D0, see (4.16). Similarly for

W 1,•(D′0) = (B∗0 ⊗ ∧•E∗0 )⊕ (A0 ⊗ ∧•−1E∗0 ).

as graded right ∧E∗0 -modules.

With these identifications, the pairing 〈·, ·〉E∗ :W p,1(D′′)×MW 1,q(D′)→ ∧p+q−1E∗ (cf. (4.3)) trans-

lates into a Γ(∧E∗)-bilinear pairing

〈·, ·〉E∗ : Γlin(∧pAD,A)× Γlin(∧qBD,B)→ Γ(∧p+q−1E∗). (4.17)

4.6 Multi-vector Fields on D

The linear and core sections of ∧AD → A and ∧BD → B, and their pairings, have a simple interpretation

in terms of the space X•(D) of multi-vector fields on D. The sections of ∧nAD are identified with n-vector

fields on D that are homogeneous of degree −n with respect to the vertical vector bundle structure (see

section 8.2 for a more detailed discussion of vector fields on the total space of a vector bundle). A similar

description applies to sections of ∧nBD. As before, we let Xn(D)[k,l] denote the space of n-vector fields

that are homogeneous of degree k horizontally and of degree l vertically. This space is trivial if k < −n
or l < −n, while Xn(D)[−n,−n]

∼= Γ(∧nE∗) is identified with Γcore(∧nAD,A) and also with Γcore(∧nBD,B).

Furthermore, we have canonical isomorphisms

Γlin(∧pAD,A) ∼= Xp(D)[1−p,−p], Γlin(∧qBD,B) ∼= Xq(D)[−q,1−q],

obtained by extending the isomorphisms X(D)[−1,−1]
∼= Γcore(D,A) ∼= Γcore(D,B), X(D)[−1,0]

∼= Γlin(D,B),

and X(D)[0,−1]
∼= Γlin(D,A) described in section 2.9. The first isomorphism is compatible with the left

module structure over Γ(∧E∗), the second isomorphism with the right module structure, realized as

wedge product of the corresponding multivector fields from the left or right, respectively.

Proposition 4.6.1. With the above identifications, the pairing (4.17) is given by the Schouten bracket

〈x, y〉E∗ = [[x, y]]
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for all x ∈ Xp(D)[1−p,−p] and y ∈ Xq(D)[−q,1−q].

Proof. The Schouten bracket of elements λ ∈ Xn(D)[−n,−n] with x ∈ Xp(D)[1−p,−p] or with y ∈
Xq(D)[−q,1−q] is zero, for degree reasons. Hence, the derivation property of the Schouten bracket shows

that [[x, y]] is Γ(∧E∗)-bilinear, for the left module structure on Xp(D)[1−p,−p] and the right module

structure on Xq(D)[−q,1−q]. The pairing 〈x, y〉E∗ has the same bilinearity property. It therefore suf-

fices to prove the formula for p, q ≤ 1. If p = q = 1, we are dealing with the pairing of vector fields

X ∈ X(D)[0,−1] = Γ(B̂) and Y ∈ X(D)[−1,0] = Γ(Â), and the claim was already noted in Section 2.9. If

p = 0, q = 1 we have x = α ∈ Γ(A∗), y = â ∈ Γ(Â) with the pairing 〈α, â〉E∗ = −α(a). After identifica-

tion of â with a vector field Y ∈ X1(D)[−1,0] and α with a function f ∈ C∞(D)[1,0], this coincides with

LY f = −[[f, Y ]], as required. Similarly, for p = 1, q = 0 we have x = b̂ ∈ Γ(B̂) and y = β ∈ Γ(B∗), with

pairing 〈̂b, β〉A∗ = β(b), which, after identification of b̂ with a vector field X ∈ X1(D)[0,−1] and β with a

function g ∈ C∞(D)[0,1], coincides with −LXg = −[[X, g]].
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Poisson Double Vector Bundles

5.1 Reminder on Poisson vector bundles

Given a vector bundle p:V →M , one knows that the following structures are equivalent:

(i) a linear Poisson structure π on V →M ,

(ii) a degree −1 Poisson bracket {·, ·} on the algebra of polynomial functions on V ,

(iii) a Lie algebroid structure on the dual bundle, V ∗ ⇒M ,

(iv) a degree −1 Gerstenhaber bracket (Schouten bracket) on Γ(∧V ∗),

(v) a degree 1 differential dCE on Γ(∧V ).

Here (and from now on) we write A ⇒ M to indicate a Lie algebroid over M ; the notation (which we

learned from [7]) suggests the differentiation of a Lie groupoid G⇒M when source and target become

‘infinitesimally close’. Let us briefly recall how these equivalences come about. Given a linear Poisson

tensor π on V , the corresponding Poisson bracket {·, ·} on C∞(V ) restricts to a bracket on the space

of polynomial functions on V , and is uniquely determined by this restriction. The Poisson bivector π

being linear is equivalent to the bracket of linear functions being again linear, thus to {·, ·} having degree

−1. Hence, (i)⇔ (ii). The Poisson bracket is in fact already determined by its restriction to linear and

basic functions on V . Using the identification of linear functions with sections σ ∈ Γ(V ∗), this gives the

equivalence (ii)⇔(iii), where the Lie bracket and anchor are expressed by

[[σ1, σ2]] = {σ1, σ2}, p∗(La(σ)f) = {σ, p∗(f)}. (5.1)

This Lie algebroid bracket extends to a Schouten bracket on the algebra Γ(∧V ∗), with [[σ, p∗f ]] =

p∗(La(σ)f) as the bracket between generators of degrees 1 and 0, hence (iii)⇔(iv). The Chevalley-

Eilenberg differential dCE on Γ(∧V ) is the unique degree 1 derivation such that

ι(σ)dCEf = La(σ)(f) (5.2)

for f ∈ C∞(M) and σ ∈ Γ(V ∗), and such that

[ι(σ1), [ι(σ2),dCE ]] = ι([[σ1, σ2]]) (5.3)

61
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for all σ1, σ2 ∈ Γ(V ∗); one can recover the bracket and anchor from these identities, giving the equivalence

(iii)⇔(v).

5.2 Results for Poisson double vector bundles

We are interested in the counterparts of these correspondences for double vector bundles. A Poisson

bivector field π ∈ X2(D) on a double vector bundle is called double-linear if it is linear for both vector

bundle structures, i.e., homogeneous of bidegree (−1,−1). Following Mackenzie [56], a double vector

bundle with a double-linear Poisson bivector field π is called a Poisson double vector bundle.

Theorem 5.2.1. Let D be a double vector bundle with sides A,B and with core(D) = E∗. The following

are equivalent.

(i) a double-linear Poisson structure π on D →M ,

(ii) a bidegree (−1,−1) Poisson bracket {·, ·} on the algebra S(D) of double polynomials,

(iii) a VB-algebroid structure on D′ over B,

(iv) a VB-algebroid structure on D′′ over A,

(v) a Lie algebroid structure on Ê, together with representations on A∗ and B∗, and an invariant

bilinear pairing A∗ ×M B∗ → R, with certain compatibility conditions (cf. Theorem 5.4.3 below),

(vi) a bidegree (−1,−1) Gerstenhaber bracket on the Weil algebra W(D),

(vii) a bidegree (0, 1) differential d′v on the Weil algebra W(D′),

(viii) a bidegree (1, 0) differential d′′h on the Weil algebra W(D′′).

Some of these equivalences are already known: Given π, the corresponding Poisson bracket {·, ·} on

C∞(D) restricts to the subalgebra S(D) of double-polynomial functions, and is uniquely determined

by this restriction (since the differentials of functions in this subalgebra span the cotangent bundle

everywhere). The bivector π being double-linear means precisely that this Poisson bracket has bidegree

(−1,−1), hence (i)⇔(ii). The equivalence with (iii), (iv) is due to Mackenzie [56] (see also [7]): Regarding

D as a vector bundle over B, and using the nondegenerate pairing D×BD′ → R from (2.11), the Poisson

structure π determines a Lie algebroid structure D′ ⇒ B. The bivector field π being linear in the vertical

direction D → A implies that the horizontal scalar multiplication on D′ is by Lie algebroid morphisms,

which shows that D′ is a VB-algebroid. Similarly, from the pairing D′′ ×A D → R we obtain a VB-

algebroid structure on D′′ ⇒ A. We depict these VB-algebroid structures on D′, D′′ by

D′ //

��

E

��
B // M

D′′ +3

��

A

��

E +3 M

(5.4)

where the double arrow indicates Lie algebroid directions. In particular, we see that the bundle E

becomes a Lie algebroid E ⇒ M . (The Lie algebroid structures on E coming from the VB-algebroid

structures on D′, D′′ coincide; indeed, we will see below that both are induced from a VB-algebroid

structure Ê → M .) The characterizations (v), (vi), (vii) will be consequences of theorems 5.4.3, 5.5.1,

and proposition 5.6.1 below, while (viii) is obtained by applying (vii) to the flip of D.
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5.3 Examples of Poisson double vector bundles

As a preparation for the general situation, let us consider some special cases.

Example 5.3.1. Any Poisson vector bundle V →M can be seen as a Poisson double vector bundle with

zero side bundles, thus A = B = M, E = V ∗. In this case,

D = V //

��

M

��

M // M

D′ = V ∗ //

��

V ∗

��
M // M

D′′ = V ∗ +3

��

M

��

V ∗ +3 M

Example 5.3.2. Suppose D is a Poisson double vector bundle for which the side bundle A is zero. Then

D = B ×M E∗ //

��

B

��

M // M

D′ = B ×M E //

��

E

��
B // M

D′′ = E ×M B∗ +3

��

M

��

E +3 M

Here D′ ⇒ B is the action Lie algebroid for a representation of E ⇒M on B, and the second diagram

describes D′′ ⇒M as the semi-direct product Lie algebroid for the dual E-representation on B∗.

Example 5.3.3. Suppose D is a vacant Poisson double vector bundle, that is, with a zero core:

D = A×M B //

��

B

��

A // M

D′ = A∗ ×M B //

��

M

��
B // M

D′′ = A×M B∗ +3

��

A

��

M +3 M

We claim that double-linear Poisson structures π on D = A ×M B are equivalent to bilinear pairings

(·, ·):A∗ ×M B∗ → R. To see this, note that the bigraded algebra S(D) is generated by S0,0(D) =

C∞(M), S1,0(D) = Γ(A∗), and S0,1(D) = Γ(B∗). Given π, it follows for degree reasons that the only

non-trivial Poisson bracket of generators are between α ∈ Γ(A∗) and β ∈ Γ(B∗); the resulting pairing

(α, β) = {α, β} is C∞(M)-linear by the derivation property. Conversely, given the pairing, we define

a bi-derivation by letting {α, β} = (α, β), and setting all other brackets between generators equal to

zero. This bi-derivation satisfies the Jacobi identity, since triple brackets between generators are always

zero. This proves the claim. The Lie algebroid structure on D′ is that of an action Lie algebroid for the

translation action of A∗ on B, given by the map Γ(A∗) → Γ(B) = X(B)[−1], α 7→ (α, ·), and similarly

for D′′. Since E = 0, we have Ê = A∗ ⊗ B∗. The sections of this bundle have a Lie bracket, coming

from its identification with double-linear functions on D:

[α1 ⊗ β1, α2 ⊗ β2] ≡ {α1β1, α2β2} = (α1, β2)α2β1 − (α2, β1)α1β2;

thus Ê becomes a Lie algebroid with zero anchor. Likewise, the Poisson bracket of such functions with

α ∈ Γ(A∗) or β ∈ Γ(B∗) defines representations of this Lie algebroid on A∗, B∗, respectively. Explicitly,

these actions are determined by the formulas

∇α1⊗β1α2 = −(α2, β1)α1, ∇α1⊗β1β2 = (α1, β2)β1. (5.5)
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Example 5.3.4. Suppose that E ⇒ M is a Lie algebroid, together with representations ∇A∗ ,∇B∗ on

A∗, B∗, and that (·, ·):A∗ ×M B∗ → R is a bilinear pairing that is E-invariant in the sense that

(∇A
∗

e α, β) + (α,∇B
∗

e β) = La(e)(α, β)

for α ∈ Γ(A∗), β ∈ Γ(B∗), e ∈ Γ(E). Then D = A ×M B ×M E∗ becomes a Poisson double vector

bundle, with the non-zero brackets on generators given as

{α, β} = (α, β), {e, α} = ∇A
∗

e α, {e, β} = ∇B
∗

e β, {e1, e2} = [[e1, e2]], {e, f} = La(e)f,

for f ∈ C∞(M) = S0,0(D), α ∈ Γ(A∗) = S1,0(D), β ∈ Γ(B∗) = S0,1(D), and e, e1, e2 ∈ Γ(E) ⊆ S1,1(D).

The Jacobi identity and the biderivation property of {·, ·} follow from the definition of Lie algebroids

and their representations, together with the invariance of the pairing (·, ·).

5.4 The Lie algebroid structure on Ê

In this section, we will concentrate on the characterization (v) of Poisson double vector bundles from

Theorem 5.2.1. Suppose D is a Poisson double vector bundle, with corresponding Poisson bracket {·, ·}.
Recall that the algebra S(D) =

⊕
Sr,s(D) is generated by

S1,1(D) = Γ(Ê), S1,0(D) = Γ(A∗), S0,1(D) = Γ(B∗), S0,0(D) = C∞(M);

we will use these identifications without further comment, and for example think of α ∈ Γ(A∗) as a

function on D. The Poisson bracket gives bilinear maps Sr,s(D)× Sr
′,s′(D)→ Sr+r

′−1,s+s′−1(D), and

is uniquely determined by the resulting maps on generators,

[[·, ·]]: S1,1(D)× S1,1(D)→ S1,1(D), [[ê1, ê2]] = {ê1, ê2}, (5.6)

a: S1,1(D)× S0,0(D)→ S0,0(D), a(ê, f) = {ê, f}, (5.7)

∇A
∗
: S1,1(D)× S1,0(D)→ S1,0(D), ∇A

∗

ê α = {ê, α}, (5.8)

∇B
∗
: S1,1(D)× S0,1(D)→ S0,1(D), ∇B

∗

ê β = {ê, β}, (5.9)

(·, ·): S1,0(D)× S0,1(D)→ S0,0(D), (α, β) = {α, β} (5.10)

(the other brackets between generators are zero, for degree reasons).

Lemma 5.4.1. The formulas (5.6)–(5.10) define a Lie algebroid structure on Ê, with representations

on A∗, B∗, and with an invariant bilinear pairing (·, ·):A∗ ×M B∗ → R.

Proof. The derivation property of the Poisson bracket shows that (5.7) is C∞(M)-linear in the first

argument and satisfies a Leibniz rule in the second argument; hence that a(ê) = a(ê, ·) comes from a

bundle map a: Ê → TM . The Jacobi identity for {·, ·} implies that (5.6) is a Lie bracket on Γ(Ê), and

the derivation property for {·, ·} shows that [[·, ·]] satisfies the Leibniz rule for the anchor map a, hence

that Ê is a Lie algebroid. Further applications of the Jacobi identity and derivation property of {·, ·}
show that ∇A∗ ,∇B∗ are representations of the Lie algebroid Ê on A∗, B∗, and that the pairing (·, ·) is

Ê-invariant.
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Remark 5.4.2. The Lie algebroid structure Ê ⇒ M , and its action on A∗, B∗ were first observed by

Gracia-Saz and Mehta, [29, Section 4.3] in terms of the VB-algebroid D′ ⇒ B; the pairing (·, ·) corre-

sponds to the ‘core-anchor’ map defined in [29]. The relevant formulas are recovered from the correspon-

dence between Poisson vector bundles and Lie algebroid structures, as reviewed in Section 5.1: Using

the identifications Γlin(D′, B) = Γ(Ê) and Γcore(D′, B) = Γ(A∗), the Lie bracket [[·, ·]]D′ is given by the

formulas

[[ê1, ê2]]D′ = {ê1, ê2} = [[ê1, ê2]], [[ê, α]]D′ = {ê, α} = ∇A
∗

ê α, [[α1, α2]]D′ = {α1, α2} = 0

while the anchor map aD′ :D
′ → TB is described by

LaD′ (ê)
f = {ê, f} = La(ê)f, LaD′ (ê)

β = {ê, β} = ∇B
∗

ê β,

LaD′ (α)f = {α, f} = 0, LaD′ (α)β = {α, β} = (α, β).

