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ABSTRACT

Focussed Solutions to the Einstein Vacuum Equations
A thesis submitted for the degree of Doctor of Philosophy in Mathematics, 2020

Nathan Thomas Carruth, Graduate Department of Mathematics, University of Toronto

We construct solutions to the Einstein vacuum equations in polarised translational symmetry in 3 + 1
dimensions which have H1 energy concentrated in an arbitrarily small region around a two-dimensional null
plane and large H2 initial data. Specifically, there is a parameter k and coordinates s, x, v, y such that the
null plane is given by x = k−1/2/2, v = T

√
2 − k−1/2 for some T independent of k, the H1 energy of the

solution is concentrated on the region [0, T ′]× [0, k−1/2]× [T
√
2− k−1, T

√
2]×R1, and the H2 norm of the

initial data is bounded below by a multiple of k3/4. The time T ′ has a lower bound independent of k. This
result relies heavily on a new existence theorem for the Einstein vacuum equations with characteristic initial
data which is large in H2. This result is proved using parabolically scaled coordinates in a null geodesic
gauge.
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0. INTRODUCTION

0.1. Previous work
The question of finite-time existence of solutions to the Einstein vacuum equations has been studied

from various angles. These include attempts to prove existence for general data in as low regularity as
possible, such as the L2 curvature conjecture (see Klainerman, Rodnianski and Szeftel [8]). This provides
a lower bound on the existence time of a solution to the Einstein vacuum equations with general initial
data depending on, among other things, the L2 norm of the curvature of the initial data, and is currently
the best result known in this direction; for an earlier classical result, see Fischer and Marsden [4]. From
another direction, one may seek more special solutions with even lower initial regularity. The results in
this thesis fall into this second category. Other important examples in the recent literature include the
results of Christodoulou [3], Klainerman and Rodnianski [6], and Klainerman, Luk and Rodnianski [5] on
the formation of trapped surfaces, as well as Luk and Rodnianski’s work on impulsive gravitational waves,
where the initial data has a delta-function singularity (see [9], [10]). We will now briefly review these results.

The papers [3], [6], [5], and [9] all make use of the same basic geometric setup, namely a double null
foliation of the spacetime. This can be described as follows. The spacetime is foliated by null geodesic cones

Cu, Cu,

where Cu is generated by outgoing null geodesics and Cu by incoming null geodesics, and u and u are optical

functions. Cu and Cu are assumed to intersect in spheres Su,u; let θ
A denote coordinates on these spheres

(we assume θA to be transported along the geodesics generating Cu and Cu). The work in [3], [6] and [5]
makes use of initial data on a particular outgoing null cone Cu0 which is assumed to be Minkowskian except
for a ‘blip’ on an interval of length (in u) equal to a (suitably small) number δ.

Christodoulou [3] then specifies initial data for the (conformal class of the) metric on Cu0
as follows

(see [3], 2.1). This process is slightly involved, but the important part for our purposes is as follows. Using
stereographic coordinates, the specification of the conformal class of a metric on the spheres Su0,u is reduced
to the problem of finding positive-definite elements of SL2(R) (2.28), which are then expressed as the
exponentials of elements of sl2(R) (the set of trace-free, symmetric 2 × 2 matrices on R). These matrices
are then specified using the ansatz ([3], (2.46))

ψu0
(u, θ) =

δ1/2

|u0|
ψ0

(u
δ
, θ
)
, (0.1.1)

for a fixed function ψ0. ψ0 is related (though not identical) to the function γ0 introduced below (see equation
(0.2.29) and equation (5.1.20)).

Klainerman and Rodnianski [6] re-express condition (0.1.1) in terms of ansätze on the trace-free part of
the second fundamental form of Cu0

, χ̂0, as follows (see [6], (1.14)):

χ̂0(u, ω) = δ−1/2f0(δ
−1u, ω), (0.1.2)

where ω are transported coordinates along their H0 (equivalent to Cu0
in [3]); note that this is in line with

(0.1.1) since χ̂0 should contain a u derivative of the metric. They then observe that a natural alternative
would be the parabolic scaling (see [6], (1.16))

χ̂0(u, ω) = δ−1/2f0(δ
−1u, δ−1/2ω), (0.1.3)

and use this to motivate conditions on the L2 norms of the curvature components and Ricci coefficients, for
example the assumption ([6], (2.2))*

δ1/2∥χ̂0∥L∞(0,u) +

2∑
k=0

δ1/2∥(δ∇4)
kχ̂0∥L2(0,u) +

1∑
k=0

4∑
m=1

δ1/2∥(δ1/2∇)m−1(δ∇4)
k∇χ̂0∥L2(0,u) <∞, (0.1.4)

* Here by L2(0, u) is meant an L2 norm on the sphere S0,u, and by L∞(0, u) is evidently meant an L∞

norm on the same sphere. Unlike [3], [6] solve in the region u ≥ 0 rather than u ≥ u0.

1



2 INTRODUCTION [0.1

where ∇4 indicates differentiation with respect to u, and ∇ indicates differentiation with respect to the
angular variables.

It should be noted that in [3], as well, the specific ansatz (0.1.1) is less important than the conditions
on the norms of the curvature components which it motivates, see [3], p. 20.

Ansätze (0.1.2) and (0.1.3) give, in the left- and right-hand columns respectively,

∥χ̂0∥L∞ ∼ δ−1/2,

∥∂kuχ̂0∥L∞ ∼ δ−k−1/2,

∥∇mχ̂0∥L∞ ∼ δ−1/2,

∥χ̂0∥L∞ ∼ δ−1/2,

∥∂kuχ̂0∥L∞ ∼ δ−k−1/2,

∥∇mχ̂0∥L∞ ∼ δ(−m−1)/2,

(0.1.5)

where the L∞ norms are taken over the initial outgoing null cone. The results in the left-hand column can be
compared to [3], (2.117), (2.69), (2.71); those in the right-hand column can be compared with the condition
(0.1.4).

The goal of [3] and [6] is to prove the existence of trapped surfaces, and this guides their assumptions.
Luk and Rodnianski [9], [10] proceed in a different direction (though obtaining, inter alia, a trapped surface
result, see [10]), by constructing solutions to the Einstein vacuum equations for which the curvature has a
delta function singularity across a null hypersurface. This is done by exploiting the structure of the Einstein
equations to compensate for the lack of regularity in one null direction by using high regularity in the spatial
directions. In [9] they construct initial data possessing such a curvature singularity, and also give a sequence
of C∞ initial data converging to it. Their main work is concerned with the singular initial data and hence
does not make use of scaling ansätze like those above (which would be inapplicable in the singular null
direction). Nevertheless, the smooth approximating sequence they construct has properties which can be
compared to (0.1.4). Specifically, use is made of the sequence of functions (see [9], section 3.1; we have
corrected an addition to a multiplication, as evidently intended)

hn(x) = 1{x≥0} ·
n∑

j=−∞
h̃(2jx) (0.1.6)

where

h̃(x) =

{
h̃0(x)− h̃0(2x), x ≥ 0

0, x < 0,

and h̃0 is a C∞ function with support contained in [−1, 1] and identically equal to 1 on [−1/2, 1/2]. The
smooth approximating sequence to the metric on the initial outgoing null cone is then obtained as follows.
First set

γ̂
n
= γ̂1 + (u− us)hn(u− us)γ̂2, (0.1.7)

where γ̂1, γ̂2 are positive definite matrices with detγ̂1 = 1, and us is a parameter chosen sufficiently small
that γ̂

n
is still positive definite. The smooth approximating sequence to the metric is then obtained by

normalising γ̂
n
:

γ̂n =
1√

detγ̂
n

γ̂
n
. (0.1.8)

Solutions are found for u ∈ (0, ϵ), where ϵ ≥ 2us is sufficiently small.
To connect these results to the scaling ansätze in [3] and [6], we make the following observations. From

(0.1.6), we obtain for all n

hn(x) = hn−1(2x) = h0(2
nx), allx, n (0.1.9)

hn(x) =

{
0, x < 2−(n+2)

1, x > 2−(n+1) . (0.1.10)

Let us fix n and, for the purpose of comparison with [3] and [6], set δ = 2−n. By (0.1.10), we have

h′n(x) = 0, x /∈ (2−(n+2), 2−(n+1)),
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so by (0.1.9) and (0.1.10) we have, setting M = sup
x∈R

h′0(x),

d

dx
(xhn(x)) = hn(x) + xh′n(x) = h0(2

nx) + 2nxh′0(2
nx) ≤ 1 +

1

2
M.

From this it is evident that there is some constant C independent of n such that∣∣∣∣ ∂∂uγ̂n
∣∣∣∣ ≤ C

for u ∈ (0, us). Continuing, it is clear that there is some constant Cm independent of n such that∣∣∣∣ ∂m∂um γ̂n
∣∣∣∣ ≤ Cm · 2mn = Cmδ

−m (0.1.11)

for u ∈ (0, us). (Luk and Rodnianski obtain a similar result for the difference γ̂′n = γ̂n − γ̂n−1, see [9],
section 3.1.) Using (0.1.11) to compare ∂uγ̂n with the ansätze in (0.1.5), it is clear that the derivatives of

the metric, in the direction along the initial outgoing null cone, are smaller in [9] by a factor of δ1/2. This
will be discussed more later in the context of our results, see the discussion at the end of the next section.

Note that, like [3], the result in [9] does not include any kind of scaling in the spatial directions tangent
to the spheres Su,u. As we noted above, the ability to exploit high regularity in the spatial directions is
important to the work in [9].

0.2. Introduction
We have seen that [3] and [6] both make use of scaling assumptions on initial data. In both cases,

however, the work is carried out, and the results proved, in the original coordinate system (what we might
term the physical picture), and powers of the scaling parameter are kept track of through weighted norms
(see (0.1.4), for example). In this thesis we make the next logical step and rewrite Einstein’s equations in a
coordinate system to which a parabolic scaling (like that in (0.1.3)) has been applied.

More specifically, we work with the class of polarised translationally symmetric* metrics, and apply a
parabolic scaling to the reduced system. Specifically, we work in coordinates (s, x, v, y), where the metric is
translationally symmetric in y and the coordinate system s x v can be described as follows (see Section 1.2 for
the detailed construction). v parameterises null geodesics foliating the hypersurface s = 0, s parameterises
null geodesics throughout spacetime, and x is a transverse spatial coordinate, constant along the geodesics
parameterised by v and s. Thus the hypersurfaces of constant v are null, while the hypersurfaces of constant
s, other than s = 0, need not be. In terms of the double null foliation, s corresponds to the coordinate u,
while on the initial null hypersurface s = 0 the coordinate v corresponds to u. (This correspondence does
not hold for s > 0 since the other hypersurfaces of s need not be null.) While for us the hypersurfaces s = 0
and v = 0 are hyperplanes, not cones, and hence there is no real reason to consider one of them ‘outgoing’
and the other ‘incoming’, we may, for ease of comparison with the double null case, refer to s = 0 as the
‘outgoing’ initial null hypersurface, and v = 0 as the ‘incoming’ initial null hypersurface.

The Einstein equations for a metric of this symmetry class can be analysed as follows. In the above
coordinate system, a metric which is polarised translationally symmetric along y can be written in the form
(where indices 0123 correspond respectively to sxvy)

gij =


0 0 −e−2γ(s,x,v) 0
0 a(s, x, v)e−2γ(s,x,v) b(s, x, v)e−2γ(s,x,v) 0

−e−2γ(s,x,v) b(s, x, v)e−2γ(s,x,v) c(s, x, v)e−2γ(s,x,v) 0
0 0 0 e2γ(s,x,v)

 , (0.2.1)

and the Einstein vacuum equations Ric (g) = 0 give rise† to Riccati equations

∂2sa =
(∂sa)

2

2a
− 4a (∂sγ)

2
(0.2.2)

* Note that our use of this symmetry class means that our results are not properly contained in those of
the papers just discussed, though there are connections; see Section 0.4 for further discussion.

† As usual, the Einstein vacuum equations also give rise to constraint equations. We shall say more about
these shortly.
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∂2sb =
1

2a
(∂sa) (∂sb)− 4∂sγ (b∂sγ + ∂xγ) (0.2.3)

∂2sc =
(∂sb)

2

2a
− 2∂sγ

(
2∂vγ +

(
b2

a
+ c

)
∂sγ + 2

b

a
∂xγ

)
− 2

a
(∂xγ)

2
(0.2.4)

for the quantities a, b, and c, and a free wave equation[(
b2

a
− c

)
∂2s + 2

b

a
∂s∂x − 2∂s∂v +

1

a
∂2x − 1

2

((
b2

a
+ c

)
∂sa

a
− 4

b

a
∂sb+

b

a2
∂xa+ 2∂sc−

2

a
∂xb+

∂va

a

)
∂s

− 1

2

(
b

a2
∂sa−

2

a
∂sb+

∂xa

a2

)
∂x − 1

2

∂sa

a
∂v

]
γ = 0 (0.2.5)

for γ. This is in fact simply the wave equation hγ = 0 with respect to the metric (where indices 012
correspond to sxv)

hij =

 0 0 −1
0 a b
−1 b c

 ; (0.2.6)

this can be compared to the form of the metric with respect to a double null foliation in 3 + 1 dimensions,
see for example Section 2.2 in [9]. Note that the system (0.2.2 – 0.2.5) is in 2 + 1 dimensions because of the
translational symmetry in y imposed on g. While the wave equation (0.2.5) is linear in γ, it is coupled in a
nonlinear way to the Riccati equations (0.2.2 – 0.2.4), which taken as a system are nonlinear.*

Most of our work will be done in a scaled picture, given as follows. Define the scaled coordinates

s = s, x = k1/2x, v = kv, (0.2.7)

and scaled quantities†

δℓ = k(a1/2 − 1), b = k1/2b, c = c, γ = kιγ, (0.2.8)

where ι ≥ 1/2 is an exponent we shall leave unspecified for the moment. In terms of these coordinates and
quantities, system (0.2.2 – 0.2.5) can be rewritten as

∂2sδℓ = −2(1 + k−1δℓ)k1−2ι(∂sγ)
2, (0.2.9)

∂2sb =
1

ℓ
k−1(∂sδℓ)(∂sb)− 4k1−2ι∂sγ(∂xγ + k−1b∂sγ), (0.2.10)

∂2sc = k−1 (∂sb)
2

2a
− 2k1−2ι∂sγ

(
2∂vγ + 2k−1 b

a
∂xγ + k−1

(
c+ k−1 b

2

a

)
∂sγ

)
− k1−2ι 2

a
(∂xγ)

2,(0.2.11)

while the wave equation (0.2.5) can be rewritten as[(
−2∂s∂v + ∂2x

)
+

1

k

(
2
b

a
∂s∂x − c∂2s − δ−1a∂2x −

(
∂sc−

1

a
∂xb+

∂vδℓ

ℓ

)
∂s +

(
1

a
∂sb−

ℓ∂xδℓ

a2

)
∂x − ∂sδℓ

ℓ
∂v

)

+
1

k2

(
b
2

a
∂2s −

(
c
∂sδℓ

ℓ
− 2

b

a
∂sb

)
∂s −

bℓ∂sδℓ

a2
∂x

)
− 1

k3
b
2
ℓ∂sδℓ

a2
∂s

]
γ = 0, (0.2.12)

* Curiously, the Riccati equations can be turned into a system of equations which are linear if solved in the
correct sequence: specifically, equation (0.2.2) gives a linear equation for ℓ = a1/2; given a (or, equivalently,
ℓ), equation (0.2.3) is then a linear equation for b; and given a (or ℓ) and b, equation (0.2.4) is then a linear
equation for c. These linear equations are however still nonlinearly coupled to (0.2.5); also the requirement
a > 0 – necessary to ensure the metric (0.2.6) stays nonsingular – will for a general solution of (0.2.2) fail to
hold after a finite time.

† Roughly speaking – see equation (0.2.14) below – ‘barred’ quantities, e.g., b, c, γ, will have bounds
independent of k – in appropriate spaces to be detailed later, see e.g. equation (0.3.30) – as will derivatives
of ‘barred’ quantities with respect to ‘barred’ variables.
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which is the wave equation hγ = 0 corresponding to the metric h = kh represented in the s x v coordinate
system by

hij =

 0 0 −1
0 1 0
−1 0 0

+
1

k

 0 0 0
0 δℓ(1 + k−1δℓ) b
0 b c

 . (0.2.13)

Note that, for ι ∈ [1/2, 1), the terms of leading order in k on the right-hand sides of (0.2.9 – 0.2.11) are
forcing terms quadratic in γ and (at least if we expand out 1/a = 1/(1 + k−1δℓ)2) independent of δℓ, b,
and c, and that for any ι ≥ 1/2 all other terms decay at least as fast as k−1. Similarly, the wave equation
(0.2.12) is clearly the Minkowski wave equation (−2∂s∂v +∂

2
x)γ = 0 with a correction of order k−1. Thus we

have the preliminary rough ansatz for the behaviour of the full solution on the bulk Γ. It will be sharpened
and extended considerably momentarily in terms of the L2-based energies defined in equation (0.3.14) and
equation (0.3.30) below. Our ansatz is that there is some C > 0, depending, among other things, on the size
of the initial data, but independent of k, such that∥∥∥∂jsδℓ∥∥∥

L∞(Γ)
,
∥∥∥∂js∂xδℓ∥∥∥

L∞(Γ)
,
∥∥∥∂js∂vδℓ∥∥∥

L∞(Γ)
,
∥∥∥∂jsb∥∥∥

L∞(Γ)
,
∥∥∥∂js∂xb∥∥∥

L∞(Γ)
,
∥∥∥∂jsc∥∥∥

L∞(Γ)
,
∥∥∥∂js∂mi γ∥∥∥

L∞(Γ)
< C

(0.2.14)
where Γ is the region (see the figure)

Γ = {(s, x, v) ∈ R3 | s ∈ [0, T ′], v ∈ [0, kT
√
2],

1√
2
(s+ v) ≤ kT} (0.2.15)

τ

kT

ζ

T ′

kT
√
2

vs

Σ0

Γ

Figure 0.2.1

for some T > 0, T ′ ≥ 1,* j,m = 0, 1, and ∂i denotes one of ∂s, ∂x and ∂v. Equivalently, in terms of the
unscaled coordinates and variables,∥∥∥k∂js(a1/2 − 1)

∥∥∥
L∞(0Γ)

,
∥∥∥k1/2∂js∂x(a1/2 − 1)

∥∥∥
L∞(0Γ)

,
∥∥∥∂js∂v(a1/2 − 1)

∥∥∥
L∞(0Γ)

,
∥∥∥k1/2∂jsb∥∥∥

L∞(0Γ)
,∥∥∂js∂xb∥∥L∞(0Γ)

,
∥∥∂jsc∥∥L∞(0Γ)

, ∥kι∂ms γ∥L∞(0Γ) ,
∥∥∥kι−1/2∂js∂xγ

∥∥∥
L∞(0Γ)

,
∥∥kι−1∂js∂vγ

∥∥
L∞(0Γ)

< C,

(0.2.16)
where here

0Γ = {(s, x, v) ∈ R3 | s ∈ [0, T ′], v ∈ [0, T
√
2],

1√
2
(k−1s+ v) ≤ T} (0.2.17)

* The restriction T ′ ≥ 1 is made for technical reasons related to the need to take a cutoff in the s direction
(see the discussion after Theorem 0.3.3 at the end of Section 0.3 below); specifically, we do not wish the
cutoff to increase norms of s derivatives. We shall occasionally ignore it below, but we may always impose
it when needed.
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j = 0, 1, and m = 0, 1, 2. As noted, we shall sharpen this considerably after we introduce energies for the
quantities a, b, c, and γ, below; in particular, we shall in addition require that derivatives with respect to x
and v do not change the order in k of any of the above quantities, up to the degree of regularity at which we
close our estimates (see Chapter 6 for the details). Note that this implies, effectively, that derivatives with
respect to x cost an extra factor of k1/2 while derivatives with respect to v cost an extra factor of k, exactly
as in [6], (1.23) (see also equation (0.1.4) above).

Our choice of gauge gives, on s = 0, the conditions (see Proposition 1.2.1)

b = c =
∂c

∂s
= 0. (0.2.18)

Given this, it can be shown that the Einstein vacuum equations are equivalent to the system (0.2.2 – 0.2.5)
together with the constraint equations on s = 0 (note the similarity between the first of these and (0.2.9))

∂2a

∂v2
=

(∂va)
2

2a
− 4a (∂vγ)

2
(0.2.19)

∂

∂v

(
a1/2

∂b

∂s

)
= 4a1/2∂xγ∂vγ (0.2.20)

2a
∂2a

∂v∂s
= 2a

∂2b

∂x∂s
− ∂b

∂s

∂a

∂x
+
∂a

∂v
∂a∂s+ a

(
∂b

∂s

)2

+ 4a (∂xγ)
2

(0.2.21);

in other words, we have the following lemma.

0.2.1. LEMMA. If the system (0.2.2 – 0.2.5) holds on the set 0Γ defined in (0.2.17), while the constraint
equations (0.2.19 – 0.2.21) hold on

0Σ0 = {(s, x, v) ∈ 0Γ | s = 0}, (0.2.22)

then the Einstein vacuum equations
Ric (g) = 0 (0.2.23)

for the metric given by (0.2.1) hold on 0Γ×R1.

The proof is given in Chapter 2.*
In the scaled picture, this result implies that the Einstein vacuum equations (0.2.23) are equivalent to

requiring that (0.2.9 – 0.2.12) hold on Γ (as defined in (0.2.15)), and that the constraint equations

∂2δℓ

∂v2
= −2(1 + k−1δℓ)k1−2ι (∂vγ)

2
(0.2.24)

∂v
(
[1 + k−1δℓ] ∂sb

)
= 4(1 + k−1δℓ)k1−2ι∂vγ∂xγ (0.2.25)

2(1 + k−1δℓ) · ∂
2δℓ

∂v∂s
= (1 + k−1δℓ)∂x

(
[1 + k−1δℓ]−1∂sb

)
+

1

2k

(
∂sb
)2

+ 2k1−2ι (∂xγ)
2

(0.2.26)

hold on the set
Σ0 = {(s, x, v) ∈ Γ | s = 0}.

It is principally in the scaled form (0.2.24 – 0.2.26) that we shall study the constraint equations (see Chapter
5).

As initial data for the system (0.2.2 – 0.2.5), we must specify

a|s=0, ∂sa|s=0, ∂sb|s=0, γ|s=0, γ|v=0

satisfying (0.2.19 – 0.2.21). By (0.2.19 – 0.2.21), specifying γ|s=0 and

a|s=0, v=v0 , ∂va|s=0, v=v0 , ∂sa|s=0, v=v0 , ∂sb|s=0, v=v0 , (0.2.27)

* Note that – unlike the treatment in [11] – here there are no separate constraint equations along the
incoming null hypersurface v = 0. It should be noted though that the Riccati equations (0.2.9 – 0.2.11) give
evolution equations for a, b and c along v = 0.
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for some v0 ∈ [0, T
√
2] will uniquely determine a, ∂sa and ∂sb on some neighbourhood of the line {v = v0} in

0Σ0. To extend these solutions to [0, T
√
2], with a uniform lower bound for a, requires additional conditions

on γ|s=0 as well as the quantities specified in (0.2.27). In particular, we have the following result (see Section
5.1). Note the similarity of equation (0.2.29) to the scalings in (0.1.1), (0.1.2), (0.1.3).

0.2.2. LEMMA. Let δv1, δv2 ∈ (0, 1) be two fixed numbers,* independent of k, and assume that k is large
enough that kT/

√
2 ∈ (δv1, kT

√
2− δv2). Let ϖ1, ϖ2 be C∞ functions on R2 with support contained in

[0, 1]× [0, δv1], [0, 1]× [0, δv2],

respectively, and which, together with all of their derivatives, have L∞ bounds on R2 which are independent
of k. Define ϖ0(x, v) on Σ0 by

ϖ0(x, v) =

 ϖ1(x, v), v ∈ [0, δv1]
0, v ∈ [δv1, kT

√
2− δv2]

ϖ2(x, v − (kT
√
2− δv2)), v ∈ [kT

√
2− δv2, kT

√
2]
. (0.2.28)

If we specify
γ|s=0 = k−ιo ·ϖ0(k

1/2x, kv), (0.2.29)

where o ≤ 1 is a scaling parameter independent of k, and

a|s=0, v=T/
√
2 = 1, ∂va|s=0, v=T/

√
2 = 0, ∂sa|s=0, v=T/

√
2 = 0, ∂sb|s=0, v=T/

√
2 = 0, (0.2.30)

and furthermore assume that ι ≥ 1/2, then for o sufficiently small (depending only on ϖ0) the equations
(0.2.19 – 0.2.21) have a unique solution on [0, T

√
2], and a has a uniform lower bound on that interval.

We shall show in Chapter 2 that under the conditions of Lemma 0.2.2, if we specify γ|v=0 appropriately
(in a way which satisfies the necessary consistency conditions, see equation (1.3.2)), the transverse derivatives

∂ℓsγ|s=0, ∂
ℓ
sa|s=0, ∂

ℓ
sb|s=0, ∂

ℓ
sc|s=0,

∂ℓvγ|v=0, ∂
ℓ
va|v=0, ∂

ℓ
vb|v=0, ∂

ℓ
vc|v=0,

for suitable values of ℓ, will also be uniquely determined in a way consistent with the system (0.2.2 – 0.2.5),
and will have L∞ bounds on s = 0 and v = 0 respectively which are independent of k. See Proposition 5.4.1
for the details.

The treatment of the constraints in the scaled picture sheds light on the requirements on γ|s=0 in
(0.2.29). As initial data for the system (0.2.9 – 0.2.12), we must specify

δℓ|s=0, ∂sδℓ|s=0, ∂sb|s=0, γ|s=0, γ|v=0

satisfying (0.2.24 – 0.2.25). As before, specifying γ|s=0 and

δℓ|s=0, v=v0
, ∂vδℓ|s=0, v=v0

, ∂sδℓ|s=0, v=v0
, ∂sb|s=0, v=v0

, (0.2.31)

for some v0 ∈ [0, kT
√
2], will uniquely determine δℓ, ∂sδℓ and ∂sb on s = 0. For the ansatz (0.2.14) to hold

with Γ replaced by Σ0, the quantities δℓ, ∂sδℓ and ∂sb must have uniform bounds, independent of k, on all
of Σ0. For general γ|s=0, this is nontrivial since (0.2.24 – 0.2.26) are transport equations in v, and on Σ0, v
ranges from 0 to kT

√
2. To avoid this difficulty we require first that γ|s=0 be supported in a region whose size

is independent of k.† A more careful study of (0.2.24) shows that for ι < 1, γ|s=0 can only have support near
v = 0 and v = kT

√
2: in other words, it cannot be supported in the middle of Σ0. In the unscaled picture,

this means that γ|s=0 must be supported in a double strip {0 < v < C1/k} ∪ {T
√
2−C2/k < v < T

√
2}, as

* The restriction δv1, δv2 < 1 is purely for technical convenience.
† Presumably it would be sufficient to require instead that γ|s=0 fall off sufficiently rapidly in v, but we

do not investigate that possibility in this thesis.
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in (0.2.29). For technical reasons, we also require the metric h to equal the Minkowski metric on Σ0\supp γ;
to obtain this condition, it suffices to require the quantities in (0.2.31) to vanish for v0 ∈ [C1, kT

√
2 − C2],

explaining (0.2.30).

Note that taking γ|s=0 supported on {T
√
2− C/k < v < T

√
2} (only) is similar to what is done in [3],

[5], and [6], inasmuch as it allows for the initial data to be Minkowskian followed by a short pulse whose
extent (in the null coordinate) is of size 1/k ∼ δ.