(Here f ∈ C∞(M) is viewed as a function on B, via pullback, and β ∈ Γ(B∗) is viewed as a linear

function on B.) In particular, we see that the VB-algebroid D′ ⇒ B directly determines the data

(5.6)–(5.10), and Lemma 5.4.1 recovers the ‘side and core representations’ of the ‘fat Lie algebroid Ê’,

in the terminology of [29, Section 4.3]. Similarly, we can describe the data (5.6)–(5.10) in terms of the

VB-algebroid structure D′′ ⇒ A.

The Lie algebroid representations of Ê on A∗, B∗ and the bilinear form satisfy certain compatibility

conditions. Recall from Example 5.3.3 that the pairing (·, ·):A∗ ×M B∗ → R defines a Lie algebroid

structure on A∗ ⊗B∗, with zero anchor, and that this Lie algebroid comes with natural representations

on A∗, B∗. The data for Ê must ‘extend’ these data for its subbundle iÊ(A∗ ⊗B∗):

Theorem 5.4.3. Let D be a double vector bundle. A Lie algebroid structure on the bundle Ê → M ,

together with Lie algebroid representations on A∗ and B∗ and an invariant bilinear pairing (·, ·):A∗ ×M
B∗ → R, defines a double-linear Poisson structure on D if and only if the following compatibility condi-

tions are satisfied:

(i) The image of iÊ : Γ(A∗ ⊗ B∗) ↪→ Γ(Ê) is a Lie algebra ideal (in particular, iÊ(A∗ ⊗ B∗) is a Lie

subalgebroid of Ê),

(ii) the Ê-representations on A∗, B∗ extend those of its Lie subalgebroid iÊ(A∗ ⊗B∗),

(iii) the Ê-representation on iÊ(A∗ ⊗B∗) is the tensor product of those on A∗, B∗.

Condition (i) determines a Lie algebroid structure on E, in such a way that

0→ A∗ ⊗B∗
iÊ−→ Ê → E → 0

is an exact sequence of Lie algebroids.

Proof. Throughout, we denote by α, α1 sections of A∗, by β, β1 sections of B∗, and by ê, ê1 sections of

Ê. Suppose first that a double-linear Poisson structure on D is given, determining the Lie algebroid

structure on Ê, representations on A∗, B∗, and a pairing (·, ·). On the level of sections, the inclusion iÊ
is just the multiplication map α ⊗ β 7→ αβ. Thus the compatibility conditions (i)-(iii) follow from the
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derivation property of the Poisson bracket {·, ·}. Indeed, for condition (i) we have

[[ê, iÊ(α⊗ β)]] = {ê, αβ} = {ê, α}β + α{ê, β} = iÊ({ê, α} ⊗ β + α⊗ {ê, β}),

showing that im iÊ is an ideal. To establish condition (ii), note that

∇iÊ(α⊗β)α1 = {αβ, α1} = −(α1, β)α, ∇iÊ(α⊗β)β1 = {αβ, β1} = (α, β1)β,

which shows that the representations of Ê on A∗ and B∗ extend the formulas (5.5). Finally,

[[ê, iÊ(α⊗ β)]] = {ê, αβ} = {ê, α}β + α{ê, β} = ∇êα · β + α · ∇êβ,

so the representation of Ê on iÊ(A∗ ⊗B∗) is the tensor product of the representations on A∗ and B∗.

Conversely, suppose (i),(ii),(iii) are satisfied. Recall from Proposition 2.7.3 that D is a sub-double

vector bundle of D̂ = A×M B ×M Ê∗. The formulas of Example 5.3.4 (with E replaced by Ê) define a

double-linear Poisson structure on D̂. We will show that D is a Poisson submanifold of D̂, and hence is

a Poisson double vector bundle. The ideal I ⊆ S(D̂) of double-polynomial functions vanishing on D is

generated by functions of the form

αβ − iÊ(α⊗ β) (5.11)

with α ∈ Γ(A∗), β ∈ Γ(B∗). To show that I is an ideal for the Poisson bracket, it suffices to show that

the Poisson bracket of functions (5.11) with any of the generators lies in the ideal. For ê ∈ Γ(Ê) we have

{ê, αβ − iÊ(α⊗ β)} = (∇A
∗

ê α)β − iÊ(∇A
∗

ê α⊗ β) + α∇B
∗

ê β − iÊ(α⊗∇B
∗

ê β) ∈ I, (5.12)

where we used (i) and (iii). For α1 ∈ Γ(A∗) we compute

{α1, αβ − iÊ(α⊗ β)} = α(α1, β) +∇A
∗

iÊ(α⊗β)α1 = 0, (5.13)

where we used (ii). A similar argument applies to generators β1 ∈ Γ(B∗). Finally, for f ∈ C∞(M)

{f, αβ − iÊ(α⊗ β)} = La(iÊ(α⊗β))(f) = 0 (5.14)

since a ◦ iÊ = 0 by (i).

Remark 5.4.4. Luca Vitagliano has pointed out to us that Theorem 5.4.3 can also be obtained as a

consequence of [20, Theorem 2.33].

Let us note the following consequences of the discussion above:

Proposition 5.4.5. Let D be a Poisson double vector bundle, with side bundles A,B and with E =

core(D)∗. Then

1. A×M B inherits a double-linear Poisson structure, with ϕ:D → A×M B a Poisson map.

2. The subbundle core(D) is a Poisson-Dirac submanifold of D: every smooth function on the core

extends to a smooth function on D with Hamiltonian vector field tangent to the core.

3. D̂ = A ×M B ×M Ê∗ acquires a double-linear Poisson structure, such that D ⊆ D̂ is a Poisson

submanifold.



Chapter 5. Poisson Double Vector Bundles 67

Proof. For (a), observe that the image of the pullback map ϕ∗:S(A ×M B) → S(D) is the subalgebra

generated by Γ(A∗),Γ(B∗); by the bracket relations (5.6)–(5.10) it is a Poisson subalgebra. Part (c)

is contained in the proof of Theorem 5.4.3. For (b), note that it is enough to prove the analogous

statement for D̂, since D is a Poisson submanifold and core(D) = D ∩ core(D̂). But functions on Ê∗

extend canonically to functions on D̂, by taking the pullback under D̂ → Ê∗. The vanishing ideal of

Ê∗ is generated by Γ(A∗),Γ(B∗) ⊆ C∞(D̂), and is preserved under Poisson brackets with pullbacks of

functions on Ê∗. This means that the Hamiltonian vector fields of the latter are tangent to Ê∗.

5.5 Gerstenhaber brackets

Our next aim is to interpret double-linear Poisson structures on D in terms of a ‘Gerstenhaber’ bracket

on the Weil algebra W(D), as in item (vi) of Theorem 5.2.1. We make the following definitions. Let A be

a bigraded commutative superalgebra. A bidegree (−1,−1) Gerstenhaber bracket on A is a bilinear map

[[·, ·]]:A×A →A of bidegree (−1,−1), such that A[1, 1] (i.e., the space A with bidegrees shifted down

by (1, 1)) becomes a bigraded super-Lie algebra, and for x ∈Ap,q the map [[x, ·]] is a superderivation of

bidegree (p− 1, q − 1) of the algebra structure on A: In particular

[[x, y]] = −(−1)|x||y|[[y, x]], [[x, yz]] = [[x, y]]z + (−1)|x||y|y[[x, z]].

From now on, we we will omit the explicit mention of the bidegree (−1,−1), taking the degree shifts

to be understood. (This deviates from the work of Huebschmann [35], where the degree shift is taken

to be (1, 0).) Note also that we will reserve the symbol [[·, ·]] for Gerstenhaber brackets on bigraded

superalgebras, to avoid confusion with various other Lie brackets and commutators.

Theorem 5.5.1. A double-linear Poisson structure π on a double vector bundle D is equivalent to a

Gerstenhaber bracket [[·, ·]] on the Weil algebra W(D).

Proof. First we observe that for r, s ≤ 1, the spaces Wr,s(D) coincide with Sr,s(D):

W1,1(D) = Γ(Ê), W1,0(D) = Γ(A∗), W0,1(D) = Γ(B∗), W0,0(D) = C∞(M).

A Gerstenhaber bracket on W(D) gives bilinear maps Wr,s(D)×Wr′,s′(D)→ Wr+r′−1,s+s′−1(D). The

following formulas define a Lie algebroid structure on Ê, together with representations of this Lie alge-

broid on A∗, B∗, and a bilinear pairing (·, ·) between A∗ and B∗:

[[ê1, ê2]] = [[ê1, ê2]], La(ê)(f) = [[ê, f ]], (5.15)

∇A
∗

ê α = [[ê, α]], ∇B
∗

ê β = [[ê, β]], (α, β) = −[[α, β]]. (5.16)

To see that this makes D into a Poisson DVB, we need to show that these structures satisfy properties

(i)-(iii) of theorem 5.4.3. Note that the formulas above can be obtained from (5.6)–(5.10) by replacing

Poisson brackets with Gerstenhaber brackets, except for an extra minus sign in the last formula. Since

Gerstenhaber brackets and Poisson brackets share similar properties, one can simply reproduce the

argument for the “only if”’ part of theorem 5.4.3, taking care to account for signs. As a reminder,

we note that the compatibility conditions (i)-(iii) follow from the derivation property and the Jacobi

identity for [[·, ·]].
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Conversely, given a double-linear Poisson structure π and the associated data from Theorem 5.4.3, we

obtain a Gerstenhaber bracket as follows. Consider the Poisson double vector bundle D̂ = A×MB×M Ê∗

(cf. Example 5.3.4). On the super-commutative algebra W(D̂), we define a super-biderivation [[·, ·]]
of bidegree (−1,−1), by taking (5.15) and (5.16) to be the nontrivial brackets between generators.

This super-biderivation satisfies the super-Jacobi identity, as one checks on generators. Finally, by

essentially the same argument as for the Poisson bracket on S(D), this Gerstenhaber bracket descends

to W(D) = W(D̂)/∼. In repeating the calculations (5.12) – (5.14), the second equation encounters a

minus sign since [[α1, αβ]] = −(α1, β)α in contrast to {α1, αβ} = (α1, β)α; this is compensated by the

extra sign in the last equation of (5.16).

5.6 Differentials

Suppose D is a Poisson double vector bundle. The corresponding VB-algebroid structure D′ ⇒ B (dual

to the Poisson vector bundle D → B) gives a Chevalley-Eilenberg differential dD′ on Γ(∧•BD,B). Since

dD′ commutes with the scalar multiplication κvt on D and on B, it restricts to a differential on core

and linear sections of ∧BD over B. Since dD′ is a derivation with respect to the wedge product, we see

that the core sections become a differential graded algebra, and the linear sections a differential graded

module over this differential graded algebra.

On the other hand, recall from Proposition 4.5.3 that the linear and core sections of ∧BD over B are

identified with W1,•(D′) and W0,•(D′), respectively. Hence, a bidegree (0, 1) differential on W(D′) again

restricts to differentials on the core and linear sections, making them into differential graded algebras

and differential graded modules, respectively. To prove the characterization of double-linear Poisson

structures on D in terms of differentials on W(D′), then, it suffices to show that we can reverse these

constructions.

Proposition 5.6.1. Suppose Γcore(∧•BD,B) and Γlin(∧•BD,B) are equipped with differentials d, for

which they are a differential graded algebra and differential graded module respectively. Then there are

unique extensions of d to

1. a bidegree (0, 1) differential d′v on the algebra W(D′),

2. a degree 1 differential dD′ on the algebra Γ(∧BD,B),

as superderivations for the algebra structures.

Proof. 1. By definition, W(D) is generated by elements in bidegree (i, j) with 0 ≤ i, j ≤ 1. Put

d′vx = dx whenever x is one of these generators. To show that this definition extends as a

superderivation , we have to verify that it is compatible with the relations between generators.

The defining relation of W(D′) (aside from super-commutativity and C∞(M)-linearity) is that

for β ∈ Γ(B∗) = Γlin(∧0
BD,B) and ε ∈ E∗ = Γcore(∧1BD,B), the linear section iÂ(β ⊗ ε) of

Â = Γlin(∧1
BD,B) coincides with the product βε. Thus, we need that

d(iÂ(β ⊗ ε)) = (dβ) ε− β (dε).

But the linear section iÂ(β⊗ε) is simply the product of the linear function β with the core section

ε; hence the desired identity follows from the assumption that linear sections are a differential

graded module over the core sections.
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2. The algebra of sections of ∧BD over B has a subalgebra

Γpol(∧BD,B) =
⊕
m,n≥0

Γ(∧nBD,B)[−n+m]

of polynomial sections, in the notation of Section 4.5. It is a super-commutative bigraded algebra,

with bigrading given by m,n, and with the for the Z2-grading given as the mod 2 reduction of

n. It is generated by its components in degree m,n ≤ 1, which coincide with those for W(D′),

and the relations between these generators are the same as for W(D′), with the exception that the

relation β1β2 = −β2β1 for β1, β2 ∈ Γ(B∗) gets replaced with β1β2 = β2β1. The same argument

as for W(D′) shows that d extends to a superderivation dD′ of Γpol(∧BD,B). By [29, Theorem

3.15], the latter determines a Lie algebroid structure on D′ over B, which, in turn, extends the

differential to all sections of ∧BD over B.

Remark 5.6.2. In [29], the double complex Γpol(∧BD,B) is denoted Ω•,•(D′). As explained there, it may

be regarded as the space of double-polynomial functions on the supermanifold D′[1, 0], using a parity

change only in the vertical vector bundle direction. Note also that in the notation of Cabrera-Drummond

[11], Γpol(∧•BD,B)[k−•] is the space of k-homogeneous cochains for the VB-algebroid D′ ⇒ B.

5.7 Poisson Structures on Manifold Triples

Recall from chapter 3 that for two cleanly intersecting submanifolds N1, N2 of M , we have a double

vector bundle ν(M,N1, N2). Moreover, the space of multivector fields X•(M) inherits a bifiltration for

which the bihomogeneous elements lift to multivector fields on ν(M,N1, N2) that are bihomogeneous

with respect to the scalar multiplications (see section 3.5). This allows us to furnish examples Poisson

double vector bundles by first starting with a Poisson structure on M that is compatible (in a certain

sense) with the submanifolds N1, N2, which we now show.

Proposition 5.7.1. Let (M,π) be a Poisson manifold, and let N1 and N2 be cleanly intersecting

coisotropic submanifolds of M . Then π induces a double linear Poisson structure π(0,0) on the dou-

ble vector bundle ν(M,N1, N2).

Proof. Recall that a submanifold N is said to be coisotropic if the vector field Xf := π(f, ·) is tangent

to N whenever f ∈ C∞(M) vanishes on N . Hence the fact that N1 and N2 are both coisotropic means

precisely that π ∈ X2
(0,0). By lemma 3.5.1, it induces a double linear bivector π(0,0) on ν(M,N1, N2). To

see that π(0,0) is also Poisson, note that we have

[π(0,0), π(0,0)] = [π, π](0,0) = 0,

where we have used lemma 3.5.1 (here [ , ] denotes the Schouten bracket of multi-vector fields).

Double linear Poissons structures are objects that are dual (in a certain sense) to VB-algebroids,

higher analogs of Lie algebroids that have been given much attention in the literature in recent years

(see for example, [29]). Thus in much the same way that Lie algebroids appear in the study of Poisson

manifolds, one may use the theory of VB-algebroids developed in this chapter to study situations in
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which multiple coisotropic submanifolds appear. One example of a situation where this arises is in the

coisotropic calculus of Weinstein [78], where the goal is to view coisotropic submanifolds of a product

of Poisson manifolds as generalized morphisms, and determine under what conditions one can take the

composition of two such coisotropic submanifolds.



Chapter 6

Derivations of the Weil Algebras of

Poisson DVBs

In the preceeding chapters, we have described numerous derivations on the Weil algebras for Poisson

DVBs and VB-algebroids, including contraction operators, differentials, and Gerstenhaber brackets. In

this chapter, we investigate how all of these operators interact with each other and with the pairings

between the Weil algebras. Throughout, D will denote a Poisson double vector bundle, with side bundles

A,B and with core(D)∗ = E. Equivalently, the double vector bundles D′, D′′ are VB-algebroids D′ ⇒ B,

D′′ ⇒ A, respectively. In the last chapter, we saw how these structures are equivalent to a Gerstenhaber

bracket [[·, ·]] on W(D), a vertical differential d′v on W(D′), and a horizontal differential d′′h on W(D′′).