For ι = 1, the ansatz (0.2.14) with Γ replaced by Σ0 will hold for δℓ, b and c as long as γ|s=0 is compactly
supported, regardless of where its support lies.* Note that in this case the ansatz (0.2.14) implies that when
ι = 1, γ is smaller by a factor of k−1/2 than when ι = 1/2. This is exactly in line with our observation, when
comparing equation (0.1.5) with equation (0.1.11) in Section 0.2, that the derivatives of the initial metric in
Luk and Rodnianski [9] – where the initial data is large in the middle of the initial null hypersurface – are
smaller by a factor δ1/2 ∼ k−1/2 than the corresponding derivatives in Christodoulou [3] and Klainerman
and Rodnianski [6], where the initial data is large at the end of the initial null hypersurface.

The detailed construction of, and resulting L∞ bounds on, the initial data are given in Chapter 5.

0.3. Main results

Our main goal in this thesis is to prove finite-time existence of solutions to the Einstein vacuum equations
which are highly localised in H1 near a two-dimensional null plane. We achieve this in Chapter 7. Our results
there rely heavily on a more general existence theorem, for initial data satisfying the requirements laid out
at the end of Section 0.2.

Our main result may be stated in words as follows:

For every ϵ ∈ (0, 1) and every k sufficiently large, there is a solution to the Einstein vacuum equations
of the form (0.2.1) such that the fraction 1−ϵ of theH1 energy of γ, as a function of s x v, is contained
within a rectangular tube of size k−1/2 × k−1 centred on a null geodesic. The existence time of this
solution does not depend on k.

By way of comparison with [6], note that their ansatz (0.1.3) gives an isotropic scaling in the spatial
variables ω which amounts to taking initial data concentrated in a region equally small in both spatial
directions, whereas (because of the translational symmetry of the metric g in (0.2.1)) our result involves
initial data which is concentrated in a region small in only one direction (x), with both the data and the
solution constant in the other (y). Further, our solution remains concentrated off of the initial null surface.

More precisely, we have the following theorem (see Corollary 7.3.1).

0.3.1. THEOREM. Let ϵ ∈ (0, 1) be given, and let 0Γ be as defined in (0.2.17),

0Γ = {(s, x, v) ∈ R3 | s ∈ [0, T ′], v ∈ [0, T
√
2],

1√
2
(s+ kv) ≤ kT}.

Then there are constants C,C ′ > 0, independent of ϵ and k, such that for T ′, T sufficiently small, independent
of k, and all k sufficiently large there is a function γGB,o, supported on the prism

{(s, x, v) ∈ 0Γ | v ∈ [T
√
2− k−1, T

√
2], x ∈ [0, k−1/2]}

and satisfying

∥γGB,o∥Hℓ(0Σ0) ≥ C ′kℓ−5/4, (0.3.1)

* There is, however, a further obstruction in our situation to obtaining initial data satisfying the ansatz
(0.2.14) and the corresponding ansätze for higher derivatives: in order to obtain higher s derivatives of γ|s=0

we must differentiate the wave equation (0.2.12) with respect to s and then integrate with respect to v –
again, over an interval whose length is of order k. Thus in general it appears that higher s derivatives of
γ will pick up extra factors of k, violating the ansatz for the higher derivatives. We believe that there are
ways of producing solutions in this case – either by circumventing the problem using other multipliers, or
by specialising still further to functions ϖ which are constructed in such a way that the higher-order (in k)
terms ultimately all cancel – but leave the treatment of the matter for another time.
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ℓ ≥ 0, and a solution to the Einstein vacuum equations of the form (0.2.1) such that

γ|0Σ0
= γGB,o|0Σ0

,
∥γ − γGB,o∥H1(0Γ)

∥γ∥H1(0Γ)
≤ Cϵ. (0.3.2)

Here γGB,o will be a formal Gaussian beam for the solution metric (0.2.1), of whose initial data it is a
part. Thus the construction of γGB,o is more delicate than in the standard case, where the metric is known
from the outset. Also, for fixed T ′, T , the H1 norm of γGB,o on 0Σ0 will go to zero as a (in general, high)
power of ϵ. See Chapter 7 for the details.

The hard part in establishing this result is to show that the existence times T ′ and T do not depend on
k. This is nontrivial, since by (0.3.1) and (0.3.2) the initial data we use for γ have H2 norm on 0Γ of size
k3/4, which is too large to apply general results such as the L2 curvature conjecture [8].

Thus the main work in this thesis is to prove a finite-time existence result of solutions to the Einstein
vacuum equations for initial data in a class sufficiently broad to encompass that needed in Theorem 0.3.1.
We shall describe the result we obtain first in the unscaled picture, and then in the scaled picture, though
most of our work in the actual proof is done in the scaled picture.

To begin, we define coordinates

t =
1√
2
(s+ v), z =

1√
2
(s− v)

τ =
1√
2
(s+ kv), ζ =

1√
2
(s− kv);

(0.3.3)

regions (see the figure)*

0Γ = {(s, x, v) ∈ R3 | s ∈ [0, T ′], v ∈ [0, T
√
2],

1√
2
(k−1s+ v) ≤ T}

0Σ0 = {(s, x, v) ∈ 0Γ | s = 0}
0Σ

′
σ = {(0, x, υ) ∈ 0Σ0 | υ ∈ [σ − k−1T ′√2, σ]}

0U0 = {(s, x, v) ∈ 0Γ | v = 0}
0Aσ = {(s, x, v) ∈ 0Γ | 1√

2
(k−1s+ v) = σ}

∂0Aσ = 0Aσ ∩ 0Σ0

(0.3.4)

τ

σ

t

ζ

z

0Aσ

0AT

∂0Aσ

0U0

v

T

s

T ′

0Σ0

0Γ

* Regions labelled with variables containing a leading 0 superscript are the unscaled (physical space)
equivalent of the regions in the scaled picture labelled by the corresponding unmarked variables; e.g., 0Γ
corresponds to Γ, 0Σ0 to Σ0, etc.
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Figure 0.3.2

(we take x and ζ as coordinates on 0Aσ); auxiliary quantities*

On 0Γ:

0µ = k

((1 + c
2k

)
a− b2

2k

1− c
2k

)1/2

− 1

 ; (0.3.5)

On 0Γ, indices cd correspond to t x z:

0∆
cd
0A(t, x, z) =(
1 +

1

k
0µ

)− c
4

−1 0 0
0 k−1 0
0 0 k−2

+
1

2

(
1− c

2k

)
b2

2a − c
2

b
a
√
2

k−1
(

b2

2a − c
2

)
b

a
√
2

a−1 − 1 k−1b
a
√
2

k−1
(

b2

2a − c
2

)
k−1b
a
√
2

b2

2a − c
2




+
1

2
0µ

 1 0 0
0 k−1 0
0 0 k−2

 ; (0.3.6)

On 0Σ0, indices cd correspond to x v:

0∆
cd
0Σ =

1√
2

(
a1/2 − 1

)(
1 0
0 1

2ak
−1

)
+

1

2
√
2

(
a1/2 − a−1/2

)(
0 0
0 k−1

)
; (0.3.7)

On 0U0, indices cd correspond to s x:

0∆
cd
0U =

1√
2

(
a1/2 − 1

)(
k 0
0 1

2

)
+

1

2
√
2
a1/2

(
b2

a − c b
a

b
a

(
a−1 − 1

)) , (0.3.8)

where the factors of k come from the k in the definition of 0Aσ (see (0.3.4)) and the ansatz (0.2.16); sets of
dependent variables (δℓ =

(
a1/2 − 1

)
)

Ω0 = {δℓ, b, c}, Ω = {δℓ, b, c, ∂xδℓ, ∂vδℓ, ∂xb}; (0.3.9)

norms on the initial data (here I = (i1, i2) denotes a multiindex, |I| = i1 + i2, ∂
I = ∂i1x ∂

i2
z , we define a

function η by†

η(I) = i2 + i1/2,

X denotes one of 0Σ0 and 0U0, and the L2 norms are with respect to the coordinates x v (0Σ0,
0Σ

′
σ) or s x

* As with regions, quantities marked with a leading 0 superscript are the unscaled (physical space) equiv-
alents of the corresponding unmarked quantities in the scaled picture.

† Compare Klainerman and Rodnianski’s concept of signature and scaling in [6].
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(0U0))*

0ιn,ℓ[h](σ) =
√
2
∑

|I|≤n−1

∑
ω∈Ω

k−2η(I)+3/2
∥∥∂I∂ℓsω∥∥2L2(0Σ′

σ)
,

0ιn[h](σ) =

1∑
ℓ=0

0ιn,ℓ[h](σ),

0I0Σ0
[f ] = k3/2

∫
Σ0

1√
2

[
1

2
k−1(∂xf)

2 + k−2(∂vf)
2

]
+ k−1 · 0∆cd

0Σ∂cf∂df dv dx

0I0U0
[f ] = k1/2

∫
U0

1√
2

[
(∂sf)

2 +
1

2
k−1(∂xf)

2

]
+ k−1 · 0∆cd

0U∂cf∂df ds dx

0ιX,n,ℓ[γ] =
∑

|I|≤n−1

k−2η(I)IX [∂I∂ℓsγ]

0ιX,n[γ] =

1∑
ℓ=0

ιX,n,ℓ[γ],

(0.3.10)

squares of norms of the initial data on lines† (here the L2 norm on ∂Aσ is with respect to x)

0I◦m[f ](σ) =
∑

|I|≤m

k−2η(I)+1/2
∥∥∂If∥∥2

L2(∂Aσ)
,

0I1m[f ](σ) =
∑

|I|≤m

k−2η(I)+1/2
[∥∥∂If∥∥2

L2(∂Aσ)
+ k−1

∥∥∂I∂xf∥∥2L2(∂Aσ)

]
,

0ι[h](σ) =

1∑
ℓ=0

∑
ω∈Ω

I◦n−1[∂
ℓ
sω](σ),

0ι
1
[h](σ) =

1∑
ℓ=0

∑
ω∈Ω

I1n−1[∂
ℓ
sω](σ),

0I[γ](σ) =

1∑
ℓ1,ℓ2=0

{
0I◦n−1[∂

ℓ1+ℓ2
s γ](σ) + k−ℓ2/2 0I◦n−1[∂

ℓ1
s ∂

ℓ2
x γ](σ) + k−ℓ2 0I◦n−1[∂

ℓ1
s ∂

ℓ2
v γ](σ)

}
,

0I
1
[γ](σ) =

1∑
ℓ1,ℓ2=0

{
0I1n−1[∂

ℓ1+ℓ2
s γ](σ) + k−ℓ2/2 0I1n−1[∂

ℓ1
s ∂

ℓ2
x γ](σ) + k−ℓ2 0I1n−1[∂

ℓ1
s ∂

ℓ2
v γ](σ)

}

(0.3.11)

(note that

0ι[h](σ) ≤ 0ι
1
[h](σ), 0I[h](σ) ≤ 0I

1
[h](σ)), (0.3.12)

set

0ϵ[f ](σ) = k1/2
∫

0Aσ

1

2

[
(∂sf)

2 + k−1(∂xf)
2 + k−2(∂vf)

2
]
+ k−10∆

cd
0A∂cf∂df dx dζ (0.3.13)

* The explicit factors of k arise because we are working in the unscaled picture; compare the use of weighted
norms in Christodoulou [3] (e.g., (2.41), (12.125 – 12.140)) or explicit factors of the scaling parameter in
Klainerman and Rodnianski [6] (e.g., (1.22), (1.23)). One of the innovations of the current work is the
observation that explicitly scaling the coordinates allows one to work with energies which have no positive
powers of k, see equation (0.3.26), equation (0.3.27), and equation (0.3.30) below.

† Both here and in the scaled picture – see equation (0.3.27) – we use an underline to indicate squares of
norms defined along lines (in this case, ∂0Aσ).
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and finally define energies (the L2 norm on 0Aσ is with respect to x and ζ)

0En[γ](σ) =
∑

|I|≤n−1

1∑
ℓ=0

k−2η(I) 0ϵ[∂I∂ℓsγ](σ),

0En,ℓ[h](σ) =
∑

|I|≤n−1

∑
ω∈Ω

k−2η(I)+1/2
∣∣∂I∂ℓsω∣∣2L2(0Aσ)

,

0En[h](σ) =

1∑
ℓ=0

0En,ℓ[h](σ).

(0.3.14)

These give squares of (semi-) norms of C∞ functions on 0Aσ, and it is effectively with respect to these norms
that we shall close the energy estimates for our system. Note the extra s derivative (appearing as the explicit
∂ℓs) in (0.3.10), (0.3.11) and (0.3.14).

We fix ν ∈ (0, 1),* and assume that the initial data satisfy

sup
σ≤T

0ιn[h](σ) ≤
1

32
ν2, 0ι0Σ0,n[γ] +

0ι0U0,n[γ] ≤
1

12
ν2 (0.3.15)

sup
σ≤T

0ι
1
[h](σ) ≤ 1

1 +
√
2(n+ 2)C2

SCχ

ν2 (0.3.16)

sup
σ≤T

0I
1
[γ](σ) ≤ 1

1 +
√
2(n+ 2)C2

SCχ

ν2, (0.3.17)

where CS is the Sobolev embedding constant on R1 and Cχ is another constant introduced for technical
reasons (see equation (0.3.37) below). Existence of initial data satisfying the constraints (0.2.19 – 0.2.21)
and the bounds (0.3.15 – 0.3.17) will be shown (by working in the scaled picture) in Chapter 5; see especially
Corollary 5.4.1.

Given the above definitions, we may prove the following theorem.

0.3.2. THEOREM. Let n ≥ 4, T ′ > 1, T > 0. There is a constant C > 0 and a positive integer N , both
independent of k, such that if ν ∈ (0, 1) satisfies

ν ≤ Cmin

{
T ′−N ,

T ′N

T

}
,

then for all initial data satisfying (0.2.19 – 0.2.21) and (0.3.15 – 0.3.17), there exist functions δℓ, b and c on
Γ, having the given initial data on 0Σ0, and a function γ on 0Γ having the given initial data on 0Σ0 ∪ 0U0,
satisfying the Riccati equations (0.2.2 – 0.2.4) and the wave equation (0.2.5), and such that the bounds

0En[h](σ) ≤ ν2,
0En[γ](σ) ≤ ν2

(0.3.18)

hold for σ ∈ [0, T ]. The metric (0.2.1), with a = (1+ δℓ)2, will satisfy the Einstein vacuum equations on the
region 0Γ.

In the scaled coordinates, the foregoing can be written out as follows. We define for convenience the
quantities

δa = k(a− 1), δ−1a = k(a−1 − 1).

* The restriction ν < 1 is mostly for convenience, in that it allows us to bound νp by νq when q < p and
hence gives the inclusions X̂m,p ⊂ X̂m,q and X̂m,p

0 ⊂ X̂m,q
0 , see the discussion after Definition 6.3.1 below.

The methods in Chapter 6 would probably allow us to treat the case ν > 1 if more careful track were kept
of the exponents of the admissible nonlinearities used.
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We define coordinates

τ =
1√
2
(s+ v), ξ = x, ζ =

1√
2
(s− v), (0.3.19)

and note that τ and ζ will be timelike and spacelike, respectively, for k sufficiently large. We define regions
(see the figure)

Γ = {(s, x, v) ∈ R3 | s ∈ [0, T ′], v ∈ [0, kT
√
2],

1√
2
(s+ v) ≤ kT}

Σ0 = {(s, x, v) ∈ Γ | s = 0}
Σ′

σ = {(0, x, υ) ∈ Σ0 | υ ∈ [σ − T ′√2, σ]}
U0 = {(s, x, v) ∈ Γ | v = 0}

Aσ = {(s, x, v) ∈ Γ | 1√
2
(s+ v) = σ}

∂Aσ = Aσ ∩ Σ0,

(0.3.20)

τ

kT

σ

ζ

Aσ

AkT

∂Aσ

T ′

kT
√
2

U0

vs

Σ0

Γ

Figure 0.3.3

auxiliary quantities

On Γ:

µ = k


√
1 + 1

k (δa+
c
2 ) +

1
2k2 (cδa− b

2
)√

1− c
2k

− 1

 ; (0.3.21)

On Γ, indices cd correspond to τ ξ ζ:

∆cd
A (τ, ξ, ζ) =

(
1 +

1

k
µ

)− c
4

−1 0 0
0 1 0
0 0 1

+
1

2

(
1− c

2k

)
b
2

2ka − c
2

b
a
√
2

b
2

2ka − c
2

b
a
√
2

δ−1a b
a
√
2

b
2

2ka − c
2

b
a
√
2

b
2

2ka − c
2




+
1

2
µ

 1 0 0
0 1 0
0 0 1

 ; (0.3.22)

On Σ0 and Σ1, indices cd correspond to x v:

∆cd
Σ =

δℓ√
2

(
1 0
0 1

2a

)
+

1

2
√
2

(
1 + k−1δℓ

)
δ−1a

(
0 0
0 1

)
; (0.3.23)

On U0, indices cd correspond to s x v:

∆cd
U = δℓ

 1√
2

0 0

0 1
2
√
2

0
0 0 0

+
1

2
√
2

(
1 + k−1δℓ

)
b
2

2ka − c
2

b
a
√
2

b
2

2ka − c
2

b
a
√
2

δ−1a b
a
√
2

b
2

2ka − c
2

b
a
√
2

b
2

2ka − c
2

 (0.3.24)
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sets of dependent variables

Ω0 = {δℓ, b, c}, Ω = {δℓ, b, c, ∂xδℓ, ∂vδℓ, ∂xb}, (0.3.25)

norms on the initial data (here I = (i1, i2) denotes a multiindex, |I| = i1 + i2, ∂
I = ∂i1ξ ∂

i2
ζ , X denotes one

of Σ0 and U0, and the L2 norms are with respect to the scaled coordinates s, x, v, τ , ξ, ζ, as appropriate)

ιn,ℓ[h](σ) =
√
2
∑

|I|≤n−1

∑
ω∈Ω

∥∥∂I∂ℓsω∥∥2L2(Σ′
σ)
,

ιn[h](σ) =

1∑
ℓ=0

ιn,ℓ[h](σ),

IΣ0 [f ] =

∫
Σ0

1√
2

[
1

2
(∂xf)

2 + (∂vf)
2

]
+ k−1∆cd

Σ ∂cf∂df dv dx

IU0
[f ] =

∫
U0

1√
2

[
(∂sf)

2 +
1

2
(∂xf)

2

]
+ k−1∆cd

U ∂cf∂df ds dx

ιX,n,ℓ[γ] =
∑

|I|≤n−1

IX [∂I∂ℓsγ]

ιX,n[γ] =

1∑
ℓ=0

ιX,n,ℓ[γ],

(0.3.26)

squares of norms of the initial data on lines (as before, ∂i represents one of ∂s, ∂x, or ∂v, or equivalently ∂τ ,
∂ξ, ∂ζ)

I◦m[f ](σ) =
∑

|I|≤m

∥∥∂If∥∥2
L2(∂Aσ)

, I1m[f ](σ) =
∑

|I|≤m

∥∥∂If∥∥2
H1(∂Aσ)

,

ι[h](σ) =

1∑
ℓ=0

∑
ω∈Ω

I◦n−1[∂
ℓ
sω](σ), ι1[h](σ) =

1∑
ℓ=0

∑
ω∈Ω

I1n−1[∂
ℓ
sω](σ),

I[γ](σ) =

1∑
ℓ1,ℓ2=0

2∑
i=0

I◦n−1[∂
ℓ1
s ∂

ℓ2
i γ](σ), I1[γ](σ) =

1∑
ℓ1,ℓ2=0

2∑
i=0

I1n−1[∂
ℓ1
s ∂

ℓ2
i γ](σ)

(0.3.27)

(note that

ι[h](σ) ≤ ι1[h](σ), I[h](σ) ≤ I1[h](σ)), (0.3.28)

set

ϵ[f ](σ) =

∫
Aσ

1

2

[
(∂τf)

2 + (∂ξf)
2 + (∂ζf)

2
]
+ k−1∆cd

A ∂cf∂df dξ dζ, (0.3.29)

and finally define energies

En[γ](σ) =
∑

|I|≤n−1

1∑
ℓ=0

ϵ[∂I∂ℓsγ](σ),

En,ℓ[h](σ) =
∑

|I|≤n−1

∑
ω∈Ω

∣∣∂I∂ℓsω∣∣2L2(Aσ)
,

En[h](σ) =

1∑
ℓ=0

En,ℓ[h](σ).

(0.3.30)

These give squares of norms of C∞ functions on Aσ, and it is effectively with respect to these norms that
we shall close. Note the extra s derivative.
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We fix ν ∈ (0, 1), and assume that the initial data satisfy

sup
σ≤kT

ιn[h](σ) ≤
1

32
ν2, ιΣ0,n[γ] + ιU0,n[γ] ≤

1

12
ν2 (0.3.31)

sup
σ≤kT

ι1[h](σ) ≤ 1

1 +
√
2(n+ 2)C2

SCχ

ν2 (0.3.32)

sup
σ≤kT

I1[γ](σ) ≤ 1

1 +
√
2(n+ 2)C2

SCχ

ν2, (0.3.33)

where CS and Cχ are as in (0.3.15 – 0.3.17) above. Existence of initial data satisfying the constraints (0.2.24
– 0.2.26) and the bounds (0.3.31 – 0.3.33) will be shown in Chapter 5; see especially Corollary 5.4.1.

Given the above definitions, we prove the following theorem.

0.3.3. THEOREM. Let n ≥ 4, T ′ > 1, T > 0. There is a constant C > 0, independent of k, such that if
ν ∈ (0, 1) satisfies

ν ≤ Cmin

{
T ′−N ,

T ′N

T

}
,

then for all initial data satisfying (0.2.24 – 0.2.26) and (0.3.31 – 0.3.33), there exist functions δℓ, b and c
on Γ, having the given initial data on Σ0, and a function γ on Γ having the given initial data on Σ0 ∪ U0,
satisfying the Riccati equations (0.2.9 – 0.2.11) and the wave equation (0.2.12), and such that the bounds

En[h](σ) ≤ ν2,

En[γ](σ) ≤ ν2
(0.3.34)

hold for σ ∈ [0, kT ]. The metric (0.2.1), with

a = [1 + k−1δℓ]2, b = k−1/2b, c = c, γ = k−ιγ, (0.3.35)

will satisfy the Einstein vacuum equations on the region

{(s, x, v, y) ∈ R4 | s ∈ [0, T ′], v ∈ [0, T
√
2],

1√
2
(s+ kv) ≤ kT}.

This will be proved in Chapter 6.
We note a technical point. In deriving energy inequalities for En[h] and En[γ] it is useful to require the

upper boundary of the bulk region Γ to be a null hypersurface. Since this need not be the case in our choice
of coordinates, to prove Theorem 0.3.3 we first extend Γ to the region

Γ′ = {(s, x, v) ∈ R3 | s ∈ [0, 2T ′], v ∈ [0, kT
√
2],

1√
2
(s+ v) ≤ kT}, (0.3.36)

let χ ∈ C∞(R1) have support contained in [−2, 2] and satisfy χ|[−1,1] = 1, define

Cχ = sup {χ(i)(x) |x ∈ R1, i ∈ {0, · · · , n+ 1}}, (0.3.37)

and replace the quantities δℓ, b and c in the wave equation (0.2.12) with the quantities

δ̃ℓ = χ

(
s

T ′

)
δℓ, b̃ = χ

(
s

T ′

)
b, c̃ = χ

(
s

T ′

)
c, (0.3.38)

and also define the quantities

ã =
[
1 + k−1δ̃ℓ

]2
, δ̃a = ã− 1, δ̃−1a = ã

−1 − 1.



16 INTRODUCTION [0.3

We then replace the wave equation (0.2.12) with

0 =
(
−2∂s∂vγ + ∂2xγ

)
+

1

k

(
−δ̃−1a∂2xγ − c̃∂2sγ + 2

b̃

ã
∂s∂xγ − 1

2

(
2∂sc̃−

2

ã
∂xb̃+

∂v δ̃a

ã

)
∂sγ +

1

ã
∂sb̃∂xγ − 1

2

∂xδ̃a

ã
2 ∂xγ − ∂sδ̃a

ã
∂vγ

)

+ k−2

 b̃2
ã
∂2sγ − 1

2

(
c̃
∂sδ̃a

ã
− 4

b̃∂sb̃

ã
+
b̃∂xδ̃a

ã
2

)
∂sγ − 1

2

b̃

ã
2 ∂sδ̃a∂xγ

− k−3

1

2

b̃
2

ã
2 ∂sδ̃a∂sγ

 , (0.3.39)

similarly extend the quantities, regions, and norms in (0.3.20 – 0.3.30) to Γ′, and solve the system (0.2.9 –
0.2.11), (0.3.39) on Γ′. Existence of solutions to this system is shown by an iterative method. The results
thus obtained imply those given in Theorem 0.3.3.

0.4. Innovations, and further comparisons to previous work
In addition to the novelty of the main results (Theorems 0.3.1 – 0.3.3), the current work contains several

unique points of a technical nature. We begin with two which are unrelated to the coordinate scaling.

Choice of gauge, including constraint equations. Our gauge is constructed (see Section 1.2) by
ruling the surface Σ0 with null geodesics parameterised by v, and then ruling the three-dimensional region Γ
with null geodesics transverse to Σ0, parameterised by s. Thus the level surfaces of v are null, while the the
level surfaces of s, in general, are not (with the exception of Σ0 = {s = 0}). In particular our gauge choice
is definitely distinct from the double-null gauge more typically employed (see [3], [9]). (A similar gauge, but
using timelike rather than null geodesics, was used in [1].) Further, for a 3 + 1 metric of the form (0.2.1),
the Einstein vacuum equations give ordinary differential equations (in fact Riccati equations) for a, b and c
with source terms depending only on the first derivatives of γ. See Section 1.2 for the details.

In Chapter 2, we perform a direct evaluation of the full Ricci tensor and use it to derive the constraint
equations in this gauge. We show that they can be formulated as ordinary differential equations in v on
the surface Σ0 and are preserved by the evolution under equations (0.2.2 – 0.2.5); unlike the case of wave
coordinates in 3 + 1 dimensions (see [11]), there are no separate constraint equations along U0.*

Utilisation of the algebraic structure of the equations. As stated above (see Chapter 1 for the
proof), the Einstein vaccum equations reduced by one polarised translational symmetry imply the system of
Riccati and wave equations (0.2.2 – 0.2.5):

∂2sa =
(∂sa)

2

2a
− 4a (∂sγ)

2
(0.2.2)

∂2sb =
1

2a
(∂sa) (∂sb)− 4∂sγ (b∂sγ + ∂xγ) (0.2.3)

∂2sc =
(∂sb)

2

2a
− 2∂sγ

(
2∂vγ +

(
b2

a
+ c

)
∂sγ + 2

b

a
∂xγ

)
− 2

a
(∂xγ)

2
(0.2.4)[(

b2

a
− c

)
∂2s + 2

b

a
∂s∂x − 2∂s∂v +

1

a
∂2x − 1

2

((
b2

a
+ c

)
∂sa

a
− 4

b

a
∂sb+

b

a2
∂xa+ 2∂sc−

2

a
∂xb+

∂va

a

)
∂s

− 1

2

(
b

a2
∂sa−

2

a
∂sb+

∂xa

a2

)
∂x − 1

2

∂sa

a
∂v

]
γ = 0. (0.2.5)

The algebraic structure of these equations is special in at least two (related) ways, which are crucial to our
ability to close the energy estimates in the geodesic gauge we use. Note the top-order derivatives in γ which
occur in the wave equation (0.2.5): ∂2s , ∂s∂x, ∂s∂v, and ∂

2
x: in other words, the only second-order derivative

* Presumably, the equations on U0 corresponding in some sense to the constraint equations on Σ0 would
include the Riccati equations (0.2.2 – 0.2.4), but we consider these to be evolution equations rather than
constraint equations. The lack of symmetry between Σ0 and U0 appears to be due to the lack of symmetry
in our gauge choice.
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which does not involve ∂s is ∂2x. This, together with the second-order (in s) nature of the Riccati equations
(0.2.2 – 0.2.4), allows us to take an extra s (or s) derivative in the energies (0.3.30), which also define the
norms with respect to which we close (see Chapter 6 for the details). Second, note the derivatives of a, b,
and c which appear in the first-order coefficients in the wave equation:

∂sa, ∂xa, ∂va
∂sb, ∂xb
∂sc.