6.1 The Differential and Contractions on W(D′)

Recall from section 4.4 that any ê ∈ Γ(Ê) defines a contraction operator ι′v(ê) of bidegree (0,−1) on

W(D′). We would like to understand what the relationship is between these contraction operators

and the differential d′h. However, we know that the isomorphisms W0,•(D′) ∼= Γcore(∧•BD,B) and

W1,•(D′) ∼= Γlin(∧•BD,B) take d′h to the Chevalley-Eilenberg differential dCE of the Lie algebroid D′ ⇒ B

(see section 5.6). Moreover, any σ ∈ Γ(D′, B) determines a contraction operator ιD′(σ) on Γ(∧BD,B) in

the usual way. Since we know how the operators dCE and ιD′(σ) interact, it will be enough to understand

the relationship between the ι′v(ê) contractions and the ιD′(σ) contractions. The following lemma can

be established with a simple check on generators.

Lemma 6.1.1. 1. The isomorphism Γ(Ê) ∼= Γlin(D′, B) identifies the contraction operators

ι′v(ê):W
p,•(D′)→Wp,•(D′)

for p = 0, 1 with the operator ιD′(ê) on Γcore(∧BD,B) (p = 0) and on Γlin(∧BD,B) (p = 1).

2. The isomorphism Γ(A∗) ∼= Γcore(D′, B) identifies the contraction operator

ι′v(α):W1,•(D′)→W0,•(D′)

with the operator ιD′(α): Γlin(∧BD,B)→ Γcore(∧BD,B).
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Combining this lemma with the classical results for the Chevalley-Eilenberg differential of a Lie

algebroid, we obtain the following explicit relationships.

Proposition 6.1.2. The derivation d′v satisfies

[ι′v(ê1), [ι′v(ê2),d′v]] = ι′v([[ê1, ê2]]), (6.1)

[ι′v(ê), [ι
′
v(α),d′v]] = −ι′v(∇A

∗

ê α), (6.2)

[ι′v(α1), [ι′v(α2),d′v]] = 0, (6.3)

for ê, ê1, ê2 ∈ Γ(Ê), α, α1, α2 ∈ Γ(A∗). Furthermore,

ι′v(ê)d
′
vf = La(ê)f, ι′v(ê)d

′
vβ = ∇B

∗

ê β, (6.4)

ι′v(α)d′vf = 0, ι′v(α)d′vβ = −(α, β), (6.5)

for all ê ∈ Γ(Ê), α ∈ Γ(A∗), f ∈ C∞(M), β ∈ Γ(B∗).

Proof. Since (6.1)–(6.3) are equalities of derivations, it suffices to check on W0,•(D′),W1,•(D′). Since

the identifications of these spaces with core and linear sections of ∧BD takes ι′v,d
′
v to the contractions

and Lie algebroid differential of Γ(∧BD,B), and since the right hand sides can be expressed in terms

of Lie algebroid brackets (see Remark 5.4.2), the three equalities (6.1)–(6.3) correspond to the formula

(5.3) for the bracket of Lie algebroids. Similarly, (6.4), (6.5) correspond to the formula (5.2) for the

anchor of a Lie algebroid.

6.2 The Gerstenhaber Bracket and the Differentials

The Gerstenhaber bracket on W(D) restricts to a bracket on W1,1+•(D), making the latter into a graded

Lie algebra with a representation x 7→ [[x, ·]] on W0,•(D) = Γ(∧B∗). Likewise, W1+•,1(D) is a graded

Lie algebra with a representation on W•,0(D) = Γ(∧A∗) by graded superderivations x 7→ [[x, ·]]. The

next proposition gives a way of obtaining these representations through the contraction operators and

the differentials.

Proposition 6.2.1. For x ∈W1,•(D) and y ∈W0,•(D) = Γ(∧B∗) = W•,0(D′),

ι′v(x)d′vy = [[x, y]]. (6.6)

Similarly, for x ∈W1,•(D) and y ∈W0,•(D) = Γ(∧B∗) = W•,0(D′),

ι′′h(x)d′′hy = [[x, y]]. (6.7)

Proof. For x ∈ W1,q(D), both [[x, ·]] and [ι′v(x),d′v] define superderivations of degree q − 1 on Γ(∧B∗).
Since ι′v(x) vanishes on W•,0(D′), Equation (6.6) amounts to the equality of these two superderivations.

It suffices to verify this on generators y of Γ(∧B∗), given by f ∈ C∞(M) or β ∈ Γ(B∗). Furthermore,

since ι′v is a left Γ(∧B∗)-module morphism, we only need to consider the cases that x is a generator of
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W1,•(D), given by α ∈ Γ(A∗) or ê ∈ Γ(Ê). These verifications are as follows, using (6.5):

[[α, f ]] = 0 = ι′v(α)d′vf, [[α, β]] = −(α, β) = ι′v(α)d′vβ,

[[ê, f ]] = La(ê)f = ι′v(ê)d
′
vf, [[ê, β]] = ∇B

∗

ê β = ι′v(ê)d
′
vβ.

Equation (6.7) may be proved along similar lines, or obtained from (6.6) by using the flip operation.

Note that (6.6) can be written in various other ways:

[[x, y]] = −(−1)(|x|+1)|y|〈d′vy, x〉B∗ = −(−1)(|x|+1)|y|ιh(d′vy)x. (6.8)

Another natural thing to ask is what happens when you contract by the bracket of two elements.

This question is answered below.

Proposition 6.2.2. For x1, x2 ∈W1,•(D),

[ι′v(x1), [ι′v(x2),d′v]] = (−1)|x2|ι′v([[x1, x2]]) (6.9)

For x1, x2 ∈W•,1(D),

[ι′′h(x1), [ι′′h(x2),d′′h]] = (−1)|x2|ι′′h([[x1, x2]]). (6.10)

Proof. Equation (6.9) holds for xi = êi ∈ Γ(Ê) by (6.1) and for x1 = ê ∈ Γ(Ê), x2 = α ∈ Γ(A∗) by

(6.2). Since both sides change sign by (−1)(|x1|+1)(|x2|+1) under interchange of x1, x2, this establishes

the identity for generators. The general case follows by induction: the statement for x1, x2 implies that

for x1, βx2 with β ∈ Γ(B∗), as follows:

[ι′v(x1), [ι′v(β x2),d′v]] = [ι′v(x1), β[ι′v(x2),d′v] + (−1)|x2|+1(d′vβ) ι′v(x2)]

= (−1)|x1|+1β[ι′v(x1), [ι′v(x2),d′v]] + (−1)|x2|+1(ι′v(x1)d′vβ) ι′v(x2)

= (−1)|x1|+|x2|+1ι′v(β[[x1, x2]]) + (−1)|x2|+1ι′v([[x1, β]]x2)

= (−1)|x2|+1ι′v[[x1, βx2]].

The arguments for d′′h, ι
′′
h(x) are analogous; alternatively, one can use the flip operation.

For later reference, observe the following consequence of Proposition 6.2.2.

Corollary 6.2.3. For φ ∈W1,•(D′′), and xi ∈W•,1(D),

(−1)|x2|ι′′h(x1)ι′′h(x2)d′′hφ = ι′′h([[x1, x2]])φ− [[x1, ι
′′
h(x2)φ]] + (−1)|x1||x2|[[x2, ιh(x1)φ]].

Proof. The left hand side (−1)|x2|ι′′h(x1)ι′′h(x2)d′′hφ may be written as a sum of three terms,

(−1)|x2|[ι′′h(x1), [ι′′h(x2),d′′h]]φ− ι′′h(x1) d′′h ι
′′
h(x2)φ+ (−1)|x1| |x2|ι′′h(x2) d′′h ι

′′
h(x1)φ.

By Proposition 6.2.2, the first term is ι′′h([[x1, x2]])φ. For the second term, note that ι′′h(x2)φ ∈W0,•(D′′) =

Γ(∧A∗). But on sections of ∧A∗, the composition ι′′h(x1) ◦ d′′h acts as [[x1, ·]], again using Proposition

6.2.2. Hence, the second term is −[[x1, ι
′′
h(x2)φ]]. The third term is dealt with similarly.
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6.3 Interaction Between the Differentials

The differential d′v on W(D′) restricts to a differential on

W1,•(D′) = Γlin(∧•BD,B) ≡ Γlin(∧•B(D′)v, B).

On the other hand, we also have the horizontal differential on

W•,1(D′′) = Γlin(∧AD,A) ≡ Γlin(∧•A(D′′)h, A)

coming from the horizontal VB-algebroid structure D′′ ⇒ A under the identification of D with the flip

of the horizontal dual (D′′)h, it is again the restriction of the Chevalley-Eilenberg differential. In other

words, it is the space CE•VB(D′′) in the notation of [?]. The Lie algebroid differential d on Γ(∧E∗) may be

interpreted as d′v on W0,•(D′) or as d′′h on W•,0(D′′), and both W1,•(D′) and W•,1(D′′) are differential

graded modules over this algebra. Understanding the relationship between these various differentials

will pave the way for our study of double Lie algebroids in the next chapter.

Proposition 6.3.1. The ∧E∗-valued pairing 〈·, ·〉E∗ (cf. (4.3)) satisfies

d〈x, y〉E∗ = 〈d′′hx, y〉E∗ + (−1)|x|+1〈x, d′vy〉E∗ ,

for all x ∈Wp,1(D′′) and y ∈W1,q(D′). Here |x|= p+ 1.

Before proving the proposition, recall that for any Poisson manifold (Q, π), the Schouten bracket

defines a degree 1 differential on the graded algebra X•(Q) of multi-vector fields on Q:

[[π, ·]]:Xp(Q)→ Xp+1(Q).

If Q = V is a Poisson vector bundle, thus π is homogeneous of degree −1, then this differential preserves

the graded subalgebra X•core(V ) of core multi-vector fields, as well as the module X•lin(V ) of linear multi-

vector fields. It is well-known that the identification X•core(V ) = Γ(∧•V ) intertwines the differential [[π, ·]]
with the Lie algebroid differential for V ∗ ⇒M .

Proof of Proposition 6.3.1. As explained in Section 4.6,

Xq(D)[−q,1−q] ∼= W1,q(D′), Xp(D)[1−p,−p] ∼= Wp,1(D′′), Xn(D)[−n,−n]
∼= Γ(∧nE∗).

By a check on generators, one finds that the differential d′v is realized as −[[π, ·]], while d′′h, d are realized

as [[π, ·]]. Furthermore, according to Proposition 4.6.1 the pairing between x ∈ Xp(D)[1−p,−p] and y ∈
Xq(D)[−q,1−q] is expressed in terms of the Schouten bracket as 〈x, y〉E∗ = [[x, y]]. The proposition thus

translates into the Jacobi identity

[[π, [[x, y]]]] = [[[[π, x]], y]] + (−1)|x|[[x, [[π, y]]]].

A consequence of Proposition 6.3.1 is the following result about contraction operators.
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Proposition 6.3.2. For x ∈Wp,1(D′′), we have the following equality of superderivations of W(D′),

[d′v, ι
′
h(x)] = ι′h(d′′hx). (6.11)

Similarly, for y ∈W1,q(D′) we have the equality of superderivations of W(D′′),

[d′′h, ι
′′
v(y)] = ι′′v(d′vy). (6.12)

Proof. Both sides of (6.11) are superderivations of bidegree (−1, p). Hence, they both vanish on

W 0,•(D′). On sections y ∈W1,q(D′), the identity becomes

d′vι
′
h(x)y + (−1)|x|ι′h(x)d′vy = ι′h(d′′hx)y.

After expressing the horizontal contractions in terms of the pairing 〈·, ·〉E∗ , this identity reads as

d〈x, y〉E∗ + (−1)|x|〈x, d′vy〉E∗ = 〈d′′hx, y〉E∗ .

which is just the statement of Proposition 6.3.1. Similarly, the two sides of (6.12) are superderivations

of bidegree (q,−1). Applying both sides to x ∈Wp,1(D′′), the identity becomes

d′′hι
′′
v(y)x+ (−1)|y|ι′′v(y)d′′hx = ι′′v(d′vy)x,

which may be written

(−1)(|x|+1)(|y|+1)d〈x, y〉E∗ + (−1)|y|(−1)|x|(|y|+1)〈d′′hx, y〉E∗ = (−1)(|x|+1)|y|〈x, d′vy〉E∗ .

After multiplying by the sign (−1)(|x|+1)(|y|+1), this becomes

d〈x, y〉E∗ − 〈d′′hx, y〉E∗ = (−1)|x|+1〈x, d′vy〉E∗

which again is a reformulation of Proposition 6.3.1.
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Double Lie Algebroids

7.1 Definition and Basic Properties

The concept of a double Lie algebroid was introduced by Mackenzie in [55, 51, 54], as the infinitesimal

counterpart to double Lie groupoids. It is given by a double vector bundle with compatible horizontal

and vertical VB-algebroid structures

D +3

��

B

��
A +3 M

(7.1)

To formulate the compatibility condition, recall that a vertical VB-algebroid structure makes D′′ into a

Poisson double vector bundle; hence D′ becomes a VB-algebroid horizontally,

D′ +3

��

E

��

B +3 M

Similarly, a horizontal VB-algebroid structure on D makes D′ into a double Poisson vector bundle, and

hence D′′ becomes a VB-algebroid vertically,

D′′ //

��

A

��
E // M

The compatibility condition is that the two Lie algebroids D′ ⇒ E and D′′ ⇒ E, with their natural

duality pairing, form a Lie bialgebroid, as defined by Mackenzie-Xu [57]. In the formulation of Kosmann-

Schwarzbach [39], this means that the Chevalley-Eilenberg differential dCE on Γ(∧ED′, E), defined by

the identification of D′ → E with the dual of the Lie algebroid D′′ ⇒ E, is a derivation of the Schouten

bracket [[·, ·]] for the Lie algebroid D′ ⇒ E:

dCE [[λ1, λ2]] = [[dCEλ1, λ2]] + (−1)n1−1[[λ1,dCEλ2]], (7.2)
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for λi ∈ Γ(∧niE D′, E), i = 1, 2.

Examples 7.1.1. 1. Mackenzie arrived at the definition of a double Lie algebroid by applying the

Lie functor to an LA-groupoid. For instance, any Poisson Lie groupoid G ⇒ M [57], with Lie

algebroid A ⇒ M , gives rise to a double Lie algebroid structure on T ∗A, by applying the Lie

functor to its cotangent Lie algebroid T ∗G⇒ A∗. Similarly, for a double Lie groupoid [5, 51, 54],

applying the Lie functor twice produces a double Lie algebroid.

2. The tangent bundle of a Lie algebroid V ⇒M is a double Lie algebroid [55, Example 4.6]

TV +3

��

TM

��
V +3 M

One may regard TV as being obtained by applying the Lie functor to the LA-groupoid V ×V ⇒ V

(the pair groupoid of V ).

3. Matched pairs of Lie algebroids, due to Lu [49] and Mokri [67], are a generalization of a matched

pair of Lie algebras [60] (also known as double Lie algebras [50] or twilled extensions [40]). Two

Lie algebroids A⇒M, B ⇒M , with actions of A on B and of B on A, are a matched pair if the

brackets and actions define a Lie algebroid structure on the direct sum A ⊕ B ⇒ M . Mackenzie

[55] proved that matched pairs of Lie algebroids are equivalent to vacant double Lie algebroids

D = A×M B +3

��

B

��
A +3 M

i.e. such that core(D) = 0.

7.2 Weil Algebra of a Double Lie Algebroid

The following theorem gives equivalent formulations of Mackenzie’s definition of a double Lie algebroid

in terms of the Weil algebras of the three double vector bundles D,D′, D′′.

Theorem 7.2.1. Let D be a double vector bundle. The following are equivalent:

1. A double Lie algebroid structure on D;

2. a Gerstenhaber bracket on the bigraded superalgebra W(D′), together with a differential d′h of

bidegree (1, 0) that is a derivation of the Gerstenhaber bracket;

3. a Gerstenhaber bracket on the bigraded superalgebra W(D′′), together with a differential d′′v of

bidegree (0, 1) that is a derivation of the Gerstenhaber bracket;

4. commuting differentials dh,dv on W(D), of bidegrees (1, 0) and (0, 1), respectively,

We will break up the proof into several steps. Consider first equivalence (a) ⇔ (c).
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Lemma 7.2.2. A double Lie algebroid structure on D is equivalent to a Gerstenhaber bracket on W(D′′),

together with a differential d′′v of bidegree (0, 1) that is a derivation of the Gerstenhaber bracket.

Proof. As discussed in Section 4.5, there are canonical identifications

W0,•(D′′) ∼= Γcore(∧•ED′, E), W1,•(D′′) ∼= Γlin(∧•ED′, E).

These spaces generate W(D′′) as an algebra, and also Γ(∧ED′, E) as a module over C∞(M). Further-

more, by definition, the restriction of the Gerstenhaber bracket on W(D′′) to these spaces agrees with

the Lie algebroid bracket for D′ ⇒ E, while the differential d′′v coincides with the Chevalley-Eilenberg

differential for D′′ ⇒ E. Hence, d′′v being a derivation of the Gerstenhaber bracket amounts to the

defining compatibility condition of a double Lie algebroid.