Now note the derivatives of γ which appear on the right-hand sides of the Riccati equations (0.2.2 – 0.2.4):

a : ∂sγ
b : ∂sγ, ∂xγ
c : ∂sγ, ∂xγ, ∂vγ.

Differentiating the terms appearing in each row of the second table with respect to the derivatives appearing
in the corresponding row of the first table gives exactly the second derivatives of γ which we must bound in
order to bound the coefficients appearing in the wave equation. These are precisely

∂2sγ, ∂x∂sγ, ∂v∂sγ
∂2sγ, ∂s∂xγ, ∂2xγ
∂s∂vγ, ∂s∂xγ, ∂s∂vγ :

which, in turn, are exactly those second-order derivatives of γ appearing in the wave equation itself!
More carefully, though somewhat less dramatically, the foregoing plays out in our work below in at least

the following way. Note that since we have extra s derivatives, due to the nature of the energies (0.3.30),
second-order derivatives involving an s are not too big of a concern. On the other hand, to bound ∂xb, we
need to bound ∂2xγ, which looks like a loss of derivative. However, as noted above, we may solve the wave
equation (0.2.5) for ∂2xγ in terms of second-order derivatives of γ with at least one s derivative, meaning that
this term is on the same footing as the others. In this vein, note that had the wave equation involved a ∂vb,
or any derivative of c other than ∂sc, we would not be able to treat it in this way, and this presumably would
lead to a real loss of derivative. In other words, somehow, the derivatives of the metric components a, b, and
c which we need to bound are more or less exactly those we are able to bound without losing derivatives.
This algebraic structure presumably reflects something deeper, but it is not readily apparent what.

Coordinate scaling. As noted, the foregoing innovations are independent of the coordinate scaling
(0.2.7). The explicit use of scaled coordinates is a very central innovation in the present work. In other
works with which we are familiar in which scaling assumptions play a role, explicitly or implicitly (such as
[3], [5], [6], [9]), the scaling is at most used as an ansatz, encoded in prescribed bounds on energies, or used
to define weighted norms; in none of these works are the actual equations themselves studied in a scaled
coordinate system. While the use of coordinate scaling does not, by itself, give rise to new results (it is, after
all, just a very simple change of coordinates), it does, in our setting at least, give rise to a much cleaner
presentation, and greatly reduces the number of explicit powers of k which must be carried around (compare
the definitions in (0.3.5 – 0.3.14) with those in (0.3.21 – 0.3.30), for example). More significantly, by allowing
us to separate out terms in both the wave (0.2.5) and Riccati (0.2.2 – 0.2.4) equations by order in k, it makes
transparent the origin of the ansätze (0.2.14), (0.2.16). We also hope that this new approach will lead to
further new results in the future.

Comparisons on the scaling of χ̂. Precise comparisons can be made between the main existence
results (Theorems 0.3.2 and 0.3.3) and the results in [3], [5], [6], and [9]. Given that all four of those references
work in a double null foliation, which is distinct from the geodesic gauge we use, and given also that our
scaling is imposed in 2 + 1 dimensions while that in [3 – 6], [9] is imposed in 3 + 1 dimensions, the best
way to obtain precise comparisons is through L∞ norms of initial data. In particular we may compare the
second fundamental form of the spacelike surfaces {x = x0, y = y0} in the outgoing initial null hypersurface
{s = 0} with analogous quantities in [3 – 6], [9]. In our case, the trace-free part of the second fundamental
form is given with respect to the orthonormal frame X = eγa1/2∂x, Y = e−γ∂y by (see Section 6.7)

χ̂ =

(
−∂vγ + ∂va

4a 0

0 ∂vγ − ∂va
4a

)
.
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We also have the following result (see Proposition 6.7.1):

0.4.1. PROPOSITION. Suppose that γ|0Σ0
is specified as in (0.2.29), but with an overall factor of k−ι instead of

k−1/2, with ι ≥ 1/2. (Thus, in particular, γ|0Σ0
is supported in the double strip {0 < v < k−1}∪{T

√
2−k−1 <

v < T
√
2}.) Then there are constants C1, C2, depending on ℓ, m, and ϖ but not on k, such that*

∥∂ℓv∂mx γ∥L∞(0Σ0) = C1k
ℓ+m/2−ι, ∥∂ℓv∂mx γ∥L2(0Σ0) = C2k

ℓ+m/2−ι−3/4.

By Proposition 0.4.1, ∂ℓv∂
m
x χ̂ will have size k1+ℓ+m/2−ι in L∞. This may be compared to (0.1.5), and

also to (0.1.11) if we recall that χ̂0 ∼ ∂uγ̂n. When ι = 1/2, this is exactly the scaling appearing in the
right-hand column of (0.1.5) (note that a scaling for both ω and u derivatives follows in that case as well).
When ι = 1, it is the scaling given in (0.1.11) when m = 0, in accordance with what we have already noted
at the end of Section 0.2 above.

0.5. Extensions
In this section we suggest a way in which the preceding results may admit of extension.
By domain of dependence arguments (see equation (1.2.7)), the metric g arising via (0.2.1) from a

solution to (0.2.2 – 0.2.5) with initial data as constructed in Lemma 0.2.2 will be Minkowskian whenever x
is outside of a compact set whose size is determined by k−1, T , and T ′. Let us term the closure of the set on
which a solution gives rise to a metric which is not Minkowskian its support (in terms of the usual definition
of support, this is the union

supp (a− 1) ∪ supp b ∪ supp c ∪ supp γ.)

Let (a0, b0, c0, γ0) be a solution to (0.2.2 – 0.2.5) with initial data as in Lemma 0.2.2. Clearly, then, for any
∆x, this solution shifted in x by an amount ∆x, i.e., the quadruple

(a1, b1, c1, γ1)|(s,x,v) = (a0, b0, c0, γ0)|(s,x+∆x,v),

will also be a solution to (0.2.2 – 0.2.5). For ∆x sufficiently large, depending only on k−1, T , and T ′, the
support of (a1, b1, c1, γ1) will be disjoint from that of (a0, b0, c0, γ0). If we further define, for any integer n,
the quadruples

(an, bn, cn, γn)|(s,x,v) = (a0, b0, c0, γ0)|(s,x+n∆x,v),

then clearly the supports of the (an, bn, cn, γn) will be pairwise disjoint. By domain of dependence arguments,
then, we may paste them together to obtain the solution

(a, b, c, γ) =

{
(an, bn, cn, γn), x ∈ [0, 1] + n∆x

(1, 0, 0, 0), otherwise.

Here we can think of n as varying over a finite (though arbitrarily large) subset of Z. In particular, noting
that Proposition 0.4.1 shows that ∥γ0∥L2(0Σ0) is of size k−5/4, if we choose n > k5/4+α for some α we can
produce a solution with initial data for γ of size at least kα in L2(0Σ0). Note that T and T ′ are completely
independent of n, and of course still independent of k.

0.6. Historical note.
The bulk of the work through the end of Chapter 6 was completed before the connection of the key

coordinate scaling (0.2.7) to the work in [6] was understood. It is possible that the current treatment could
be modified to bring it closer to the method suggested there. On the other hand, the scaling here originated
from a study of the structure of the equations (0.2.2 – 0.2.5), and it is possible that a further study of this
structure could shed additional light on the significance of this scaling.

0.7. Outline of current work.
We now give a short outline of the present work. In Chapter 1 we describe how the full 3 + 1 Einstein

vacuum equations may be reduced to the scalar field Einstein equations in 2 + 1 dimensions when a trans-
lational symmetry is present, construct a gauge choice for the reduced metric, and show how the reduced

* We obtain actual equalities, rather than just bounds, since we are working with the initial data, which
is known exactly.
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Einstein equations give rise to Riccati equations for the metric components. In Chapter 2 we determine the
constraint equations, prove that they are preserved by the evolution, and show that the constraint equations
on the initial hypersurface together with the Riccati and wave equations derived in Chapter 1 are equivalent
to the Einstein vacuum equations. We then briefly introduce our choice of initial data. In Chapter 3 we then
describe a certain coordinate scaling and rewrite the equations in the scaled coordinates. In Chapter 4 we
give certain fairly straightforward algebraic and analytical background results. In Chapter 5 we construct
the initial data and show how to bound their higher transverse derivatives. In Chapter 6 we prove the
existence theorem Theorem 0.3.3. Finally, in Chapter 7 we apply the results of Chapter 6 to construct a
family of solutions to the 3 + 1 Einstein vacuum equations which are concentrated in a small region along a
null 2-plane.

0.8. Organisation.
Each chapter is broken into sections. Propositions, lemmata, theorems, and corollaries are numbered

separately in each section (so each section has, for example, a Proposition 1, Lemma 1, Theorem 1, etc.).
Equations are also numbered separately in each section. References to equations and results are of the form
(chapter number.section number.item number).

0.9. Notations and conventions.
For convenience in dealing with cases where T ′ > 1, we set T ′ = min{1, T ′}; this allows us to replace

quantities T ′ −m with T ′ −n if n > m.
We denote the partial derivative of a function f with respect to an independent variable x by either ∂xf

or f,x. We use these two notations interchangeably.
We always work with tensors in terms of their components, and employ the Einstein summation con-

vention throughout. When writing out the covariant derivative, we use expressions like

∇iTjkℓ (0.9.1)

to mean the ijkℓ element of the 4-covariant tensor ∇T – it must be borne in mind that this is completely
different from the ith derivative of the jkℓ element of the 3-covariant tensor T , which would be simply ∂iTjkℓ
and is of course not a tensor. Where confusion might result, we employ parentheses as appropriate.

To facilitate complicated calculations, for example those of the Ricci tensor in Chapter 2, it is often
convenient for us to treat rank-2 tensors (of whatever degree of co- or contravariance) as matrices; we make
the convention that in doing so the first index (left to right) represents the row while the second index
represents the column. When working with indices, in the unscaled picture (see Chapter 3) we always use 0
for s, 1 for x, 2 for v, and (in the few cases when we deal with the full 3+ 1 problem directly) 3 for y, where
y is the coordinate of translational symmetry (see Section 1.1) and sxv is the coordinate system described
in Section 1.2. In the scaled picture (again, see Chapter 3) we use 012 for either s x v or τξζ (see Chapter 3,
equation (3.3.1), and Chapter 6, equation (6.2.1)); which one is intended will be indicated unless it is clear
from the context. We shall not have occasion to deal with the full 3 + 1 metric in the scaled picture.

Our definition of the Sobolev norm Hm includes the L2 norm; in other words, for example,

∥f∥2Hm(Rp) =
∑

|I|≤m

∥∂If∥2L2(Rp),

where I is a multiindex in all directions in Rm. Similarly, if X ⊂ Rm is any open linear submanifold (i.e.,
any open subset of an affine subspace of Rm), or any open linear submanifold together with some or all of
its boundary points, we shall, unless explicitly noted otherwise, take

∥f∥2Hm(X) =
∑

|J|≤m

∥∂Jf∥2L2(X),

where J is a multiindex in all directions tangent to X. We shall write the Sobolev norm without the L2

norm as
∥f∥2Hm

◦ (X) =
∑

1≤|J|≤m

∥∂Jf∥2L2(X). (0.9.2)

When dealing with function spaces, we shall sometimes, by a slight abuse of notation, write things like
f ∈ L2(∂X) when f is a function defined on X whose restriction to ∂X is in L2 on ∂X, in place of the
technically correct f |∂X ∈ L2(∂X).



1. FOUNDATIONS

1.1. Reduction of Einstein vacuum equations in the presence of one translational symmetry.
Let (xi) denote rectangular coordinates on R4, and suppose that on some open set in R4 we are given

a Lorentzian metric which has representation

g = e2γ(x
0,x1,x2)dx3 ⊗ dx3 +

2∑
i,j=0

0hij(x
0, x1, x2)dxi ⊗ dxj ,

i.e., that g has a linear translational symmetry along x3. Clearly, 0hij is a Lorentzian metric on R3. Suppose
that g satisfies the vacuum Einstein equations Ric (g) = 0, where Ric (g) denotes the Ricci tensor of g, and let

hij = e2γ(x
0,x1,x2)

0hij . Then, letting Rij denote the Ricci tensor of, and h the wave operator corresponding
to, h, it can be shown (see [14], Appendix D, [1], (1.12), (1.13)) that, on an appropriate open set in R3,

hγ = 0, Rij = 2∂iγ∂jγ. (1.1.1)

We note that these equations are the Einstein equations coupled to a free scalar field in 2 + 1 dimensions,
but we shall not make explicit use of this fact going forwards.

1.2. Gauge choice
In this section we construct the gauge we shall use to analyse equation (1.1.1). We shall assume that

there is a neighbourhood O in the domain of h and γ which can be coordinatised in the following way.
Let p ∈ O. There is a spacelike curve λ : R1 → O satisfying λ(0) = p and h(λ̇(x), λ̇(x)) = a0(x), where
a0 : R1 → R+ and the support of a0 − 1 in R1 is compact (note that this last condition can be guaranteed
by reparametrisation as long as a has a uniform upper bound and a uniform positive lower bound on R1).*
Then along λ there are null vectors L(x) and L(x), smooth in x, such that if X = λ̇ then {L(x), X(x), L(x)}
is a basis of Tλ(x)O with respect to which h has the matrix representation 0 0 −1

0 a0 0
−1 0 0


(in other words, h(X,X) = a0, h(L,L) = h(L,L) = −1, and all other inner products vanish). Consider
the null hypersurface ruled by the null geodesics tangent to vectors L(x) (call it Σ0

0), and extend L(x) to
this hypersurface by parallel transport along these geodesics. Extend the function x to Σ0

0 by requiring it
to be constant on the null geodesics tangent to L, let v denote the affine parameter along these geodesics
with v|λ = 0, and define on Σ0

0 the function a = h(∂x, ∂x). By construction, a = a0 on the line v = 0, and
therefore there is a V ′ > 0 such that a(x, v) > 0 for v ∈ [0, V ′), x ∈ R1.

We now wish to complete the process by foliating a neighbourhood of Σ0
0 by null geodesics. Define on

s = 0 the function†
d = h(∂x, L), (1.2.1)

and define a new vector field along Σ0
0 by

N = L− d

a
∂x − d2

2a
∂v. (1.2.2)

We will show in the proposition below that N is null and perpendicular to ∂x on Σ0
0.

We now complete the construction of the gauge by foliating a neighbourhood of Σ0
0 by null hypersurfaces

ruled by geodesics parallel to N(x, v); call this neighbourhood Γ′. Let s be an affine parameter along these

* Note that it would be possible, again by a reparameterisation, to require a0(x) = 1 for all x. As we
shall see in Chapter 5, however, such a condition would be too restrictive.

† Note that requiring d = 0 would contradict the constraint equations derived in Chapter 2.
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satisfying s|Σ0
0
= 0, and extend x and v to functions on Γ′ by requiring them to be constant along these

geodesics. By construction, there exist S, V > 0 such that the region

Γ0 = {(s, x, v) ∈ R3 | s ∈ [0, S), v ∈ [0, V )} (1.2.3)

is contained in Γ′ and such that a > 0 on Γ0. Given this coordinate system, we have the following result.

1.2.1. PROPOSITION. There exist functions a : Γ0 → R+, b, c : Γ0 → R1 such that on Γ0 the representation
of h with respect to the basis {∂s, ∂x, ∂v} is given by 0 0 −1

0 a b
−1 b c

 (1.2.4)

Furthermore, the functions a, b, and c satisfy the following conditions, for all x ∈ R1, v ∈ [0, V ):

a(0, x, 0) = a0(x), b(0, x, v) = c(0, x, v) = ∂sc(0, x, v) = 0. (1.2.5)

Proof. We note first that along λ we have X = ∂x and L = ∂v; thus along λ we have d = h(∂x, L) = 0,
so by equation (1.2.2) N = L, which gives, along λ, L = ∂s. Now by construction, along λ the metric h in
the basis {L,X,L} = {∂s, ∂x, ∂v} has the representation (since a = a0 on λ) 0 0 −1

0 a 0
−1 0 0

 . (1.2.6)

We claim that the metric h has the representation (1.2.6) in the basis {∂s, ∂x, ∂v} everywhere on s = 0. To
see this, note first that since ∂v is parallel-transported along itself on s = 0, it is null there, so we have
h(∂v, ∂v) = 0. Next, note that ∇∂v

∂x = ∇∂x
∂v since ∂x and ∂v are coordinate vector fields; thus

∂vh(∂v, ∂x) = h(∂v,∇∂v
∂x) = h(∂v,∇∂x

∂v) =
1

2
∂xh(∂v, ∂v) = 0,

so that h(∂v, ∂x) is constant on s = 0 and hence equal to zero there. Finally, we have (recalling that L is
parallel-transported along ∂v on s = 0, so that h(L, ∂v) = −1, h(L,L) = 0 must hold everywhere on s = 0)

h(∂s, ∂v) = h(N, ∂v) = h(L, ∂v) = −1

h(∂s, ∂x) = h(L, ∂x)−
d

a
h(∂x, ∂x) = d− d

a
· a = 0

h(∂s, ∂s) = 2
d2

2a
− 2

d

a
h(L, ∂x) +

d2

a2
h(∂x, ∂x) =

d2

a
− 2

d2

a
+
d2

a
= 0,

showing that in the basis {∂s, ∂x, ∂v}, the metric h does indeed have the representation (1.2.6) everywhere
on s = 0.

To finish the proof, note that since ∂s is parallel-transported along itself throughout Γ0, we have by the
foregoing that h(∂s, ∂s) = 0 everywhere in Γ0, and thus

∂sh(∂x, ∂s) = h(∂s,∇∂s∂x) = h(∂s,∇∂x∂s) =
1

2
∂xh(∂s, ∂s) = 0,

and by the same logic ∂sh(∂v, ∂s) = 0. Thus throughout Γ0 we have also h(∂x, ∂s) = 0, h(∂v, ∂s) = −1, and
the representation of h in the basis {∂s, ∂x, ∂v} is indeed given by 0 0 −1

0 a b
−1 b c


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for functions a, b, and c satisfying for all x ∈ R1, v ∈ [0, V )

a(0, x, 0) = h(∂x, ∂x)|λ = a0(x),

b(0, x, v) = h(∂x, ∂v)|s=0 = 0,

c(0, x, v) = h(∂s, ∂v)|s=0 = 0.

The condition a > 0 was already obtained in the definition of Γ0 by a suitable restriction on S and V .
Finally, note that on s = 0

∂sc = ∂sh(∂v, ∂v) = 2h(∂v,∇∂s
∂v) = 2h(∂v,∇∂v

∂s) = 2∂vh(∂v, ∂s) = 0,

where we have used the fact that ∂v is parallel-transported along itself. This completes the proof. QED.

Recall (see section 0.9) that when we work in the unscaled picture (as here) the indices 012 always
represent the coordinates s, x, and v, respectively.

Conversely, let h be some metric on the region Γ0 which has the form given in equation (1.2.4) and
satisfying (1.2.5), where a0 : R1 → R+ is equal to 1 outside of some compact set. From our work in Chapter
2 below, the Christoffel symbols for h are given by

Γ0
ij =

1

2a

 0 ba,s − ab,s bb,s − ac,s
ba,s − ab,s −(b2 − ac)a,s + ba,x − a(2b,x − a,v) −(b2 − ac)b,s + ba,v − ac,x
bb,s − ac,s −(b2 − ac)b,s + ba,v − ac,x −(b2 − ac)c,s + b(2b,v − c,x)− ac,v


Γ1
ij =

1

2a

 0 a,s b,s
a,s a,x − ba,s a,v − bb,s
b,s a,v − bb,s 2b,v − c,x − bc,s


Γ2
ij =

1

2a

 0 0 0
0 aa,s ab,s
0 ab,s ac,s

 .

Since Γk
00 = 0 for k = 0, 1, 2, it is straightforward to show that all curves x = x0, v = v0, s = σ in Γ0 are

geodesics. They will be null since on Γ0 we have h(∂s, ∂s) = 0. Similarly, on s = 0 the Christoffel symbols
become

Γ0
ij =

1

2a

 0 −ab,s 0
−ab,s ab,v 0
0 0 0


Γ1
ij =

1

2a

 0 a,s b,s
a,s a,x a,v
b,s a,v 0


Γ2
ij =

1

2a

 0 0 0
0 aa,s ab,s
0 ab,s 0

 ;

since now Γk
22 is also zero for k = 0, 1, 2, it is again straightforward to show that the curves s = 0, x = x0,

v = σ in Γ0 are geodesics, which are again null since on s = 0 we have h(∂v, ∂v) = 0. Finally, the curve
s = v = 0, x = σ will be a spacelike curve since a0 > 0. Thus if h is any metric which on a set of the form
Γ0 = {(s, x, v) ∈ R3 | s ∈ [0, S), v ∈ [0, V )} has the form given in Proposition 1.2.1, then the curve s = v = 0
must be spacelike, the curves s = 0, x = x0 must be null geodesics, and the curves x = x0, v = v0 must also
be null geodesics.

We shall work in this gauge from henceforth. For future use, we note that the determinant of the matrix
in Proposition 1.2.1 is −a = −h(∂x, ∂x), and that its inverse (and hence the representation of h−1) is

−1

a

 ac− b2 −b a
−b −1 0
a 0 0

 =

 b2

a − c b
a −1

b
a

1
a 0

−1 0 0

 .
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It is worth noting that a Minkowski metric on R3 is of the above form with a = 1, b = c = 0, in the
which case s and v are null coordinates and x is a spatial coordinate. For future reference, we note the
following related result. Suppose that on {s = 0} ∪ {v = 0}, the functions

a− 1, b, c

have support contained in the strip {x1 ≤ x ≤ x2}. As just noted, the metric on {(s, x, v) ∈ Γ0 | s = 0or v =
0andx /∈ [x1, x2]} will be Minkowskian. If we let Cx1

and Cx2
denote the Minkowskian null cones emanating

from (0, x1, 0) and (0, x2, 0), respectively, then by domain of dependence arguments it is clear that h will be
Minkowskian on the set

Γ0\ [Cx1
∪ Cx2

∪ {(s, x, v) ∈ Γ0 |x ∈ [x1, x2]}] . (1.2.7)

We shall now derive evolution equations for a, b, and c, given that the metric h has Ricci tensor which
satisfies the second of equations (1.1.1). These equations can also be derived from the explicit representation
of the Ricci tensor given in Chapter 2 below, but here we shall give a simpler geometric derivation. Let*
Kij = ∇iNj . Then we see that

∂sa = ∂sh(∂x, ∂x) = 2h(∂x,∇∂x
∂s) = 2K11,

∂sb = ∂sh(∂x, ∂v) = h(∇∂x
∂s, ∂v) + h(∂x,∇∂v

∂s) = 2K12,

∂sc = ∂sh(∂v, ∂v) = 2h(∂v,∇∂v
∂s) = 2K22.

(1.2.8)

Further, Kij satisfies the following equation:

1.2.2. PROPOSITION. We have

∂sKij = hlkKikKlj − 2hij (∂sγ)
2
+ 2hi0∂sγ∂jγ + 2h0j∂sγ∂iγ − hkl∂kγ∂lγhj0hi0,

or alternatively

∂sKij = hlkKikKlj − 2hij (∂sγ)
2 − 2δi2∂sγ∂jγ − 2δj2∂sγ∂iγ − δi2δj2h

kl∂kγ∂lγ,

where δij represents the Kronecker delta.

Proof. Let Kj
i = hjkKik = ∇iN

j . Then we have

(∇NK)ji = ∂sK
j
i − Γk

0iK
j
k + Γj

0kK
k
i .

Now
Γk
0i = hkl (h0l,i + hil,0 − h0i,l) ;

but h0i is constant for all i, so
Γk
0i = hklhli,0 = hkl(2Kli) = 2Kk

i ,

by equations (1.2.8) above. Thus

(∇NK)ji = ∂sK
j
i − 2Kk

i K
j
k + 2Kj

kK
k
i = ∂sK

j
i .

But now also (remember that Nk∇kN
j = 0 since N = ∂s is parallel-transported along itself)

(∇NK)ji = Nk∇k∇iN
j

= Nk∇i∇kN
j −Rj

kilN
kN l

= −
(
∇iN

k
) (

∇kN
j
)
−Rj

0i0

= −Kk
i K

j
k −Rj

0i0.

* If we restricted i and j appropriately, this would be the second fundamental form corresponding to the
foliation of Γ0 by surfaces of constant s.
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Thus we have

∂sK
j
i = −Kk

i K
j
k −Rj

0i0,

so
∂sKij = ∂s

(
hjkK

k
i

)
= (∂shjk)K

k
i + hjk∂sK

k
i

= 2KjkK
k
i + hjk

(
−Kl

iK
k
l −Rk

0i0

)
= hlkKikKlj −Rj0i0.

Now we have in general (see, e.g., Wald, (3.2.28))

Rijkl = Cijkl +
2

n− 2
(hi[kRl]j − hj[kRl]i)−

2

(n− 1)(n− 2)
Rhi[khl]j ,

where Cijkl is the Weyl tensor, [ ] denotes antisymmetrisation and R = Ri
i denotes the Ricci scalar. In 3

dimensions the Weyl tensor is identically zero, and the Riemann tensor is uniquely determined by the Ricci
tensor. Thus if h satisfies the second of equations (1.1.1) above, we will have

Rj0i0 = hjiR00 − hj0Ri0 − h0iR0j + h00Rij −
1

2
R (hjih00 − hj0hi0)

= 2hij (∂sγ)
2 − 2hj0∂sγ∂iγ − 2h0i∂sγ∂jγ + hkl∂kγ∂lγhj0hi0.

If we let δij denote the Kronecker delta, then since in our basis h0i = hi0 = −δi2, this expression may also
be written as

Rj0i0 = 2hij (∂sγ)
2
+ 2δj2∂sγ∂iγ + 2δi2∂sγ∂jγ + hkl∂kγ∂lγδj2δi2.

Combining everything together gives the desired results. QED.

From this we may derive the evolution equations for a, b and c as follows. Write

Kij =

 0 0 0
0 α β
0 β δ

 .

Then we see that, according to our rules for matrix representations given in Section 0.9, the tensor hklKikKlj

has the matrix representation

hklKikKlj =

 0 0 0
0 α β
0 β δ

 b2

a − c b
a −1

b
a

1
a 0

−1 0 0

 0 0 0
0 α β
0 β δ


=

 0 0 0
b
aα− β 1

aα 0
b
aβ − δ 1

aβ 0

 0 0 0
0 α β
0 β δ


=

1

a

 0 0 0
0 α2 αβ
0 αβ β2

 ,

whence we obtain the equations

∂sα =
1

a
α2 − 2a(∂sγ)

2,

∂sβ =
1

a
αβ − 2∂sγ (b∂sγ + ∂xγ) ,

∂sδ =
1

a
β2 − ∂sγ

(
2∂vγ +

(
b2

a
+ c

)
∂sγ + 2

b

a
∂xγ

)
− 1

a
(∂xγ)

2
.
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Since we have also (see (1.2.8))
∂sa = 2α, ∂sb = 2β, ∂sc = 2δ,

we have finally the following evolution equations for a, b, and c:

∂2sa =
(∂sa)

2

2a
− 4a (∂sγ)

2
(1.2.9)

∂2sb =
1

2a
(∂sa) (∂sb)− 4∂sγ (b∂sγ + ∂xγ) (1.2.10)

∂2sc =
(∂sb)

2

2a
− 2∂sγ

(
2∂vγ +

(
b2

a
+ c

)
∂sγ + 2

b

a
∂xγ

)
− 2

a
(∂xγ)

2
. (1.2.11)

In the first equation above, it turns out to be very convenient to consider, instead of a, the quantity ℓ =
√
a,

which is easily seen to have the evolution equation

∂2s ℓ = ∂s
∂sa

2
√
a
=

∂2sa

2
√
a
− (∂sa)

2

4a
3
2

= −2ℓ(∂sγ)
2. (1.2.12)

We shall refer to these four equations as the Riccati equations for the metric components.