Theorem 5.2.1 shows that for a horizontal VB-algebroid structure D ⇒ B on a double vector bundle

D is equivalent to a vertical differential dv on W(D), and also to a horizontal differential d′h on W(D′).

By Proposition 6.3.2, these are related by

dvy = d′hy, [dv, ιh(x)] = ιh(d′hx), (7.3)

for all y ∈ Γ(∧•B∗) and all x ∈W•,1(D′). (The first identity uses that both W0,•(D) and W •,0(D′) are

identified with sections of ∧B∗.) On the other hand, using Theorem 5.2.1 again, a vertical VB-algebroid

structure D ⇒ A is equivalent to a horizontal differential dh on W(D), and also to a Gerstenhaber

bracket [[·, ·]] on W(D′). According to Propositions 6.2.1 and 6.2.2, these are related by

ιh(x) dhy = [[x, y]], [ιh(x1), [ιh(x2),dh]] = (−1)|x2|ιh([[x1, x2]]), (7.4)

for all y ∈ Γ(∧•B∗) and all x, x1, x2 ∈W•,1(D′). Consider now the situation that both a horizontal and

a vertical VB-algebroid structure are given.

Lemma 7.2.3. Given a horizontal VB-algebroid structure D ⇒ B and a vertical VB-algebroid structure

D ⇒ A, the super-commutator [dh,dv] satisfies

ιh(x)[dh, dv]y = (−1)|x|+1(d′h[[x, y]]− [[d′hx, y]]− (−1)|x|[[x,d′hy]]) (7.5)

for x ∈W•,1(D′) and y ∈ Γ(∧•B∗), as well as

[ιh(x1), [ιh(x2), [dh,dv]]] = (−1)|x1|ιh(d′h[[x1, x2]]− [[d′hx1, x2]]− (−1)|x1| [[x1,d
′
hx2]]) (7.6)

for x1, x2 ∈W•,1(D′).

Proof. The two identities follow from the calculations, using (7.3) and (7.4),

ιh(x)[dh,dv]y = ιh(x)dhdv y + ιh(x)dvdhy

= [[x, dvy]] + (−1)|x|[dv, ιh(x)]dhy − (−1)|x|dvιh(x)dhy

= [[x, d′hy]] + (−1)|x|ιh(d′hx)dhy − (−1)|x|d′h[[x, y]]

= (−1)|x|+1(d′h[[x, y]]− [[d′hx, y]]− (−1)|x|[[x, d′hy]])
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and

ιh(d′h[[x1, x2]]) = [dv, ιh([[x1, x2]])]

= (−1)|x2|[dv, [ιh(x1), [ιh(x2),dh]]]

= (−1)|x2|[[dv, ιh(x1)], [ιh(x2),dh]]− (−1)|x1|+|x2|[ιh(x1), [[dv, ιh(x2)],dh]]

+ (−1)|x1|[ιh(x1), [ιh(x2), [dv,dh]]]

= (−1)|x2|[ιh(d′hx1), [ιh(x2),dh]]− (−1)|x1|+|x2|[ιh(x1), [ιh(d′hx2),dh]]

+ (−1)|x1|[ιh(x1), [ιh(x2), [dv,dh]]]

= ιh([[d′hx1, x2]]) + (−1)|x1|ιh([[x1,d
′
hx2]]) + (−1)|x1|[ιh(x1), [ιh(x2), [dv,dh]]].

We now have all the tools we need to establish Theorem 7.2.1:

Proof of Theorem 7.2.1. The equivalence (a) ⇔ (c) was already established in Lemma 7.2.3. Consider

now the implication (b)⇒ (d). Using (7.5) and (7.6), we see that if d′h is a derivation of the Gerstenhaber

bracket, then

ιh(x)[dh,dv]y = 0, [ιh(x1), [ιh(x2), [dh,dv]]] = 0

for all x, x1, x2 ∈ W•,1(D′) and y ∈ Γ(∧•B∗) = W•,0(D′). The first equation shows that [dh,dv]y = 0,

so that [dh,dv] vanishes on W•,0(D′). Using the second equation, and induction on q, it then follows

that [dh,dv] vanishes on all W•,q(D′), hence that dh,dv super-commute. For the reverse implication (d)

⇒ (b), suppose [dh,dv] = 0. Equations (7.5) and (7.6) tell us that

d′h[[x, y]]− [[d′hx, y]]− (−1)|x|[[x, d′hy]] = 0, d′h[[x1, x2]]− [[d′hx1, x2]]− (−1)|x1| [[x1,d
′
hx2]] = 0

for all x, x1, x2 ∈ W•,1(D′) and y ∈ W•,0(D′). This means that d′h acts as a derivation of the Gersten-

haber bracket on generators, and hence in general. We have thus shown (b) ⇔ (d). The equivalence (c)

⇔ (d) follows by applying a flip, which interchanges the horizontal and vertical structures.

7.3 The Core of a Double Lie Algebroid

It was pointed out in [55, Section 4] that for any double Lie algebroid D, the core E∗ acquires the

structure of a Lie algebroid. This fact may be seen as a consequence of the fact that the base of any Lie

bialgebroid is Poisson [57, Proposition 3.6]. It may also be obtained using the Weil algebras, as follows.

Recall that W(D′) has a vertical differential and W(D′′) a horizontal differential, which are derivations

of the Gerstenhaber brackets on these algebras.

Proposition 7.3.1. The core E∗ of a double Lie algebroid D has a Lie algebroid structure, with bracket

given in terms of the identification Γ(∧E∗) = W•,0(D′′) by

[[ε1, ε2]] = [[ε1,d
′′
vε2]], La(ε)(f) = [[ε,d′′vf ]],
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or in terms of the identification Γ(∧E∗) = W0,•(D′) by

[[ε1, ε2]] = −[[ε1,d
′
hε2]], La(ε)(f) = −[[ε,d′hf ]].

Proof. Note that [[ε1,d
′′
vε2]] = [[d′′vε1, ε2]], which implies skew-symmetry of the bracket [[·, ·]]. The Jacobi

identity for [[·, ·]] follows from that for the Gerstenhaber bracket:

[[ε1, [[ε2, ε3]]]] = [[ε1,d
′′
v [[ε2,d

′′
vε3]]]] = [[ε1, [[d

′′
vε2,d

′′
vε3]]]]

= [[[[ε1,d
′′
vε2]],d′′vε3]] + [[d′′vε2, [[ε1,d

′′
vε3]]]] = [[[[ε1, ε2]], ε3]] + [[ε2, [[ε1, ε3]]]].

Furthermore, if f ∈ C∞(M),

[[ε1,d
′′
v(fε2)]] = f [[ε1,d

′′
vε2]] + [[ε1,d

′′
vf ]]ε2,

so that La(ε)(f) = [[ε, d′′vf ]] defines an anchor map for this bracket. The expression of the Lie algebroid

structure in terms of D′ follows from

[[d′′vε1, ε2]] = ι′h(d′′vε1)d′hε2 = 〈d′′vε1, d′hε2〉E∗ = ι′′v(d′hε2)d′′vε1 = [[d′hε2, ε1]] = −[[ε1,d
′
hε2]].

The Lie algebroid bracket [[ε1, ε2]] = [[ε1,d
′′
vε2]] on Γ(E∗) extends to a Schouten bracket on Γ(∧E∗),

by

[[λ1, λ2]] = [[λ1,d
′′
vλ2]].



Chapter 8

Example: Tangent Prolongation of a

Vector Bundle

We will now illustrate the constructions presented in this thesis by taking a close look at the main

example of a double Lie algebroid, the tangent bundle of a Lie algebroid. Since the earlier chapters

require only a double vector bundle (and not a double Lie algebroid), we will start with a vector bundle

V →M . The two DVBs we will be considering in this chapter are those of example 2.22:

TV //

��

TM

��

V // M

T ∗V //

��

V ∗

��

V // M.

In this context, we will encounter the jet bundle J1(V ) and the Atiyah algebroid At(V ) (often denoted

by D(V ), or similar). For σ ∈ Γ(V ), we denote by j1(σ) ∈ Γ(J1(V )) its jet prolongation. As a reminder,

the fibers J1(V )m of the jet bundle consist of equivalence classes of sections of V , where two sections are

equivalent if their values at m as well as their derivatives at m coincide. Given a section σ, we denote

by j1(σ)m its equivalence class, and one obtains the jet prolongation j1(σ) ∈ Γ(J1(V )) by allowing m

to vary. The jet bundle comes with a quotient map J1(V ) → V taking sections of the form fj1(σ) to

fσ; this defines a short exact sequence

0→ T ∗M ⊗ V
iJ1(V )−→ J1(V )→ V → 0 (8.1)

with iJ1(V )(df ⊗ σ) = j1(fσ) − fj1(σ). On the other hand, the Atiyah algebroid comes with a short

exact sequence

0→ V ⊗ V ∗
iAt(V )−→ At(V )

a−→ TM → 0 (8.2)

where a is the anchor. We shall find it convenient to use the identification Γ(At(V )) ∼= Xlin(V )

(cf. (2.21)) to interpret sections δ of the Atiyah algebroid in terms of the corresponding linear vector field

ã(δ) on V ; its restriction to the zero section is a(δ). From this perspective, ã(iAt(V )(σ⊗τ)) = φτσ
], where

φτ ∈ C∞(V ) is the linear function defined by τ ∈ Γ(V ∗), and σ] ∈ X(V )[−1] denotes the vertical lift of

σ ∈ Γ(V ) (see A.2). The representation of At(V ) on V is given by the Lie bracket, (∇δσ)] = [[ã(δ), σ]]],
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and the dual representation ∇∗ on V ∗, defined as

La(δ)〈τ, σ〉 = 〈τ,∇δσ〉+ 〈∇∗δτ, σ〉, (8.3)

is realized by the Lie derivative of ã(δ) on linear functions, φτ 7→ L̃a(δ)φτ .

Throughout this chapter we will use several operations that lift geometric objects on V to objects on

TV and T ∗V , namely the vertical, tangent, and cotangent lifts of functions, vector fields, and sections.

We have included a review of all of these processes in section A.2. As a quick notation reference, the

superscript ] denotes a vertical lift, the subscript T denotes a tangent lift, and the subscript T ∗ denotes

a cotangent lift.

8.1 DVB Sequences of TV and T ∗V

For D = TV we have A = V, B = TM, E = V ∗. One finds that

Â = J1(V ), B̂ = At(V ), Ê = J1(V ∗). (8.4)

In terms of Γ(Â) ∼= X(D)[−1,0], Γ(B̂) ∼= X(D)[0,−1], Γ(Ê) ∼= C∞(D)[1,1], these identifications are given

by

j1(σ) 7→ (σ])T , δ 7→ ã(δ)], j1(τ) 7→ (φτ )T .

Using (2.23) and (2.24), we obtain the three inclusions

iÊ(τ ⊗ df) = iJ1(V ∗)(df ⊗ τ), iÂ(df ⊗ σ) = iJ1(V )(df ⊗ σ), iB̂(σ ⊗ τ) = iAt(V )(σ ⊗ τ)

and the three pairings

〈δ, j1(σ)〉V = ∇δσ, 〈j1(τ), δ〉V ∗ = −∇∗δτ, 〈j1(σ), j1(τ)〉T∗M = d〈τ, σ〉

for σ ∈ Γ(V ), τ ∈ Γ(V ∗), δ ∈ Γ(At(V )). As a sample computation, note that (2.23) gives

iÊ(τ ⊗ df) = (φτ )]fT = (fφτ )T − f ](φτ )T ,

which lies in C∞(TV )[1,1]. This coincides with the image of iJ1(V ∗)(df⊗τ) = j1(fτ)−fj1(τ). The exact

sequences (2.13) are just the standard exact sequences for the jet bundles and the Atiyah algebroid.

Remark 8.1.1. The E∗ = V -valued pairing between Â = J1(V ) and B̂ = At(V ) was observed by

Chen-Liu in [12, Section 2].

Let us also note that by Remark 2.7.6, a splitting of D = TV is equivalent to a splitting of any one

of the exact sequences for J1(V ∗), J1(V ) or At(V ); in turn, these are equivalent to a linear connection

on the vector bundle V .

Now let us turn to the cotangent bundle T ∗V of V . We stress again that we will be using the

notation described in secion A.2, in particular, { , } denotes the canonical Poisson bracket on the

cotangent bundle. For D = T ∗V , we have that A = V, B = V ∗, E = TM with

Â = J1(V ), B̂ = J1(V ∗), Ê = At(V ).
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In terms of the identifications of their spaces of sections with X(D)[−1,0], X(D)[0,−1], C
∞(D)[1,1], these

isomorphisms are given by

j1(σ) 7→ {φσ] , ·}, j1(τ) 7→ {(φτ )], ·}, δ 7→ φδ.

Using (2.23) and (2.24), we find that the three pairings are the same as for TV (with the order of

the two entries interchanged), while each of the three inclusion maps changes sign. This is consistent

with T ∗V = flip(TV )−, see Proposition 2.8.2. The three exact sequences (2.13) are the standard exact

sequences for the jet bundles and the Atiyah algebroid, up to a sign change of the three inclusion maps.

8.2 The Weil Algebras W(TV ) and W(T ∗V )

Using the DVB sequences computed above, we now describe the Weil algebras of the tangent and

cotangent prolongations. First consider D = TV , so that A = V, B = TM, C = V ∗. The Weil algebra

W(TV ) is generated by functions f ∈ C∞(M) (bidegree (0, 0)) and their de Rham differentials df

(bidegree (0, 1)), together with sections τ ∈ Γ(V ∗) (bidegree (1, 0)) and their 1-jets j1(τ) ∈ Γ(J1(V ∗))

(bidegree (1, 1)), subject to relations of C∞(M)-linearity and the relation that

τ df = j1(fτ)− fj1(τ).

Here we used that iÊ(τ ⊗ df) = iJ1(V ∗)(τ ⊗ df). The contraction operators are computed from the

pairings (see the proof of theorem 4.4.1):

ιh(j1(σ)): df 7→ 0 τ 7→ 〈τ, σ〉, j1(τ) 7→ −d〈τ, σ〉,

ιv(δ): df 7→ La(δ)f, τ 7→ 0, j1(τ) 7→ ∇∗δτ,

ι(σ): df 7→ 0, τ 7→ 0, j1(τ) 7→ −〈τ, σ〉.

As per section 4.5, W(TV ) may also be described in terms of linear and core multivector fields on

V . The core n-vector fields Xncore(V ) ≡ Γcore(∧nV TV, V ) are the sections of ∧nV , regarded as vertical

‘fiberwise constant’ multi-vector fields on V :

Xncore(V ) = Γ(∧nV ).

The linear n-vector fields Xnlin(V ) = Γlin(∧nV TV, V ) may be defined by their property that the evaluation

on linear 1-forms on V is a linear function on V [24]. The short exact sequence (4.15) specializes to

0→ Γ(∧nV ⊗ V ∗)→ Xnlin(V )→ Γ(∧n−1V ⊗ TM)→ 0; (8.5)

here the inclusion of Γ(∧nV ⊗ V ∗) is as the subspace of linear n-vector fields on V that are tangent to

the fibers of V →M . In local vector bundle coordinates, with xi the coordinates on the base and yj the

coordinates on the fiber, the linear n-vector fields on V are of the form

∑
ajj1···jn(x) yj

∂

∂yj1
∧ · · · ∧ ∂

∂yjn
+
∑

bi j1···jn−1(x)
∂

∂yj1
∧ · · · ∧ ∂

∂yjn−1

∧ ∂

∂xi
.
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The Schouten bracket of multi-vector fields defines a graded Lie algebra structure on X•lin(V )[1], with a

representation on X•core(V ) = Γ(∧•V ). These are the multi-differentials in the work of Iglesias-Ponte,

Laurent-Gengoux, and Xu [36].

For the case D = T ∗V , so that A = V, B = V ∗, C = TM . the Weil algebra W(T ∗V ) is generated

by functions f ∈ C∞(M) (bidegree (0, 0)), sections σ ∈ Γ(V ) (bidegree (0, 1)), sections τ ∈ Γ(V ∗)

(bidegree (1, 0)), and infinitesimal automorphisms δ ∈ Γ(At(V )) (bidegree (1, 1)), subject to relations of

C∞(M)-linearity and the relation that the product τσ in the Weil algebra, for τ ∈ Γ(V ∗) and σ ∈ Γ(V ),

equals the section iÊ(τ ⊗ σ) = −iAt(V )(σ ⊗ τ) = −φτ σ] ∈ Γ(At(V )). Again, the various contraction

operators may be computed from the pairings.