1.3. Wave equation and bulk region
The coordinate form of the wave equation in the gauge in Proposition 1.2.1 can be determined as follows.

The wave operator may be written

hγ = hij∂i∂jγ − hijΓk
ij∂kγ,

where i, j = 0, 1, 2 and Γk
ij are the Christoffel symbols for h. We recall that hij has the matrix representation

hij =

 b2

a − c b
a −1

b
a

1
a 0

−1 0 0

 .

As already noted, from Chapter 2 we have the following matrix representations for the Christoffel symbols
in our gauge:

Γ0
ij =

1

2a

 0 ba,s − ab,s bb,s − ac,s
ba,s − ab,s −(b2 − ac)a,s + ba,x − a(2b,x − a,v) −(b2 − ac)b,s + ba,v − ac,x
bb,s − ac,s −(b2 − ac)b,s + ba,v − ac,x −(b2 − ac)c,s + b(2b,v − c,x)− ac,v


Γ1
ij =

1

2a

 0 a,s b,s
a,s a,x − ba,s a,v − bb,s
b,s a,v − bb,s 2b,v − c,x − bc,s


Γ2
ij =

1

2a

 0 0 0
0 aa,s ab,s
0 ab,s ac,s

 ;

and thus we see that
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hijΓ0
ij =

1

2a
Tr

 b2

a − c b
a −1

b
a

1
a 0

−1 0 0


·

 0 ba,s − ab,s bb,s − ac,s
ba,s − ab,s −(b2 − ac)a,s + ba,x − a(2b,x − a,v) −(b2 − ac)b,s + ba,v − ac,x
bb,s − ac,s −(b2 − ac)b,s + ba,v − ac,x −(b2 − ac)c,s + b(2b,v − c,x)− ac,v


=

1

2a

[
b

a
(ba,s − ab,s)− (bb,s − ac,s)

+
b

a
(ba,s − ab,s) +

1

a
[−(b2 − ac)a,s + ba,x − a(2b,x − a,v)]− (bb,s − ac,s)

]

=
1

2

[
2
b

a2
(ba,s − ab,s)−

2

a
(bb,s − ac,s) +

1

a2
[(ac− b2)a,s + ba,x − 2ab,x + aa,v]

]
=

1

2

[
−4

bb,s
a

+ 2c,s +
1

a2
[(ac+ b2)a,s + ba,x − 2ab,x + aa,v]

]
= −2

bb,s
a

+ c,s −
b,x
a

+
a,v
2a

+
ba,x
2a2

+
1

2

(
b2

a
+ c

)
a,s
a
,

hijΓ1
ij =

1

2a
Tr

 b2

a − c b
a −1

b
a

1
a 0

−1 0 0

 0 a,s b,s
a,s a,x − ba,s a,v − bb,s
b,s a,v − bb,s 2b,v − c,x − bc,s


=

1

2a

[
b

a
a,s − b,s +

b

a
a,s +

1

a
(a,x − ba,s)− b,s

]
=

b

2a2
a,s −

b,s
a

+
a,x
2a2

,

hijΓ2
ij =

1

2a
Tr

 b2

a − c b
a −1

b
a

1
a 0

−1 0 0

 0 0 0
0 aa,s ab,s
0 ab,s ac,s


=
a,s
2a
,

so that the wave equation takes the form[(
b2

a
− c

)
∂2s + 2

b

a
∂s∂x − 2∂s∂v +

1

a
∂2x − 1

2

((
b2

a
+ c

)
∂sa

a
− 4

b

a
∂sb+

b

a2
∂xa+ 2∂sc−

2

a
∂xb+

∂va

a

)
∂s

− 1

2

(
b

a2
∂sa−

2

a
∂sb+

∂xa

a2

)
∂x − 1

2

∂sa

a
∂v

]
γ = 0. (1.3.1)

We are thus led to consider the system

∂2sa =
(∂sa)

2

2a
− 4a (∂sγ)

2
(1.2.9)

∂2sb =
1

2a
(∂sa) (∂sb)− 4∂sγ (b∂sγ + ∂xγ) (1.2.10)

∂2sc =
(∂sb)

2

2a
− 2∂sγ

(
2∂vγ +

(
b2

a
+ c

)
∂sγ + 2

b

a
∂xγ

)
− 2

a
(∂xγ)

2
(1.2.11)[(

b2

a
− c

)
∂2s + 2

b

a
∂s∂x − 2∂s∂v +

1

a
∂2x − 1

2

((
b2

a
+ c

)
∂sa

a
− 4

b

a
∂sb+

b

a2
∂xa+ 2∂sc−

2

a
∂xb+

∂va

a

)
∂s

− 1

2

(
b

a2
∂sa−

2

a
∂sb+

∂xa

a2

)
∂x − 1

2

∂sa

a
∂v

]
γ = 0. (1.3.1)
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As initial data for (1.2.9 – 1.2.11) (assuming γ given, and considering them as standalone ordinary differential
equations), it is clearly sufficient to specify ∂ℓsa, ∂

ℓ
sb, and ∂

ℓ
sc on s = 0. Similarly, for (1.3.1) (assuming a,

b, and c given, and considering it as a standalone wave equation), it is sufficient to specify γ on the two
null hypersurfaces s = 0 and v = 0 (the functions specified must – see Rendall [11], Section 4 – satisfy the
consistency conditions that

lim
v→0+

∂ℓγ

∂sℓ

∣∣∣∣
s=0

= lim
s→0+

∂ℓγ

∂sℓ

∣∣∣∣
v=0

,

lim
v→0+

∂ℓγ

∂vℓ

∣∣∣∣
s=0

= lim
s→0+

∂ℓγ

∂vℓ

∣∣∣∣
v=0

,

(1.3.2)

where the transverse derivatives may be computed from the wave equation as explained in Chapter 5 below).
To sum up, we have shown that the equations (1.1.1) imply the Riccati equations (1.2.9 – 1.2.11) and

the wave equation (1.3.1). The converse is however false: the equations Rij = 2∂iγ∂jγ give rise, in addition
to the Riccati equations (1.2.9 – 1.2.11), to three constraint equations relating the quantities a, b, c and γ.
In the following chapter we shall derive these equations, and show (see Proposition 2.3.2) that the Bianchi
identities imply that they are preserved by the evolution inherent in the system (1.2.9 – 1.2.11), (1.3.1), in
that if the constraint equations (see Corollary 2.4.1)

∂2a

∂v2
=

(∂va)
2

2a
− 4a (∂vγ)

2

∂

∂v

(
a1/2

∂b

∂s

)
= 4a1/2∂xγ∂vγ

2a
∂2a

∂v∂s
= 2a

∂2b

∂x∂s
− ∂b

∂s

∂a

∂x
+
∂a

∂v
∂a∂s+ a

(
∂b

∂s

)2

+ 4a (∂xγ)
2

hold on Σ0
0, and the system (1.2.9 – 1.2.11), (1.3.1) holds on Γ0, then the constraints also hold on Γ0. Finally,

we shall show (again, see Corollary 2.4.1) that in this case the original Einstein equations (1.1.1) hold on Γ0.



2. CONSTRAINT EQUATIONS

2.1. Introduction
It is well known that the Einstein equations Rij = 0 – or, in our case, Rij = 2∂iγ∂jγ – represent

constraints as well as evolution equations. In this chapter we shall, by an explicit computation of the Ricci
tensor and a comparison with the Riccati equations derived in Chapter 1, determine the constraint equations
as restricted to the initial hypersurface s = 0, and show, by explicit computation and an application of the
Bianchi identities, that they are preserved by evolution under the Riccati and wave equations.

2.2. Ricci tensor
While there might be a quicker derivation of our final results by using a geometric decomposition of the

Ricci tensor for h, certainly the most straightforward method is to simply calculate it directly. We do this
now. We first find the Christoffel symbols. We recall that

hij =

 b2

a − c b
a −1

b
a

1
a 0

−1 0 0

 ,

so we may compute, recalling our convention (see 0.9) that in the matrix representation of a rank-2 tensor
the first index (left to right) will denote the row while the second will denote the column and using • to
indicate the appropriate cross-diagonal element in a symmetric matrix,

Γi
jk =

1

2
hiℓ (hℓj,k + hℓk,j − hjk,ℓ)

h0k,j = h0j,k = 0, hjk,0 =

 0 0 0
0 a,s b,s
0 b,s c,s


Γ2
jk = −1

2
(h0j,k + h0k,j − hjk,0) =

1

2
hjk,0 =

1

2a

 0 0 0
0 aa,s ab,s
0 ab,s ac,s


h1j,k =

 0 0 0
a,s a,x a,v
b,s b,x b,v

 , h1k,j =

 0 a,s b,s
0 a,x b,x
0 a,v b,v

 , hjk,1 =

 0 0 0
0 a,x b,x
0 b,x c,x


h1j,k + h1k,j − hjk,1 =

 0 a,s b,s
a,s a,x a,v
b,s a,v 2b,v − c,x


Γ1
jk =

b

2a
(h0j,k + h0k,j − hjk,0) +

1

2a
(h1j,k + h1k,j − hjk,1)

=

 0
a,s

2a
b,s
2a

a,s

2a − ba,s

2a +
a,x

2a − bb,s
2a +

a,v

2a
b,s
2a − bb,s

2a +
a,v

2a − bc,s
2a +

2b,v−c,x
2a

 =
1

2a

 0 a,s b,s
a,s a,x − ba,s a,v − bb,s
b,s a,v − bb,s 2b,v − c,x − bc,s


h2j,k =

 0 0 0
b,s b,x b,v
c,s c,x c,v

 , h2k,j =

 0 b,s c,s
0 b,x c,x
0 b,v c,v

 , hjk,2 =

 0 0 0
0 a,v b,v
0 b,v c,v


h2j,k + h2k,j − hjk,2 =

 0 b,s c,s
b,s 2b,x − a,v c,x
c,s c,x c,v


Γ0
jk =

1

2

(
b2

a
− c

)
(−hjk,0) +

b

2a
(h1j,k + h1k,j − hjk,1)−

1

2
(h2j,k + h2k,j − hjk,2)

=
1

2a

 0 ba,s − ab,s bb,s − ac,s
ba,s − ab,s −(b2 − ac)a,s + ba,x − a(2b,x − a,v) −(b2 − ac)b,s + ba,v − ac,x
bb,s − ac,s −(b2 − ac)b,s + ba,v − ac,x −(b2 − ac)c,s + b(2b,v − c,x)− ac,v


28
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Γi
ij =

1

2
∂j log a, Γi

ij,k =
1

2

(
a,kj − a,ka,j

a2

)
=

1

2a

 a,ss − a,s
2 a,sx − a,sa,x a,sv − a,sa,v

a,sx − a,sa,x a,xx − a,x
2 a,xv − a,xa,v

a,sv − a,sa,v a,xv − a,xa,v a,vv − a,v
2



Γk
j0 =

1

2a

 0 0 0
ba,s − ab,s a,s 0
bb,s − ac,s b,s 0

 , Γk
j1 =

1

2a

 ba,s − ab,s a,s 0
−(b2 − ac)a,s + ba,x − a(2b,x − a,v) a,x − ba,s aa,s

−(b2 − ac)b,s + ba,v − ac,x a,v − bb,s ab,s

 ,

Γk
j2 =

1

2a

 bb,s − ac,s b,s 0
−(b2 − ac)b,s + ba,v − ac,x a,v − bb,s ab,s

−(b2 − ac)c,s + b(2b,v − c,x)− ac,v 2b,v − c,x + bc,s ac,s



Γi
iℓΓ

ℓ
jk =

a,s
4a2

 0 ba,s − ab,s bb,s − ac,s
• −(b2 − ac)a,s + ba,x − a(2b,x − a,v) −(b2 − ac)b,s + ba,v − ac,x
• • −(b2 − ac)c,s + b(2b,v − c,x)− ac,v


+
a,x
4a2

 0 a,s b,s
a,s a,x − ba,s a,v − bb,s
b,s a,v − bb,s 2b,v − c,x − bc,s

+
a,v
4a

 0 0 0
0 a,s b,s
0 b,s c,s



=
1

4a2


0 ba,s

2 + a,xa,s − aa,sb,s bb,sa,s − aa,sc,s + a,xb,s

• aca,s
2 − b2a,s

2−
aa,s(2b,x − 2a,v) + a,x

2
caa,sb,s − b2a,sb,s + ba,va,s−

aa,sc,x + a,x(a,v − bb,s) + aa,vb,s

• • aca,sc,s − b2a,sc,s + ba,s(2b,v − c,x)−
aa,sc,v + a,x(2b,v − c,x − bc,s) + aa,vc,s