ιh(j1(σ)): σ 7→ 0 τ 7→ 〈τ, σ〉, δ 7→ ∇δσ,

ιv(j
1τ): σ 7→ −〈τ, σ〉, τ 7→ 0, δ 7→ −∇∗δτ,

ι(df): σ 7→ 0, τ 7→ 0, δ 7→ −La(δ)f.

We now relate the Weil algebra W(T ∗V ) to linear and core differential forms on V . The space

Ωncore(V ) = Γcore(∧nV T ∗V, V ) is just Ωn(M), viewed as the space of basic n-forms on V via pullback.

The space

Γlin(∧nV T ∗V, V ) = Ωnlin(V )

of linear n-forms on V consists of n-forms α with κ∗tα = tα where κt is scalar multiplication by t on

V . (Note that the homogeneity of n-forms on V relative to pullback κ∗t is not the same as homogeneity

as sections of ∧nV T ∗V over V .) In local bundle bundle coordinates, with xi the coordinates on the base

and yj the coordinates on the fiber, the 1-forms dxi, seen as local sections of ∧•V T ∗V , have homogeneity

degree −1 while the dyj have homogeneity 0. A general linear n-form is locally given by an expression∑
aj i1···in−1

(x) dxi1 ∧ · · · ∧ dxin−1
∧ dyj +

∑
bj i1···in(x)yjdxi1 ∧ · · · ∧ dxin .

The short exact sequence (4.15) becomes

0→ Γ(∧nT ∗M ⊗ V ∗)→ Ωnlin(V )→ Γ(∧n−1T ∗M ⊗ V ∗)→ 0; (8.6)

here the inclusion of Γ(∧nT ∗M ⊗ V ∗) is as the space of linear n-forms on V that are horizontal for

the projection to M , while the projection to Γ(∧n−1T ∗M ⊗ V ∗) is given by contraction with sections

of V (regarded as the space Xcore(V ) of fiberwise constant vector fields on V ). The exact sequence

(8.6) has a canonical splitting [6]: every element of Ωnlin(V ) decomposes uniquely as ν + dµ where

ν ∈ Γ(∧nT ∗M ⊗ V ∗) and µ ∈ Γ(∧n−1T ∗M ⊗ V ∗). Using the Mackenzie-Xu isomorphism (2.12) we

obtain a similar interpretation

Γlin(∧qV ∗T
∗V, V ∗) = Ωqlin(V ∗).

Equation (4.17) defines an Ω(M)-bilinear pairing

〈·, ·〉T∗M : Ωplin(V )× Ωqlin(V ∗)→ Ωp+q−1(M), (8.7)
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(using the right Ω(M)-module structure in the second argument), given in low degrees by

〈φτ , φσ〉T∗M = 0, 〈φτ ,dφσ〉T∗M = −〈dφτ , φσ〉T∗M = 〈τ, σ〉, 〈dφτ ,dφσ〉T∗M = d〈τ, σ〉

for τ ∈ Γ(V ∗), σ ∈ Γ(V ) (with φτ , φσ the corresponding linear functions).

8.3 The Double-Linear Poisson Structure on T ∗V

The canonical Poisson structure on T ∗V is compatible with the vector bundle structure on V in the

sense that it determines a double linear Poisson structure ∗V as a double vector bundle. This in turn

determines a VB-algebroid structure TV ⇒ V , and in particular a vertical differential dv on the Weil

algebra W(TV ). This differential is given on the generators by

dv(f) = df, dv(df) = 0, dv(τ) = −j1(τ), dv(j
1(τ)) = 0.

On W0,•(TV ) = Γ(∧T ∗M), it agrees with the de Rham differential; on W1,•(TV ) = Γlin(∧V T ∗V, V ) it

is the restriction of the de Rham differential to linear forms. For example, we may verify that

ιv(δ)dvτ = −∇∗δτ = −〈j1(τ), δ〉V ∗ = −ιv(δ)j1(τ)

as required; similarly ιv(δ)dvf = La(δ)f = −〈df, δ〉V ∗ = ιv(δ)df .

On the other hand, the Gerstenhaber bracket on W(T ∗V ) is easily obtained from the Poisson bracket

(see the proof of theorem 5.5.1):

[[τ, σ]] = 〈τ, σ〉, [[δ, σ]] = ∇δσ, [[δ, τ ]] = ∇∗δτ, [[δ, f ]] = La(δ)f, [[δ1, δ2]] = [[δ1, δ2]].

The first equality follows from {τ, φσ]} = −Lσ]τ = −〈τ, σ〉, the second from {φã(δ), φσ]} = φ[̃a(δ),σ]] =

φ(∇δσ)] , and so on.

8.4 Application to Lie algebroids

Now suppose that the vector bundle V →M carries the structure of a Lie algebroid, V ⇒M . Then we

obtain VB-algebroid structures TV ⇒ TM and T ∗V ⇒ V ∗, as well as a Poisson structure on TV ∗, to

be described below. Let us discuss the resulting structures on the Weil algebras.

The VB-algebroid TV ⇒ TM is the tangent prolongation of the Lie algebroid V ⇒ M [14, 57]: its

anchor is the tangent map to the anchor of V composed with the canonical involution of TTM , and the

Lie bracket is such that the tangent lift Γ(V,M) → Γ(TV, TM), σ 7→ Tσ is bracket preserving. The

resulting Lie algebroid structure on Â = J1(V ) is the jet prolongation of the Lie algebroid; the bracket

is uniquely characterized by [[j1(σ1), j1(σ2)]] = j1([[σ1, σ2]]), and its representations on B = TM and on

E∗ = V are given by

∇TMj1(σ)µ = La(σ)µ, ∇Vj1(σ1)σ2 = [[σ1, σ2]]

for µ ∈ Ω1(M), σ, σ1, σ2 ∈ Γ(V ). See [15] for a detailed discussion. The invariant bilinear pairing

(·, ·):B∗ ×M E∗ → R is given by the anchor a:V → TM . The resulting horizontal differential dh on
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the Weil algebra W(TV ) is uniquely determined by its properties that dh agrees with the Lie algebroid

differential dCE on W•,0(TV ) = Γ(∧V ∗) and satisfies [dh,dv] = 0, where dv was described above.

Now consider the Weil algebra of (TV )′ = flip((TV ∗)−), which by the results above is C∞(M)-

linearly generated by differentials df ∈ Γ(T ∗M) (identified with the tangent lifts fT ), sections σ ∈ Γ(V )

(identified with vertical lifts σv) and their jets j1(σ) ∈ Γ(J1(V )) (identified with σT ), subject to the

relation j1(fσ)− fj1(σ) = df σ. It has a horizontal differential, characterized by d′h(f) = df, d′h(σ) =

j1(σ), that is a derivation of the Gerstenhaber bracket. To describe the latter, note that the Lie algebroid

structure on V defines a linear Poisson structure (5.1) on V ∗; its tangent lift is a double-linear Poisson

structure on TV ∗. By definition of the tangent lift of Poisson structures,

{(σ1)T , (σ2)T } = [[σ1, σ2]]T , {(σ1)T , (σ2)v} = [[σ1, σ2]]v,

{σT , fv} = (La(σ)f)v, {σT , fT } = (La(σ)f)T , {σv, fT } = (La(σ)f)v.

We read off the Gerstenhaber brackets as

[[j1(σ1), j1(σ2)]] = j1([[σ1, σ2]]), [[j1(σ1), σ2]] = [[σ1, σ2]],

[[j1(σ), f ]] = La(σ)f, [[j1(σ),df ]] = dLa(σ)f, [[σ, df ]] = −La(σ)f.

Note that d′h is a derivation of the Gerstenhaber bracket, as required.

Finally, the Weil algebra of (TV )′′ = flip(T ∗V )− ∼= T ∗V ∗ (using the Mackenzie-Xu isomorphism

(2.12)) is C∞(M)-linearly generated by sections of V, V ∗, At(V ), subject to the relation that for

σ ∈ Γ(V ), τ ∈ Γ(V ∗) the product στ equals iAt(V )(σ ⊗ τ). From the Poisson bracket relations between

the corresponding functions φσ] , τ, φδ on T ∗V , we read off the Gerstenhaber brackets

[[δ1, δ2]] = [[δ1, δ2]], [[δ, σ]] = ∇δσ, [[δ, τ ]] = ∇∗δτ, [[δ, f ]] = La(δf, [[σ, τ ]] = −〈τ, σ〉.

On the other hand, the Lie algebroid structure on V determines a VB-algebroid structure T ∗V ∗ ⇒
V ∗, and hence vertical differential d′′v . The latter agrees with the Chevalley-Eilenberg differential on

W0,•(T ∗V ∗) = Γ(∧•V ∗), while

d′′vσ = −δ(σ) ∈ Γ(At(V ))

where δ(σ) ∈ Γ(At(V )) is the infinitesimal automorphism given in terms of its representation on V by

∇δ(σ1)(σ2) = [[σ1, σ2]]. This follows from the formulas of Theorem 6.1.2:

ι′′v(j1(σ1))d′′vσ2 = ∇Vj1(σ1)σ2 = [[σ1, σ2]] = −∇δ(σ2)σ1 = −ι′′v(j1(σ1))δ(σ2).

Finally, for δ ∈ Γ(At(V )) the differential d′′vδ ∈W1,2((TV )′′) is described by the formula

ι′′v(j1(σ1))ι′′v(j1(σ2))d′vδ = ∇δ[[σ1, σ2]]− [[σ1,∇δσ2]] + [[∇δσ1, σ2]],

which may be deduced from Corollary 6.2.3. One finds that the differential on W1,•(T ∗V ∗) ∼= Γlin(∧•TM (TV ∗), TM)

coincides with the restriction of the Chevalley-Eilenberg differential of the tangent prolongation TV ⇒
TM . (Recall that the dual of the tangent prolongation is the bundle TV ∗ → TM .)



Chapter 9

Applications, Connections with

Other Work

In this section, we indicate connections between the results and constructions presented above and

various ideas appearing in the literature.

9.1 Matched Pairs of Lie Algebroids

Consider a matched pair of Lie algebroids A,B, corresponding to a vacant double Lie algebroid D =

A×M B, as in Example 7.1.1(3). Thus

D = A×M B +3

��

B

��
A +3 M

D′ = B ×M A∗ +3

��

M

��

B +3 M

D′′ = A×M B∗ //

��

A

��
M // M

with corresponding Weil algebra bundles

W (D) = ∧A∗ ⊗ ∧B∗, W (D′) = ∧B∗ ⊗ ∨A, W (D′′) = ∧A∗ ⊗ ∨B.

The double Lie algebroid structure defines commuting differentials dh, dv on W(D). This double complex

was described in the work of Laurent-Gengoux, Stienon and Xu [46, Section 4.2]. Identifying W (D) =

∧(A ⊕ B)∗ (with the total grading), the sum dh + dv is a degree 1 differential, in such a way that the

bundle maps to ∧A∗,∧B∗ give cochain maps on sections. We hence see that A ⊕ B becomes a Lie

algebroid, with A,B as Lie subalgebroids. The Weil algebra W(D′) has a Gerstenhaber bracket [[·, ·]] and

a compatible horizontal differential d′h. The restriction of the differential to W•,0(D′) = Γ(∧•B∗) gives

the Lie algebroid structure on B, and the restriction to W•,1(D′) = Γ(∧•−1B∗⊗A) gives the action of this

Lie algebroid on A. On the other hand, the restriction of the Gerstenhaber bracket to W1,1(D′) = Γ(A)

recovers the Lie algebroid bracket of A, and the bracket with elements of W1,0(D′) = Γ(B∗) recovers the

A-action on B∗. The fact that the differential d′h on Γ(∧B∗ ⊗ A) is a derivation of the (Gerstenhaber)

bracket on this space is thus an equivalent formulation of the compatibility condition. A similar discussion

applies to D′′.

87
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9.2 Multi-derivations

In [16], motivated by the study of deformations of Lie algebroids, Crainic and Moerdijk associate to

any vector bundle V → M a graded vector space Der•(V ) of multi-derivations of V , equipped with a

Gerstenhaber bracket. Its simplest description is in terms of the isomorphism (see [16, Section 4.9])

Der•(V ) ∼= X1+•
lin (V ∗),

with bracket the usual Schouten bracket of multivector fields. A Lie algebroid structure on V defines a

compatible degree 1 differential on this space, given by Schouten bracket [[π, ·]] with the Poisson bivector

field π ∈ X2
lin(V ∗) dual to the Lie algebroid structure. As shown in [16], the Maurer-Cartan elements of

this deformation complex describe the deformations of the Lie algebroid structure. See also the work of

Esposito-Tortorella-Vitagliano [20], where the deformation complex is generalized further to the setting

of VB-algebroids. For any vector bundle V →M , the cotangent bundle T ∗V is a Poisson double vector

bundle, hence W(T ∗V ) inherits a Gerstenhaber bracket. By Proposition 4.5.3 and the discussion in

section 8.2, the isomorphism

W•,1(T ∗V ) ∼= Γlin(∧•V ∗TV ∗, V ∗) ∼= X•lin(V ∗)

takes this to the Schouten bracket of multivector fields. Given a Lie algebroid structure on V , the

resulting horizontal differential on W•,1(T ∗V ) is dh = [[π, ·]], which is the differential on the deformation

complex. In conclusion, the deformation complex is identified with W1+•,1(T ∗V ). Alternatively, this

follows from the fact (Remark 5.6.2) that W•,1(T ∗V ) for T ∗V ⇒ V ∗ is the linear Chevalley-Eilenberg

complex CE•VB(T ∗V ) of Cabrera-Drummond [11]; the isomorphism of the latter with the deformation

complex was observed in [11, page 312].

9.3 Abad-Crainic’s Weil algebra of a vector bundle V

Given a vector bundle V →M , Abad and Crainic [3] define a bigraded Weil algebra W•,•(V ) as follows.

An element of Wp,q(V ) is given by a sequence of R-multilinear skew-symmetric maps

ci: Γ(V )× · · · × Γ(V )︸ ︷︷ ︸
p−i times

→ Ωq−i(M,∨iV ∗).

Here c0 is considered the ‘leading term’, c1 measures the failure of c0 to be multi-linear, c2 measures the

failure of c1 to be multi-linear, and so on. (See [3] for details.) We claim that every w ∈Wp,q(TV ) gives

rise to such a sequence, thereby identifying W(V ) ∼= W(TV ).

For any double vector bundle D as in (2.2), there is a canonical surjective morphism of bigraded

algebra bundles Π:W (D)→W (B×M E∗) = ∧B∗⊗∨E, induced by the DVB morphism B×M E∗ ↪→ D.

Explicitly, the maps Π:W p,q(D)→ ∧q−pB∗⊗∨pE are given by p-fold contractions with elements ε ∈ E∗.
In the case of D = TV , with A = V, B = TM, E = V ∗, we obtain projection maps

Π:W p,q(TV )→ ∧q−pT ∗M ⊗ ∨pV.

On the other hand, for σ ∈ Γ(V ), its jet prolongation j1(σ) ∈ Γ(J1(V )) = Γ(Â) defines a contraction



Chapter 9. Applications, Connections with Other Work 89

operator ι(j1(σ)) of bidegree (−1, 0). The map ci corresponding to w ∈Wp,q(TV ) is given by

ci(σi+1, . . . , σp) = Π
(
ι(j1(σp)) · · · ι(j1(σi))w

)
∈ Ωq−i(M,∨iV ∗).

The relation j1(fσ) − fj1(σ) = iJ1(V )(df ⊗ σ) = σdf implies that ι(j1(fσ)) − f ι(j1(σ)) = −df ι(σ),

where ι(σ) is the contraction operator of bidegree (−1,−1) defined by σ (regarded as a section of E∗).

Consequently, the failure of C∞(M)-linearity of ci is expressed in terms of ci+1, leading to the conditions

in [3].

9.4 IM-forms and IM-multivector fields

Let V → M be a vector bundle. In Section 8.2, we discussed the spaces X•lin(V ) of linear multivector

fields and Ω•lin(V ) of linear differential forms on V . The Schouten bracket of multivector fields and the

de Rham differential of forms restrict to these linear subspaces.

Given a Lie algebroid structure V ⇒ M , there are notions of infinitesimally multiplicative (IM)

multi-vector fields and differential forms,

X•IM(V ) ⊆ X•lin(V ), Ω•IM(V ) ⊆ Ω•lin(V ).

These are designed to be the infinitesimal versions of multiplicative multivector fields or forms on Lie

groupoids.

IM-multivector fields were introduced by Iglesias-Ponte, Laurent-Gengoux and Xu [36] under the

name of k-differentials. To define them, note that for any vector bundle V , the graded Lie algebra

X1+•(V ) acts on Γ(∧V ) by derivations. Using the identification Γ(∧V ) ∼= X•core(V ), this action is just

the Schouten bracket of multi-vector fields. In particular, for δ ∈ Xklin(V ) and σ ∈ Γ(∧lV ) we have that

δ.σ ∈ Γ(∧k+l−1V ). If V is a Lie algebroid, then the bracket [[·, ·]] on Γ(V ) extends to the exterior algebra.

The element δ is called an IM-multivector field if it is a derivation of this Lie bracket:

δ.[[σ1, σ2]] = [[δ.σ1, σ2]] + (−1)|δ|(|σ1|+1)[[σ1, δ.σ2]] (9.1)

for all σi ∈ Γ(∧liV ), i = 1, 2. Here |δ|= k + 1. Using the derivation property with respect to wedge

product, it is actually enough to have this condition for l1 = l2 = 1. The universal lifting theorem [36],

generalizing earlier results of Mackenzie-Xu [58, 59], integrates any such δ to a multiplicative vector field

on the corresponding (local) Lie groupoid.

To describe the IM condition for forms, recall that any φ ∈ Ωklin(V ) can be uniquely written as

φ = ν+dRhµ where ν ∈ Γ(V ∗⊗∧kT ∗M) and µ ∈ Γ(V ∗⊗∧k−1T ∗M) (viewed as linear differential forms),

and dRh denotes the de Rham differential on linear forms. If V is a Lie algebroid, then φ = ν + dRhµ is

called an IM form if the following three conditions are satisfied

ιa(σ1)µ(σ2) = −ιa(σ2)µ(σ1), (9.2)

µ([[σ1, σ2]]) = La(σ1)µ(σ2)− ιa(σ2)dRh µ(σ1)− ιa(σ2)ν(σ1), (9.3)

ν([[σ1, σ2]]) = La(σ1)ν(σ2)− ιa(σ2)dRh ν(σ1), (9.4)

for all σ1, σ2 ∈ Γ(V ). These conditions are due to Bursztyn and Cabrera [6] (see [8, 9] for the case of
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2-forms); as shown in [6], these are exactly the conditions ensuring that φ integrates to a multiplicative

form on the associated (local) Lie groupoid.

We will now give interpretations of IM multivector fields and IM forms in terms of the Weil algebras.

Recall from section 8.2 that for any vector bundle V →M ,

X•lin(V ) = W1,•(T ∗V ), Ω•lin(V ) = W1,•(TV ).

The first isomorphism is compatible with the Gerstenhaber bracket [[·, ·]] on W(T ∗V ) defined by the

Poisson structure on T ∗V , the second isomorphism with the vertical differential dv on W(TV ) defined

by the VB-algebroid structure TV ⇒ V . A Lie algebroid structure V ⇒M gives VB-algebroid structures

T ∗V ⇒ V ∗ and TV ⇒ TM , resulting in horizontal differentials dh on both W(T ∗V ) and W(TV ). The

second part of the following result is due to Bursztyn and Cabrera [6]; for a more restrictive notion of

IM forms it was observed in [3, Section 6].

Theorem 9.4.1. For any Lie algebroid V ⇒M ,

X•IM(V ) = W1,•(T ∗V ) ∩ ker(dh), Ω•IM(V ) = W1,•(TV ) ∩ ker(dh).

Proof. Consider a VB-algebroid D ⇒ B over A⇒M , so that the Weil algebra W(D) carries a horizontal

differential dh. Then W(D′) has a Gerstenhaber bracket. By Corollary 6.2.3, an element φ ∈ W1,•(D)

is dh-closed if and only if

ιh([[x1, x2]])φ = [[x1, ιh(x2)φ]] + (−1)|x1||x2|+1[[x2, ιh(x1)φ]] (9.5)

for all xi ∈Wpi,1(D′). (It suffices to verify this on generators.)

Suppose now that D also carries a double-linear Poisson structure; thus D′′ is a double Lie algebroid.

In particular B∗ = core(D′′) is a Lie algebroid, with the bracket

[[σ1, σ2]] := [[σ1,d
′
vσ2]]

for σ1, σ2 ∈ Γ(∧B∗). (We have in mind the case D = T ∗V ; the Lie algebroid structure on B∗ = V being

the standard one.) The space W1,•(D)[1] is a graded Lie algebra for the Gerstenhaber bracket, with a

representation on Γ(∧B∗) given by (cf. (6.8))

φ.σ := [[φ, σ]] = −(−1)(|φ|+1) |σ|ιh(d′vσ)φ

for σ ∈ Γ(∧B∗). Let xi = d′vσi with σi ∈ Γ(∧B∗). Then [[x1, x2]] = d′v[[σ1, σ2]], and therefore

φ.[[σ1, σ2]] = −(−1)(|φ|+1)(|σ1|+|σ2|+1)ιh([[x1, x2]])φ. (9.6)

On the other hand,

(−1)|φ|(|σ1|+1)[[σ1, φ.σ2]] + [[φ.σ1, σ2]]

= −(−1)(|φ|+1)(|σ1|+|σ2|+1)
(

[[x1, ιh(x2)φ]] + (−1)(|φ|+1)(|σ2|+1)[[ιh(x1)φ, x2]]
)

= −(−1)(|φ|+1)(|σ1|+|σ2|+1)
(

[[x1, ιh(x2)φ]]− (−1)(|σ1|+1)(|σ2|+1)[[x2, ιh(x1)φ]]
)
.
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By (9.5), if φ is dh-closed then this expression coincides with (9.6), proving that φ.σ = [[φ.σ1, σ2]] +

(−1)|φ|(|σ1|+1)[[σ1, φ.σ2]]. For D = T ∗V , the converse is true, because in that case the space W•,1(D′)

is spanned, as a C∞(M)-module, by d′vW
•,0(D′). The case of IM-differential forms can be discussed

similarly; in terms of the Abad-Crainic approach to the Weil algebra W(TV ) this is done in [6].

9.5 Frölicher-Nijenhuis and Nijenhuis-Richardson brackets

Suppose V →M is a Lie algebroid, so that V ∗ has a linear Poisson structure. The double-linear Poisson

structure on TV ∗ defines a Gerstenhaber bracket on W(TV ∗), compatible with the vertical differential

dv. Hence,

W1,1+•(TV ∗) ∼= Ω•+1
lin (V ∗) ∼= Ω•+1(M,V )⊕ Ω•(M,V ) (9.7)

becomes a differential graded Lie algebra. It comes with a morphism of graded Lie algebras (also Ω(M)-

module morphism)

Ω•+1(M,V )⊕ Ω•(M,V )→ Der•(Ω(M)) (9.8)

given by Gerstenhaber bracket with elements of W0,•(TV ∗) ∼= Ω(M). One verifies that the first summand

in (9.8) acts as contractions via the anchor V → TM , the second as Lie derivatives.

For the Lie algebroid V = TM , the map (9.8) is an isomorphism, hence we recover the bracket

on Ω•+1(M,TM) ⊕ Ω•(M,TM) given by the Frölicher-Nijenhuis bracket on the first summand, the

Nijenhuis-Richardson bracket on the second summand, and a cross term. See [37, Chapter II.8] for a

detailed discussion; see also [24, 69] for related brackets and generalizations to Lie algebroids.

9.6 Representations up to homotopy

Representations up to homotopy were introduced by Evens-Lu-Weinstein [21] and Abad and Crainic

[1] as generalizations of the usual concept of representations of a Lie algebroid. Among other things,

they give a notion of the adjoint action of a Lie algebroid on itself, which is generally not possible using

ordinary representations. The essential idea is to represent Lie algebroids on complexes of vector bundles

rather than just single vector bundles. We will adopt the definition from [1].

Definition 9.6.1. Let A→M be a Lie algebroid. A representation up to homotopy of A is a Z-graded

vector bundle U• over M along with a degree 1 differential δ on sections of ∧A∗ ⊗ U (using the graded

tensor product) satisfying

δ(ωη) = dA(ω)η + (−1)kωδ(η)

for all ω ∈ Γ(∧kA∗), η ∈ Γ(∧A∗ ⊗ U).

Given a Lie algebroid A → M , Gracia-Saz and Mehta [29] showed how to construct a 2-step repre-

sentation up to homotopy of A from a horizontal VB-algebroid

D +3

��

B

��

A +3 M
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having A as its horizontal side bundle. The construction depends on the choice of a splitting of D, and

the resulting graded vector bundle is

U = E∗[1]⊕B;

that is, U−1 = E∗ and U0 = B. We briefly review their construction, making use of some of our

observations in chapter 5. By Lemma 5.4.1, the double-linear Poisson structure on D′ gives the following

data:

• a Lie algebroid structure on Â,

• Â-representations ∇̂B∗ , ∇̂E∗ on B∗ and on E∗,

• an invariant pairing (·, ·):B∗ × E∗ → R.

A choice of splitting of the double vector bundle D is equivalent to a choice of splitting s:A → Â. In

general, s need not preserve Lie brackets, and so we can consider its curvature tensor Ω ∈ Γ(∧2A∗ ⊗
(B∗ ⊗ E∗)) defined by

Ω(a1, a2) = s([[a1, a2]])− [s(a1), s(a2)], a1, a2 ∈ Γ(A).

The U0–U−1-component of δ is the linear map Γ(∧•A∗ ⊗ B) → Γ(∧•+2A∗ ⊗ E∗) given by Ω (with the

identification B∗⊗E∗ ∼= Hom(B,E∗)). The U−1–U0-component of δ is the linear map Γ(∧•A∗⊗E∗)→
Γ(∧•A∗ ⊗ B) defined by the pairing (·, ·) viewed as a bundle map E∗ → B. The connection ∇̂E∗ pulls

back under s to a non-flat A-connection ∇E∗ on E∗; its extension to a map ∇E∗ : Γ(∧•A∗ ⊗ E∗) →
Γ(∧•+1A∗ ⊗ E∗) is the U−1–U−1-component of δ. Similarly, the flat Â-connection on B pulls back to a

non-flat A-connection, and the resulting map on sections gives the U0–U0-component. See [29, Theorem

4.10]. This establishes a one-to-one correspondence:

Theorem 9.6.2. [29, Theorem 4.11 (2)] Let D be a double vector bundle with side bundles A, B and

core E∗, such that A ⇒ M is a Lie algebroid. After choosing a splitting s:A → Â, there is a one-

to-one correspondence between horizontal VB-algebroid structures D ⇒ B extending A ⇒ M , and

representations up to homotopy of A on U = E∗[1]⊕B.

This correspondence has a simple interpretation in terms of the Weil algebras. Recall from chapter

5 that horizontal VB-algebroid structures D ⇒ B are in one-to-one correspondence with vertical differ-

entials dv on W(D′′). This restricts to a differential dv on W1,•(D′′) ∼= Γlin(∧•ED′, E). Once we choose

a splitting of D, or equivalently a vector bundle splitting s:A → Â, we obtain a decomposition (see

Proposition 4.5.2)

W1,•(D′′) ∼= Γ(∧•A∗ ⊗B)⊕ Γ(∧•+1A∗ ⊗ E∗).

With U−1 = E∗ and U0 = A∗, the differential d defines a representation up to homotopy of A on U.

To see that this correspondence is bijective, we note that a vertical differential on the bigraded algebra

W(D′′) is uniquely determined by its restrictions to W1,•(D′′) and W0,•(D′′) = Γ(∧•A∗) thanks to the

Leibniz rule.

Remark 9.6.3. Horizontal VB-algebroid structures on D are also equivalent to differentials dh of bidegree

(1, 0) on W(D). After a choice of splitting, this induces a degree 1 operator on W•,1(D) ∼= Γ(∧•A∗ ⊗
E) ⊕ Γ(∧•+1A∗ ⊗ B∗), giving a representation up to homotopy of A on the bundle B∗[1] ⊕ E. This

representation up to homotopy is dual to the one on E∗[1]⊕B, as discussed in [29, Section 4.5].
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Let us turn now to the case where D has both a horizontal and a vertical VB-algebroid structure.

Then both D′ and D′′ are Poisson double vector bundles, which is equivalent to the following structures:

• Lie algebroid structures on Â and B̂,

• Â-representations on B∗, E∗ and B̂-representations on A∗, E∗,

• an Â-invariant pairing B∗ × E∗ → R and a B̂-invariant pairing A∗ × E∗ → R

subject to certain compatibility conditions (Theorem 5.4.3). It is natural to ask what additional com-

patibility conditions on these data ensure that D is a double Lie algebroid. This question was answered

in the work of Gracia-Saz, Jotz Lean, Mackenzie, and Mehta [26, Theorem 3.4] using a splitting and a

notion of matched pair for representations up to homotopy.

The representations up to homotopy of Lie algebroids discussed above have a corresponding global

object, namely representations up to homotopy of Lie groupoids. In [18], del Hoyo and Davide reinterpret

this concept global concept by developing a theory of Lie 2-groupoids. Specifically, they introduce the

general linear Lie 2-groupoid GL(U) of a two-term graded vector bundle U, and show that two term

representations up to homotopy of a Lie groupoid G ⇒ M on U are equivalent to pseudo-functors

G 99K GL(U). The discussion above therefore implies a relationship between Weil algebras and these

general linear 2-groupoids that would be interesting to uncover further.



Chapter 10

Outlook: Further Directions

10.1 The Double Lie Functor

Recall that for (ordinary) Lie groupoids, one has the Lie functor

Lie: Lie Groupoids→ Lie Algebroids

that “differentiates” a Lie groupoid G ⇒ M , producing it’s associated Lie algebroid A → M . The

vector bundle structure underlying A is given by the normal bundle of the space of units inside G:

A = ν(G,M). To describe the anchor map A → TM , we observe that the source and target maps s, t

agree on M so that the difference Tt−Ts:TG→ TM vanishes on TM , and therefore descends to a map

ν(G,M)→ TM . Finally, let St ⊆ G, t ∈ R, be a one-parameter family of bisections of G with S0 = M .

Taking the differential at t = 0, we obtain a smooth section σ ∈ Γ(A), and so we may regard Γ(A) as

the Lie algebra of the (infinite dimensional) Lie group Γ(G), which gives the bracket:

Γ(A) = Lie(Γ(G)).

The Lie functor has been extended to the setting of double Lie structures in the work of Mackenzie

[55, 51, 54], associating to any double Lie groupoid a corresponding double Lie algebroid though differ-

entiation processes (in fact, as mentioned previously, differentiating double Lie groupoids was how the

notion of double Lie algebroids came to be). Before describing Mackenzie’s approach to the double Lie

functor, let us recall the basics of double Lie groupoids. Consider a diagram of the form

G //
//

�� ��

V

�� ��

H //
//
M

(10.1)

in which all four sides are Lie groupoids. Such a diagram is called a double Lie groupoid [5] (see also

[62]) if the structure maps (source, target, multiplication, inversion) for either groupoid structure on G

are Lie groupoid morphisms with respect to the other structure. The various structure maps for the

horizontal Lie groupoid G ⇒ V will be distinguished by the subscript ‘h’, while the structure maps for

the vertical Lie groupoid G ⇒ H will be distinguished by the subscript ‘v’. In contrast, the structure

94
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maps for the Lie groupoids H ⇒ M and K ⇒ M will not be given subscripts, and we will rely on

context to clarify which one is meant.

Example 10.1.1. Suppose G⇒M is a (ordinary) Lie groupoid, with source and target maps denoted by

sG and tG respectively. Then the diagram

Pair(G) //
//

�� ��

Pair(M)

�� ��

G //
//
M

is a double Lie groupoid. Any pair (g′, g) of elements of G defines a unique element in Pair(G), with the

properties

sv(g
′, g) = g, tv(g

′, g) = g′, sh(g′, g) = (sGg
′, sGg), th(g′, g) = (tGg

′, tGg).

The vertical multiplication is defined by

(g′, g) = (g′1, g1) ◦v (g′2, g2) ⇐⇒ g′ = g′1, g1 = g′2, g = g2.

On the other hand, the horizontal multiplication is

(g′1, g1) ◦h (g′2, g2) = (g′1g
′
2, g1g2),

where juxtaposition denotes multiplication in G. Thus the vertical units are of the form (g, g) for g ∈ G,

while the horizontal units are of the form (m′,m) for m′,m ∈M ⊆ G.

Mackenzie’s approach to the double Lie functor was to proceed in stages. By first applying the Lie

functor to the Lie groupoid G ⇒ H, one obtains an intermediate object that is a Lie algebroid in one

direction, and a Lie groupoid in the other. Such objects were called LA groupoids, and by applying the

Lie functor once more (to the Lie groupoid part), one obtains a double Lie algebroid. Mackenzie showed

that proceeding in the other order (that is, starting by applying the Lie functor to G ⇒ V instead)

produces the same result, and so the double Lie functor factors through the category of LA-groupoids

as follows:

LA Groupoids

LA Groupoids

Double Lie Groupoids Double Lie Algebroids

As an example, let G⇒M be a Lie groupoid with Lie(G) = A. Then the three diagrams

TG //
//

��

TM

��
G //

//
M

Pair(A) +3

�� ��

Pair(M)

�� ��

A +3 M

TA +3

��

TM

��
A +3 M

comprise all of the differential objects associated to the double Lie groupoid Pair(G) of example 10.1.1.
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Using the double normal bundle construction of chapter 3, one could develop a theory of the double

Lie functor that passes directly from double Lie groupoids to double Lie algebroids, without factoring

through the category of LA groupoids. More specifically, if G is a double Lie groupoid, then the double

vector bundle underlying its associated double Lie algebroid is given by ν(G,H,V) (the proof that H

and V intersect cleanly is a straightforward generalization of lemma 3.1.9). One could then adapt the

techniques for defining the usual Lie functor to the case where we have two families of bisections of G

(one for G→ H and one for G→ V) that are compatible in a suitable sense.

Finally, using deformation spaces (see section 3.6), one could unite the two approaches to the double

Lie functor into one cohesive theory. To see how deformation spaces enter the picture, consider an

ordinary Lie groupoid G ⇒ M , with associated Lie algebroid A → M . Observe that the deformation

space D(G,M) has A lying in the 0-fibre, while all other fibres are copies of G. Moreover, D(G,M) is

itself a Lie groupoid (see, for example CITE), and a bisection of D(M,N) is made up of a one-parameter

family of bisections of G away from t = 0, along with the section of A corresponding to the derivative

of this family sitting in the t = 0 fibre. By analogy, we expect that one could fully develop the theory

of the double Lie functor using the double deformation space D(G,H,V). This deformation space has

the advantage of containing all of the infinitesimal objects associated to G simultaneously. Indeed,

the double Lie algebroid ν(G,H,K) lies in the s = t = 0 fibre, while the LA groupoids ν(G,H) and

ν(G,V) lie in the s = 0, t 6= 0 and s 6= 0, t = 0 fibres respectively. We believe that the development

of the constructions briefly discussed above would lead to a deeper understanding of the differentiation

processes associated to double Lie structures, which in turn would be helpful in tackling the difficult

problems surrounding the integration of double Lie structures (see [7]).

10.2 van Est maps

Recall that the classical van Est map [75] is a morphism from the cochain complex of a Lie group G to

the Chevalley-Eilenberg cochain complex of its Lie algebra g. This map was extended by Weinstein and

Xu [79] to the case of Lie groupoids G and their Lie algebroids A, thus obtaining a morphism of cochain

complexes

VE: C̃∞(B•G)→ Γ(∧•A∗). (10.2)

Here BpG is the space of p-arrows in G, and the tilde signifies the normalized complex for the simplicial

manifold B•G. In [61, Chapter 6], Mehta generalized (10.2) to a van Est map from ‘Q-groupoids’ into

the double complex of the corresponding ‘Q-algebroid’; in particular this gives a version of (10.2) for

differential forms. We note here that Q-groupoids are a supergeometric analog of LA groupoids. A

construction in more classical terms was given by Abad and Crainic [3], in terms of the Weil algebra

W(A) = W(TA). The van Est map (10.2) described in [3] is a morphism of double complexes

VE: Ω̃•(B•G)→W•,•(TA). (10.3)

A geometric construction of this map was provided in [47]. This map has since been generalized in a

few different directions, for example the work of Cabrera and Drummond in [11] adapts it to the setting

of VB groupoids, and the recent thesis of Angulo [2] develops a van Est map in the context of Lie

2-algebras and Lie 2-groups. The next step in this story would be to describe a van Est map for double

Lie groupoids G. As mentioned above, by applying the Lie functor to one of the groupoid structures
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of G results in an LA groupoid, which we will briefly denote by Ω, and applying the Lie functor once

more gives a double Lie algebroid D [55, 51, 54]. So a van Est theory for double Lie groupoids would

take the form

C•,•(Ω)C̃∞(B•,•G) W•,•(D)

for certain double complex C̃∞(B•,•G), where C•,•(Ω) is Mehta’s double complex of an LA groupoid.

In other words, it is a map of double complexes C̃∞(B•,•G)→W•,•(D) that factors through (a classical

analog of) the van Est map of Mehta. Let us briefly describe the double complex C̃∞(B•,•G). Much

like the case for Lie groupoids, to any double Lie groupoid we can associate a bisimplicial manifold

B•,•(G). In the language of simplicial sets this is called the nerve of G, and is therefore sometimes

denoted N•,•(G) (see for example [62]). Explicitly, for p, q ≥ 0 we have

Bp,q(G) =



g11 . . . g1q

...
. . .

...

gp1 . . . gpq


∣∣∣∣∣∣∣∣shgij = thgi(j+1), svgij = tvg(i+1)j , 0 ≤ i < p, 0 ≤ j < q


with the conventions that B0,0(G) = M , Bp,0(G) = BpH, and B0,q(G) = BqV. To understand the

bisimplicial structure of the collection Bp,q(G), first consider the special cases where one (or both) of

p, q are zero or one. For p = q = 0, the horizontal degeneracy map is the inclusion of units M ↪→ H,

while the vertical degeneracy map is given by M ↪→ V. If p ≥ 1, then for q = 0, the horizontal face and

degeneracy maps are defined by the simplicial structure on Bp(H), while the vertical face and degeneracy

maps are trivial. For p ≥ 1, q = 1, then we remark that Bp,1(G) = Bp(G ⇒ H), which defines the

horizontal simplicial structures, while the vertical face maps are given by the p-fold vertical source and

target maps: ∂v0 = spv and ∂v1 = tpv. The cases p = 0 and p = 1 (with q ≥ 1) are handled similarly.

Now assume that p and q are both at least 2. Then for every 0 ≤ i ≤ p, we have a horizontal face

map ∂hi :Bp,q(G)→ Bp−1,q(G) that collapses the ith row. That is, ∂hi is given by

∂hi


g11 . . . g1q

...
. . .

...

gp1 . . . gpq

 =



g11 . . . g1q

...
...

gi1 ◦v g(i+1)1 . . . giq ◦v g(i+1)q

...
...

gp1 . . . gpq


for 0 < i < p (here ◦v denotes multiplication in the groupoid G⇒ H), and

∂h0


g11 . . . g1q

...
. . .

...

gp1 . . . gpq

 =


g21 . . . g2q

...
. . .

...

gp1 . . . gpq

 , ∂hp


g11 . . . g1q

...
. . .

...

gp1 . . . gpq

 =


g11 . . . g1q

...
. . .

...

g(p−1)1 . . . g(p−1)q

 .

Similarly, for any 0 ≤ j ≤ q we have a vertical face map ∂vj that collapses the jth column.

To describe the degeneracy maps, suppose that p, q ≥ 1. Then for every 0 ≤ 1 ≤ p, the horizontal
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degeneracy map εhi is given by injecting a trivial row in the i+ 1 position:

εhi


g11 . . . g1q

...
. . .

...

gp1 . . . gpq

 =



g11 . . . g1q

...
...

gi1 . . . giq

svgi1 . . . svgiq

g(i+1)1 . . . g(i+1)q

...
...

gp1 . . . gpq


(Note that εh0 adds (tvg11, . . . , tvg1q) as the top row.) Similarly, for every 0 ≤ j ≤ q, we get a vertical

degeneracy map εvj that injects a trivial column in the (j + 1) position.

Theorem 10.2.1. The collection of spaces Bp,q(G), along with the face and degeneracy maps described

above, is a bisimplicial manifold.

Proof. See [62, Proposition 3.10].

The normalized double complex associated to the double Lie groupoid G is given by (C̃∞•,•(G), δh, δv),

where C̃∞•,•(G) is the bigraded algebra

C̃∞p,q(G) = {f ∈ C∞(Bp,q(G)) | (εhi )∗f = 0, (εvj )
∗f = 0, 0 ≤ i ≤ p, 0 ≤ j ≤ q},

and the differentials δh: C̃∞p,q(G)→ C̃∞p+1,q(G) and δv: C̃∞p,q(G)→ C̃∞p,q+1(G) are defined by:

δh(f) =

p+1∑
i=0

(−1)i(∂hi )∗f, δv(f) =

q+1∑
j=0

(−1)j(∂vj )∗f.

Remark 10.2.2. For a full theory, one should also consider the localized version of this double complex,

defined as the quotient of C̃∞p,q(G) by the subcomplex of functions vanishing on a neighbourhood of

M ⊆ Bp,q(G).

The key step to describing a van Est theory for double Lie groupoids is to develop an appropriate

theory of double Lie groupoid actions. Specifically, one should define what it means for a double Lie

groupoid G to act on a commutative diagram of manifolds

Q //

��

Q1

��

Q2
// M.

(10.4)

The space

Ep,q(G) =



g00 . . . g0q

...
. . .

...

gp0 . . . gpq


∣∣∣∣∣∣∣∣shgij = shgi(j+1), svgij = svg(i+1)j , 0 ≤ i < p, 0 ≤ j < q
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fits into a pair of diagrams that, given the right definition of double Lie groupoid actions, should consitute

a (double) principal bundle over base Bp,q(G):

Ep,q(G) //

��

Fhp,q(G)

��

F vp,q(G) // Bp,q(G),

Ep,q(G) //

��

Ep(V)

��

Eq(H) // M.

Here the side bundles are defined as

F vp,q(G) =



g00 . . . g0q

...
. . .

...

gp0 . . . gpq


∣∣∣∣∣∣∣∣shgij = shgi(j+1), svgij = tvg(i+1)j , 0 ≤ i < p, 0 ≤ j < q

 ,

and similarly for Fhp,q(G). To develop a van Est theory, one would then follow the geometric approach

initiated in [47] (and later refined in [64]). That is, for each p, q, the principal bundle described above

defines a pair of fibrations that are compatible in the sense that they form a double Lie algebroid

Fp,q. The quadruple complex W•,•(F•,•) then augments both C̃∞•,•(G) and W•,•(D), and the van Est

map VE: C̃∞•,•(G) → W•,•(D) can then be constructed systematically out of homotopy operators on

W•,•(F•,•) using homological algebra.



Appendix A

Operations on Vector Fields and

Differential Forms

The fundamental example of a double Lie algebroid is the tangent space TA of a Lie algebroid A→M .

For this reason, chapter 8 is devoted to explicit computations of the constructions presented in this

thesis for this specific example. Throughout the course of these computations we make use of numerous

operations in differential geometry, which we review here. All of the material in this appendix is known,

we include it as a means of fixing our terminology and conventions as well as to provide a convenient

reference for the reader. Some excellent sources for this material include the book of Kolář, Michor, and

Slovák [37] and the work of Grabowski and Urbański [24].

A.1 Graded Lie Brackets

For a given smooth manifold M , there are several graded Lie algebras related to the geometry of M that

are referenced in the chapters above. The most foundational one is the algebra X•(M) of multivector

fields on M , whose degree k component is

Xk(M) = Γ(∧kTM,M),

with the convention that X0(M) = C∞(M). Contrary to the usual convention for graded algebras, the

notation X(M) (without the •) does not denote the direct sum of the components, but rather its degree

one part: X(M) = X1(M). We can extend the Lie bracket [·, ·] on X(M) to a graded Lie bracket [[·, ·]] on

X•(M) by defining it on generators by the formulas

[[X, f ]] = LXf, [[X,Y ]] = [X,Y ]

and insisting that [[X, ·]] is a graded derivation of the wedge product. The bracket [[·, ·]] is called the

Schouten bracket. Using the definition in terms of generators, one can obtain the following more explicit

100
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form of the Schouten bracket

[[f ·X1∧ . . .∧Xk, g ·Y1∧ . . .∧Y`]] =
∑
i,j

(−1)i+j [Xi, Yj ]∧X1∧ . . .∧ X̂i∧ . . .∧Xk ∧Y1∧ . . .∧ Ŷj ∧ . . .∧Y`

+
∑
j

(−1)j+1LYjf ·X1 ∧ . . . ∧Xk ∧ Y1 ∧ . . . ∧ Ŷj ∧ . . . ∧ Y`

+
∑
i

(−1)i+1LXig ·X1 ∧ . . . ∧ X̂i ∧ . . . ∧Xk ∧ Y1 ∧ . . . ∧ Y`,

where as usual the hat denotes omission from the product. If we let X•(D)[1] denote the graded algebra

with Xk(M)[1] = k + 1(M), then the Schouten bracket makes X•(M)[1] into a graded Lie algebra.

Remark A.1.1. In the literature, the opposite sign convention is sometimes used to define the Schouten

bracket. For example, our convention agrees with the book by Dufour and Zung [19], which, as they

point out, differs from the lectures of Vaisman [74].

The importance of the Schouten bracket in Poisson geometry is that it can be used to define a

cohomology theory associated to any Poisson manifold. Any Poisson bracket {·, ·} on a manifold M

determines a multivector field π ∈ X2(M) defined by 〈df ∧ dg, π〉 = {f, g}. The Schouten bracket allows

us to determine which elements of X2(M) arise in this fashion, as explained by the following lemma.

Lemma A.1.2. A multivector field π ∈ X2(M) determines a Poisson structure on M if and only if

[[π, π]] = 0.

Proof. This lemma is well known and a proof can be found in a number of places. For example, it is in

[19, Theorem 1.8.5].

Taking things one step further, we can observe that the operator [[π, ·]] defines a differential on X•(M).

Indeed, the graded Jacobi identity for [[·, ·]] implies that the formula

(−1)|X|−1[[π, [[π,X]]]]− [[π, [[X,π]]]] + (−1)|X|−1[[X, [[π, π]]]] = 0

holds for any X. Using the lemma as well as the skew symmetry [[π,X]] = (−1)|X|[[X,π]] shows that

[[π, [[π,X]]]] = 0. The cohomology of the complex

(X•(M), [[π, ·]])

is called the Poisson cohomology (or Lichnerowicz -Poisson cohomology) of M . For more information

on Schouten brackets and Poisson cohomology, we recommend the reader consult the book of Laurent-

Gengoux, Pichereau, and Vanhaecke [45], or the aforementioned book of Dufour and Zung [19].

Let us move on to considering the space Ω•(M,TM) of TM -valued differential forms on M , whose

degree k component consists of multilinear maps

Υ:X(M)⊗ . . .⊗ X(M)︸ ︷︷ ︸
k copies

→ X(M)

that are skew symmetric. Alternatively, we have Ωk(M,TM) = Γ(∧kT ∗M ⊗ TM). Note that in

particular, the degree 0 component consists of vector fields on M : Ω0(M,TM) = Γ(TM). Associated
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to any Υ ∈ Ωk(M,TM), we obtain a derivation ιΥ of degree k − 1 on the space Ω•(M) of differential

forms on M via the formula

ιΥω(X1, . . . , Xk+`−1) =
1

k! (`− 1)!

∑
σ∈Sk+`−1

sgn(σ)ω(Υ(Xσ(1), . . . , Xσk), Xσ(k+1), . . . , Xσ(k+`−1))

for ω ∈ Ω`(M). Note that any derivation D of degree k − 1 of Ω•(M) is determined by it’s restriction

to one forms D|Ω1(M): Ω1(M) → Ωk(M), which may be viewed as an element of Γ(∧kT ∗(M) ⊗ TM).

The operator ιΥ is merely the extension of Υ to all of Ω(M), in particular, the assignment Υ 7→ ιΥ is

injective. By the usual Cartan formula, one then obtains the operator LΥ on Ω•(M) that takes a form

to its Lie derivative along Υ,

LΥ = ιΥ ◦ d+ (−1)|Υ|−1d ◦ ιΥ,

where d denotes the de Rham differential. When the degree of Υ is zero, the operators ιΥ and LΥ are

just the usual contraction and Lie derivative of a vector field. These operators suggest two natural ways

to define a Lie bracket on Ω•(M,TM): one can either insist that the contraction operators preserve

the bracket, or that the Lie derivatives do. The former choice leads to the Nijenhuis-Richardson(NR)

bracket [70], while the latter gives the Frölicher-Nijenhuis(FN) bracket [22]. In other words, we have

two Lie brackets [[·, ·]]NR and [[·, ·]]FN on Ω•(M,TM) that are determined by

ι[[Υ1,Υ2]]NR
= [ιΥ1 , ιΥ2 ], L[[Υ1,Υ2]]FN

= [LΥ1
,LΥ2

] (A.1)

for all Υ1,Υ2 ∈ Ω•(M,TM). Here the brackets on the right hand sides of the two equations denote the

(super) commutator of two derivations, and so the Nijenhuis-Richardson bracket is of degree -1, while the

Frölicher-Nijenhuis bracket is of degree 0. Note also that the FN bracket extends the usual Lie bracket

of vector fields. It is instructive to see why these formulas do indeed give unique and well-defined Lie

brackets on Ω•(M,TM). For the NR bracket, one can give a simple formula by extending the contraction

operators ιΥ to Ω•(M,TM) by the definition ιΥ(ω ⊗X) = ιΥω ⊗X, giving

[[Υ1,Υ2]]NR = ιΥ1
Υ2 + (−1)|Υ1|+1ιΥ2

Υ1.

Indeed, a check on one-forms shows that contraction by the right hand side agrees with [ιΥ1 , ιΥ2 ], and

it therefore must give the NR bracket by injectivity of Υ 7→ ιΥ. To understand the FN bracket, we use

the following lemma.

Lemma A.1.3. Any degree k derivation D of Ω(M) can be written in the form

D = LΥ1
+ ιΥ2

for unique Υ1 ∈ Ωk(M,TM) and Υ2 ∈ Ωk+1(M,TM). Moreover, Υ2 = 0 if and only if [D, d] = 0.

Proof. This lemma is well-known, we include a short proof here for illustration purposes. Note that given

X1, . . . , Xk ∈ X(M), the assignment f 7→ Df(X1, . . . , Xk) is a derivation of C∞(M). Therefore there is

a unique vector field Υ(X1, . . . , Xk) such that D−LΥ1(X1,...,Xk) vanishes along C∞(M). But this means

that D −LΥ1(X1,...,Xn) is given by a contraction operator, and the first claim follows by injectivity of

ι: Ω•(M,TM)→ Der•−1(Ω(M)). Moreover, the Jacobi identity gives [LΥ1 , d] = 1
2 [ιΥ1

, [d, d]] = 0, and so

we get [D, d] = LΥ2
. The second claim then follows from the injectivity of the assignment Υ 7→ LΥ.
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It follows from this lemma that the FN bracket is unique and well-defined, since we certainly have

[[LΥ1 ,LΥ2 ], d] = 0 for any Υ1,Υ2 ∈ Ω•(M,TM) by the Jacobi identity and the observation in the proof

of the lemma that the commutator of a Lie derivative with the exterior derivative vanishes. Both the

Nijenhuis-Richardson bracket and the Frölicher-Nijenhuis bracket have numerous applications through-

out geometry. For example, the Nijenhuis-Richardson bracket can be used to study deformations of

Lie algebra structures [71], since a bilinear form Q on a vector space is a Lie bracket if and only if

[[Q,Q]]NR = 0. Meanwhile the Frölicher-Nijenhuis bracket can be used to study complex manifolds, since

an almost complex structure J :TM → TM is a complex structure precisely if [J, J ]FN = 0 (this is the

Newlander-Nirenberg theorem [68]). For more information on the NR and FN brackets, the reader can

consult the books of Kolář-Michor-Slovák [37, Section 30] and of Michor [65, Chapter IV].

Remark A.1.4. All of the brackets described in this section can be generalized from the tangent bundle

TM to arbitary Lie algebroids A. That is, the space Γ(∧•A) can be endowed with a Gerstenhaber

bracket that agrees with the Schouten bracket when A = TM (see e.g [43]), and the space Γ(∧•A∗⊗A)

inherits brackets that generalize the NR and FN brackets [69]. These generalizations are all explained

in [24, Section 1].

A.2 Tangent and Cotangent Lifts

Given a vector bundle V →M , there are various ways of lifting geometric objects acting on M and

E (functions, vector fields, sections) to objects acting on the tangent and cotangent bundles, TM , TE,

T ∗M , and T ∗E. These lifting processes are used extensively in the computations in chapter 8, so we

will review them here.

To start off, any smooth function on the base f ∈ C∞(M) defines two smooth functions on TM , the

vertical lift f ] and the tangent lift fT . Here f ] is given by the pullback of f along the tangent bundle

projection, while fT is the one-form df viewed as a linear function on TM . Explicitly:

f ](Xm) = f(m), fT (Xm) = 〈dfm, Xm〉, (A.2)

for Xm ∈ TmM . Clearly any function that is homogeneous of degree 0 on TM is of the form f ] for

some f ∈ C∞(M). Similarly, since the space of one-forms is spanned by elements of the form df for

f ∈ C∞(M), it follows that the tangent lifts fT span C∞(TM)[1]. But TM is a vector bundle, which

allows us to define a vector field on TM by its action on the generators of S(TM) (the polynomial

functions on TM), namely f ] and fT for f ∈ C∞(M). So for X ∈ X(M), we define the vertical lift X]

and the tangent lift XT by the conditions

LX](f
]) = 0, LX](fT ) = (LXf)] = LXT (f ]), LXT (fT ) = (LXf)T . (A.3)

Note that X] is homogeneous of degree −1, while XT is homogeneous of degree 0. Our next goal will

be to extend these operations from vector fields to multivector fields. First, we extend the assignment

X 7→ X] as an algebra homomorphism X•(M)→ X•(TM), i.e (X∧Y )] = X]∧Y ] for all X,Y ∈ X•(M).

Having done this, we extend the assignment X 7→ XT by the rule (X ∧Y )T = XT ∧Y ]+X]∧YT , which

ensures that the tangent lift of a multi-vector field of degree k is always homogeneous of degree 1−k (in

other words, the tangent lift of a multivector field is always linear). That these are the right extension
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rules will be made apparent by the next lemma, which tells us that these operations on multivector fields

behave with the Schouten bracket in the way we would hope.

Lemma A.2.1. For any pair of multivector fields ξ, ζ ∈ X(M), we have

[[ξ], ζ]]] = 0, [[ξT , ζ
]]] = [[ξ, ζ]]] = [[ξ], ζT ]], [[ξT , ζT ]] = [[ξ, ζ]]T .

Proof. When X,Y are vector fields, these formulas follow from the identity L[X,Y ] = [LX ,LY ], as we

can check on the generators f ], fT for f ∈ C∞(M). For the first bracket, simply note that [LX] ,LY ] ] is

of degree −2 and so is automatically zero. For the middle bracket, we have

L[XT ,Y ]]f
] = LXTLY ]f

] −LY ]LXT f
] = −LY ](LXf)] = 0

L[XT ,Y ]]fT = (LXTLY ] −LY ]LXT )fT = LXT (LY f)] −LY ](LXf)T = (LXLY f)] − (LYLXf)] =
(
L[X,Y ]f

)]
,

from which it follows that [XT , Y
]] = [X,Y ]]. The identites [X], YT ] = [X,Y ]] and [XT , YT ] = [X,Y ]T

are established similarly. The general result then follows from induction using the derivation property

of the Schouten bracket with respect to the wedge product. For example, if ξ ∈ Xk(M), ζ ∈ Xk̃(M),

and X ∈ X(M), we compute

[[ξT , (ζ ∧X)T ]] = [[ξT , ζT ∧X] + ζ] ∧XT ]]

= [[ξT , ζT ]] ∧X] + (−1)kζT ∧ [[ξT , X
]]] + [[ξT , ζ

]]] ∧XT + (−1)kζ] ∧ [[ξT , XT ]]

= [[ξ, ζ]]T ∧X] + (−1)kζT ∧ [[ξ,X]]] + [[ξ, ζ]]] ∧XT + (−1)kζ] ∧ [[ξ,X]]T

= ([[ξ, ζ]] ∧X)T + (−1)k(ζ ∧ [[ξ,X]])T

= [[ξ, ζ ∧X]]T .

The situation for the cotangent bundle T ∗M is slightly different. Rather than having two ways of

lifting functions to functions and vector fields to vector fields, instead we have some “mixing”. That is,

we can lift a function to a function (vertical lift), a function to a vector field (Hamiltonian), a vector

field to a function (duality), or a vector field to a vector field (cotangent lift). First note that we can

define the vertical lift of a function in the same way as for the tangent bundle, simply by pulling back

along the projection. To distinguish it from the vertical lift to the tangent bundle, we will denote this

operation by f 7→ f [. Next, any vector field X ∈ X(M) defines a linear function on T ∗M by duality,

which we denote by φX . Moreover, being dual to a Lie algebroid, T ∗M comes with a canonical Poisson

structure {·, ·}, which can be defined by the property

{φX , φY } = φ[X,Y ].

As usual, any function f ∈ C∞(T ∗M) determines a Hamiltonian vector field Xf := {f, ·} on T ∗M , so

given a vector field X ∈ X(M), we can define its cotangent lift XT∗ to be the Hamiltonian vector field

of the induced linear function φX . Symbolically, XT∗ is defined by

LXT∗ f = {φX , f}.
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With these notations, the Leibniz rule for the canonical Poisson bracket becomes the relation

(fX)T∗ = fXT∗ + φXXf .

Remark A.2.2. In some of the literature, the terminology differs from above. The most common difference

is to use the name complete lifts for both the tangent and cotangent lifts, allowing context to clarify

the bundle being lifted to (see for example [24]). Additionally, in some works related to the cotangent

bundle, the term “vertical lift” refers to a process of lifting tensor fields to the cotangent bundle that

does not preserve the bidegree of tensor fields [80]. On functions and vector fields, this vertical lift is

defined in our notation by f 7→ f [, X 7→ φX .

Finally, consider the case when V
p−→M is a vector bundle. A section of the dual bundle, τ ∈ Γ(V ∗),

defines a linear function on V in the usual way. Since we will be mixing this identification with the

lifting processes described above, we will denote this linear function by ϕτ , singling out the duality in

the tangent bundle with reserved notation. We can then define the vertical lift of a section σ ∈ Γ(V ) to

be the unique vector field σ] ∈ Γ(TV ) = X(V ) satisfying the conditions

Lσ](p
∗f) = 0, Lσ]ϕτ = p∗〈τ, σ〉

for all f ∈ C∞(M), τ ∈ Γ(V ∗).

Remark A.2.3. As with the brackets described in the previous section, the constructions presented in this

section admit generalizations from the tangent bundle TM of a manifold to an arbitrary Lie algebroid

A→M . A detailed account of these generalizations can be found in [24].



Appendix B

Normal Bundles and Clean

Intersections

One new construction appearing in this thesis is the means of obtaining a double normal space ν(M,N1, N2)

out of a manifold M and two submanifolds N1, N2 (see chapter 3). If the submanifolds N1 and N2 have a

“nice enough” intersection, then the space ν(M,N1, N2) is a double vector bundle. The precise condition

on N1 and N2 turns out to be that their intersection is clean, so we review this notion here, as well as

some preliminaries on normal bundles that generalize to the setting of the double normal bundle.

B.1 Normal Bundles

In this section we recall the definition of normal bundles and point out some of their uses that we will

need later on. It’s convenient to work with the category of manifold pairs. The objects in this category

are pairs (M,N), where M is a smooth manifold and N ⊆ M is a submanifold, and the morphisms

between two such pairs (M,N) and (M ′, N ′) are smooth maps Φ:M →M ′ such that Φ(N) ⊆ N ′. The

normal bundle may be thought of as a functor ν that associates to any manifold pair (M,N) the vector

bundle

ν(M,N) = TM |N/TN

overN . To any morphism Φ: (M,N)→ (M ′, N ′), ν associates the vector bundle morphism ν(Φ) = TΦ|N ,

which passes to the quotient since Φ(N) ⊆ Φ(N ′). The normal bundle ν(M,N) admits alternate

characterizations that are more algebraic in nature. To describe them, let I ⊆ C∞(M) be the ideal of

functions that vanish along N . Then we obtain a filtration of the space of smooth functions on M given

by

C∞(M) ⊇ I ⊇ I2 ⊇ . . .

The associated graded algebra A of this filtration can be identified with the space of polynomial functions

on the normal bundle ν(M,N). Indeed, for any p ∈ N let Ap denote the quotient of A by the vanishing

106
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ideal of p, then the identification is determined by the map

(Ap)1 → S(TpM/TpN)

[pr1 f ] 7→ ([Xp] 7→ Xp(f)),

where pr1:A→ A1 denotes the projection to the first component. Thus we obtain the normal bundle as

the character spectrum of A:

ν(M,N) = SpecA := HomAlg(A,R).

Furthermore, we see that the space of linear functions on ν(M,N) is precisely A1. This gives a third

description of the normal bundle: it is dual to the bundle having I/I2 as its space of sections.

A natural question to ask is how this normal functor interacts with the tangent functor. It turns out

that the two functors commute, in the sense that the two double vector bundles

ν(TM, TN) //

��

TN

��

ν(M,N) // N

Tν(M,N) //

��

TN

��

ν(M,N) // N

are isomorphic (see [10, Appendix A]). This compatibility allows us to use the normal bundle to linearly

approximate vector fields tangent to N and to produce neighbourhoods of N that are linear in the

directions normal to N . Specifically, any vector field X ∈ X(M) that is tangent to M can be thought

of as a map of manifold pairs X: (M,N) → (TM, TN). Applying the normal functor and then the

isomorphism of double vector bundles above, we get a vector field

ν(X): ν(M,N)→ Tν(M,N)

that we call the linear approximation of X. As a final note about normal bundles, we observe that the

lifting processes described in section A.2 above can be adapted from the tangent bundle to the normal

bundle. Indeed, for any function f ∈ In, let [f ]n denote it’s equivalence class in An = In/In+1. This

class determines a function f (n) on ν(M,N) by the formula

f (n) = ev[f ]n : SpecA→ R (B.1)

ϕ 7→ ϕ([f ]n). (B.2)

Note that in the particular cases that n = 0, f (0) is the pullback of f |N along the projection , while for

the case n = 1, f (1) = ν(f). We also observe that by construction, f (n) is homogeneous of degree n

for the vector bundle structure on ν(M,N). As with the tangent bundle, one can then also lift vector

fields: the filtration on C∞(M) induces a filtration on X(M), and then the lift X(n) of a vector field

X ∈ X(M)(n) is defined to satisfy the obvious relations with the lfits of functions defined above.
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B.2 Clean Intersections

As mentioned above, our goal in this section is to describe a compatibility condition between two

submanifolds N1, N2 ⊆ M that guarantees that the space ν(M,N1, N2) constructed in chapter 3 is a

double vector bundle. A natural starting point is the condition of transverse intersection. Recall that

we say N1, N2 intersect transversally if

TpM = TpN1 + TpN2

for all p ∈ N1 ∩N2. Note that this restriction is rather strong, for example if dimN1 + dimN2 < dimM

then N1 and N2 intersect transversally only if their intersection is empty. In fact, it is too strong for our

purposes, since if N1 and N2 have transverse intersection then not only will ν(M,N1, N2) be a double

vector bundle, it will be a vacant double vector bundle. This suggests that we can relax the condition

of transverse intersection and still obtain a DVB, with the cost of introducing a nontrivial core. The

correct way to relax the notion of transverse intersections turns out to be that of clean intersection, the

definition of which we now recall.

Definition B.2.1 (Cleanly intersecting submanifolds). Let M be a manifold, and let N1, N2 be sub-

manifolds. Then N1 and N2 are said to intersect cleanly if N1 ∩N2 is a submanifold of M such that

Tp(N1 ∩N2) = TpN1 ∩ TpN2

for all p ∈ N1 ∩N2.

The main result about cleanly intersecting submanifolds is that locally N1 and N2 look like coordinate

subspaces of M . A proof of this result, stated more precisely below, can be found in [34, Proposition

C.3.2].

Proposition B.2.2. Let N1 and N2 be cleanly intersecting submanifolds of M . Then there exist coor-

dinates {x1, . . . , xm} on M such that

N1 = {x1 = · · · = xe = 0, xe+1 = · · · = xk = 0},

N2 = {x1 = · · · = xe = 0, xk+1 = · · · = x` = 0}.

The number e = codimN1 + codimN2 − codim(N1 ∩ N2) appearing above is called the excess of

the intersection. Note that a clean intersection is transverse precisely when e = 0. The final result on

clean intersections that we need is the following consequence of proposition B.2.2, which was useful in

determining the DVB sequence of the double normal bundle in chapter 3.

Corollary B.2.3. Let N1 and N2 be cleanly intersecting submanifolds of M , and suppose f ∈ C∞(N1)

is a function that vanishes on N1∩N2. Then f is the restriction of a smooth function on M that vanishes

on N2.
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[24] J. Grabowski and P. Urbański. Tangent and cotangent lifts and graded Lie algebras associated with

Lie algebroids. Ann. Global Anal. Geom., 15(5):447–486, 1997.
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