Γm
ijΓ

i
mk = trΓ·

·jΓ
·
·k

=
1

4a2



a,s
2

a,s(ba,s − ab,s)+
(a,x − ba,s)a,s+

aa,sb,s

b,s(ba,s − ab,s)+
(a,v − bb,s)a,s+

ab,s
2

•

(ba,s − ab,s)
2+

2a,s

[
−(b2 − ac)a,s + ba,x

−a(2b,x − a,v)
]
+

(a,x − ba,s)
2 + 2aa,s(a,v − bb,s) + a2b,s

2

(ba,s − ab,s)(bb,s − ac,s)+
a,s
(
−(b2 − ac)b,s + ba,v − ac,x

)
+[

−(b2 − ac)a,s + ba,x

−a(2b,x − a,v)
]
b,s+

(a,x − ba,s)(a,v − bb,s)+
aa,s(2b,v − c,x − bc,s)+
a(a,v − bb,s)b,s + a2b,sc,s

• •

(bb,s − ac,s)
2+

2b,s
(
−(b2 − ac)b,s + ba,v − ac,x

)
+

(a,v − bb,s)
2+

4ab,s(2b,v − c,x − bc,s)+
a2c,s

2



=
1

2a



a,s
2

2a
a,xa,s

2a
a,va,s

2a

•
ca,s

2 − 2a,sb,x + 2a,sa,v+
a,x

2

2a − 2ba,sb,s + ab,s
2

−ba,sc,s − bb,s
2 + ab,sc,s+

ca,sb,s − a,sc,x − b,xb,s+
a,vb,s +

a,xa,v

2a + a,sb,v

• • ac,s
2 − 2bb,sc,s +

a,v
2

2a +

cb,s
2 − 2b,sc,x + 2b,sb,v


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Γi
jk,i − Γℓ

ℓj,k = Γ0
jk,0 + Γ1

jk,1 + Γ2
jk,2 − Γℓ

ℓj,k

=
1

2a



0
ba,ss − ab,ss−
ba,s

2

a + b,sa,s

bb,ss + b,s
2 − a,sc,s

−ac,ss − bb,sa,s

a + a,sc,s

•

−(2bb,s − a,sc− ac,s)a,s − (b2 − ac)a,ss+
b,sa,x + ba,xs − a,s(2b,x − a,v)−
a(2b,xs − a,vs) + (b2 − ac)

a,s
2

a −
ba,xa,s

a + a,s(2b,x − a,v)

−(2bb,s − a,sc− ac,s)b,s−
(b2 − ac)b,ss + b,sa,v + ba,vs−
a,sc,x − ac,xs + (b2 − ac)

a,sb,s
a

− ba,va,s

a + a,sc,x

• •

−(2bb,s − a,sc− ac,s)c,s−
(b2 − ac)c,ss + b,s(2b,v − c,x)+
b(2b,vs − c,xs)− a,sc,v − ac,vs

+(b2 − ac)c,s
a,s

a − b
a,s

a (2b,v − c,x)+
a,sc,v



+
1

2a


0 a,xs − a,sa,x

a b,xs − b,sa,x

a

• a,xx − b,xa,s − ba,xs−
(a,x − ba,s)

a,x

a

a,vx − b,xb,s − bb,xs−
(a,v − bb,s)

a,x

a

• • 2b,vx − c,xx − b,xc,s − bc,xs−
(2b,v − c,x − bc,s)

a,x

a



+
1

2a

 0 0 0
0 aa,vs ab,vs
0 ab,vs ac,vs

− 1

2a

 a,ss − a,s
2

a a,xs − a,xa,s

a a,vs − a,v

a,s
a

• a,xx − a,x
2

a a,vx − a,va,x

a

• • a,vv − a,v
2

a



Γi
jk,i − Γℓ

ℓj,k =
1

2a



−a,ss + a,s
2

a

ba,ss − ab,ss−
ba,s

2

a + b,sa,s

bb,ss + b,s
2 − ac,ss−

bb,sa,s

a + b,xs−
b,sa,x

a − a,vs +
a,sa,v

a

•

−(2bb,s − ac,s)a,s−
(b2 − ac)a,ss + b,sa,x−
b,sa,x − a(2b,ss − 2a,vs)+

b2
a,s

2

a

−(2bb,s − ac,s)b,s − (b2 − ac)b,ss+

b,sa,v + ba,vs + b2
a,sb,s

a −
ba,va,s

a − b,xb,s − bb,xs+
b
ab,sa,x + ab,vs − ac,xs

• •

−(2bb,s − ac,s)c,s − (b2 − ac)c,ss+
b,s(2b,v − c,x) + b(2b,vs − 2c,xs)+

b2
c,sa,s

a − b
a,s

a (2b,v − c,x)+
2b,vx − c,xx − b,xc,s−

(2b,v − c,x − bc,s)
a,x

a − a,vv +
a,v

2

a


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Rjk = Γi
jk,i − Γℓ

ℓj,k + Γℓ
ℓmΓm

jk − Γm
ijΓ

i
mk

=
1

2a



−a,ss+
a,s

2

a − a,s
2

2a

ba,ss − ab,ss − ba,s
2

a +

b,sa,s − a,sa,x

2a +
ba,s

2

2a +
a,xa,s

2a − 1
2a,sb,s

bb,ss + b,s
2 − ac,ss−

bb,sa,s

a + b,xs − b,sa,x

a −
a,vs +

a,sa,v

a − a,sa,v

2a +
bb,sa,s

2a − 1
2a,sc,s +

a,xb,s
2a

•

−(2bb,s − ac,s)a,s − (b2 − ac)a,ss+
b,sa,x − b,sa,x − a(2b,ss − 2a,vs)+

b2
a,s

2

a −
[
ca,s

2 − 2a,sb,x + 2a,sa,v+

a,x
2

2a − 2ba,sb,s + ab,s
2
]
+ 1

2ca,s
2−

b2a,s
2

2a − 1
2a,s(2b,x − 2a,v)

−(2bb,s − ac,s)b,s − (b2 − ac)b,ss+

b,sa,v + ba,vs + b2
a,sb,s

a −
ba,va,s

a − b,xb,s − bb,xs+
b
ab,sa,x + ab,vs − ac,xs

−
[
−ba,sc,s − bb,s

2 + ab,sc,s+

ca,sb,s − a,sc,x − b,xb,s+

a,vb,s +
a,xa,v

2a + a,sb,v

]
+ 1

2a

[
caa,sb,s − b2a,sb,s + ba,va,s−

aa,sc,x + a,x(a,v − bb,s) + aa,vb,s

]

• •

−(2bb,s − ac,s)c,s − (b2 − ac)c,ss+
b,s(2b,v − c,x) + b(2b,vs − 2c,xs)+

b2
c,sa,s

a − b
a,s

a (2b,v − c,x)+
2b,vx − c,xx − b,xc,s−

(2b,v − c,x − bc,s)
a,x

a − a,vv+
a,v

2

a −
[
ac,s

2 − 2bb,sc,s +
a,v

2

2a +

cb,s
2 − 2b,sc,x + 2b,sb,v

]
+ 1

2a

[
aca,sc,s−

b2a,sc,s + ba,s(2b,v − c,x)−
aa,sc,v + a,x(2b,v − c,x − bc,s) + aa,vc,s

]



Rjk =
1

2a



−a,ss + a,s
2

2a

ba,ss − ab,ss−
1
2

(
b
a,s

2

a − b,sa,s

) bb,ss − ac,ss + b,xs − a,vs+

b,s
2 − bb,sa,s

2a − b,sa,x

2a +
a,sa,v

2a − 1
2a,sc,s

•
ac,sa,s − (b2 − ac)a,ss + b,sa,x−

a(2b,xs − 2a,vs) +
b2a,s

2

2a −
1
2ca,s

2 − a,sa,v − ab,s
2

−bb,s2 − (b2 − ac)b,ss + b(a,vs − b,xs)+
b2a,sb,s

2a − ba,va,s

2a +
bb,sa,x

2a +
a(b,vs − c,xs) + ba,vc,s − 1

2ca,sb,s+
1
2a,sc,x + 1

2a,vb,s

• •

−(b2 − ac)c,ss + b,sc,x + 2b(b,vs − c,xs)+
b2a,sc,s

2a − ba,s

2a (2b,v − c,x)+
2b,vx − c,xx − a,vv − b,xc,s−
a,x

2a (2b,v − c,x + bc,x) +
a,v

2

2a −
cb,s

2 + 1
2a,scc,s −

1
2a,sc,v +

1
2a,vc,s



.

(2.2.1)
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2.3. Equations of motion and constraints

From the expression for the Ricci tensor in (2.2.1) we see that the equations R00 = 2γ,s
2, R01 = 2γ,sγ,x,

R02 = 2γ,sγ,v, and R11 = 2γ,x
2 give, respectively,

a,ss =
a,s

2

2a
− 4aγ,s

2,

ba,ss − ab,ss −
1

2

(
b
a,s

2

a
− b,sa,s

)
= 4aγ,sγ,x,

c,ss =
1

a

(
bb,ss + b,xs − a,vs + b,s

2 − bb,sa,s
2a

− b,sa,x
2a

+
a,sa,v
2a

− 1

2
a,sc,s

)
− 4γ,sγ,v,

b,xs − a,vs =
1

2a

(
ac,sa,s − (b2 − ac)a,ss + b,sa,x +

b2a,s
2

2a
− 1

2
ca,s

2 − a,sa,v − ab,s
2

)
− 2γ,x

2.

From these equations we obtain the following proposition. We recall for reference the Riccati equations (1.2.9
– 1.2.11):

a,ss =
a,s

2

2a
− 4aγ,s

2 b,ss =
1

2a
a,sb,s − 4γ,s (bγ,s + γ,x) (2.3.1)− (2.3.2)

c,ss =
b,s

2

2a
− 2γ,s

(
2γ,v +

(
b2

a
+ c

)
γ,s + 2

b

a
γ,x

)
− 2

a
γ,x

2. (2.3.3)

2.3.1. PROPOSITION. We have the following equivalences:

(i) Equation (2.3.1) holds if and only if R00 = 2γ,s
2.

(ii) Equations (2.3.1) and (2.3.2) hold if and only if R00 = 2γ,s
2 and R01 = 2γ,sγ,x

(iii) Equations (2.3.1) – (2.3.3) hold if and only if R00 = 2γ,s
2, R01 = 2γ,sγ,x, and −2R02 + 1

aR11 =
−2(2γ,sγ,v) +

2
aγ,x

2

Proof. (i) is clear. R00 = 2γ,s
2 and R01 = 2γ,sγ,x together imply

4aγ,sγ,x = ba,ss − ab,ss −
1

2

(
ba,s

2

a
− b,sa,s

)
=
ba,s

2

2a
− 4abγ,s

2 − ab,ss −
ba,s

2

2a
+

1

2
b,sa,s

so

b,ss =
b,sa,s
2a

− 4γ,s(bγ,s + γ,x),

and the converse is also clearly true, thus establishing (ii). Furthermore, if R00 = 2γ,s
2 and R01 = 2γ,sγ,x,

then multiplying R02 = 2γ,sγ,v by −2 and simplifying gives

c,ss = −4γ,sγ,v −
a,xb,s
2a2

− b

2a2
a,sb,s +

1

a
b,s

2 +
a,sa,v
2a2

− 1

2a
a,sc,s +

b

a
b,ss +

1

a
b,xs −

1

a
a,vs

= −4γ,sγ,v −
a,xb,s
2a2

− b

2a2
a,sb,s +

1

a
b,s

2 +
a,sa,v
2a2

− 1

2a
a,sc,s

+
b

a

(
a,sb,s
2a

− 4bγ,s
2 − 4γ,sγ,x

)
+

1

a
b,xs −

1

a
a,vs

= −4γ,s

[
γ,v +

b2

a
γ,s +

b

a
γ,x

]
+

1

a
b,xs −

a,xb,s
2a2

− 1

a
a,vs +

a,xa,v
2a2

+
1

a
b,s

2 − 1

2a
a,sc,s, (2.3.4)

while multiplying

R11 = 2γ,x
2
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by 2a gives

4aγ,x
2 = 2aa,vs − a,sa,v − 2ab,xs + b,sa,x +

a,s
2b2

2a
+ ac,sa,s −

1

2
ca,s

2 − ab,s
2 − (b2 − ac)

(
a,s

2

2a
− 4aγ,s

2

)
= 2a2

(
1

a
a,vs −

a,sa,v
2a2

− 1

a
b,xs +

a,xb,s
2a2

)
+ ac,sa,s − ab,s

2 + 4(b2 − ac)aγ,s
2

= 2a2
(
1

a
a,vs −

a,sa,v
2a2

− 1

a
b,xs +

a,xb,s
2a2

+
c,sa,s
2a

− b,s
2

2a
− 2

(
c− b2

a

)
γ,s

2

)

so that adding 1/(2a)2 times this to equation (2.3.4) gives

c,ss = −2

a
γ,x

2 − 4γ,s

(
γ,v +

b2

a
γ,s +

b

a
γ,x +

1

2

(
c− b2

a

)
γ,s

)
+
b,s

2

2a

= −2

a
γ,x

2 − 4γ,s

(
γ,v +

b

a
γ,x +

1

2

(
c+

b2

a

)
γ,s

)
+
b,s

2

2a
,

which is the third of the Riccati equations.

Since the steps here can evidently be carried out in reverse, this establishes the proposition. QED.

This proposition can be rephrased by saying that the three Riccati equations are equivalent to the
system

R00 = 2γ,s
2 (2.3.5)

R01 = 2γ,sγ,x (2.3.6)

−2R02 +
1

a
R11 = −2(2γ,sγ,v) +

2

a
γ,x

2. (2.3.7)

Thus for the full equation Rij = 2γ,iγ,j to hold, it is sufficient for the equations R12 = 2γ,xγ,v, R22 = 2γ,v
2,

and any linear combination of the equations involving either R02 or R11 which is linearly independent of
(2.3.7), to hold. We shall term any such set a system of constraint equations. We shall next show that, if
the Riccati equations (2.3.5 – 2.3.7) and the wave equation (1.3.1) hold on Γ0, then for a particular system
of constraint equations, the Bianchi identities allow us to conclude that the system holds on all of Γ0 if it
holds on Σ0

0 = {(s, x, v) ∈ Γ0 | s = 0}.

2.3.2. PROPOSITION. If the system (2.3.5 – 2.3.7) and the wave equation (1.3.1) hold on Γ0, then the
equations

R11 = 2γ,x
2, R12 = 2γ,xγ,v, R22 = 2γ,v

2

hold on Γ0 if they hold on Σ0
0.

Proof. Given (2.3.7), R11 = 2γ,x
2 holds at any given point if and only if R02 = 2γ,sγ,v does; thus it

suffices to work with this equation instead. To begin, we note that, using the Riccati equations, we may
write 2aR20 as

−4b2γ,s
2−4bγ,sγ,x+

1

2
b,s

2+2aγ,s

[(
b2

a
+ c

)
γ,s + 2γ,v + 2

b

a
γ,x

]
+2γ,x

2+b,xs−a,vs−
b,sa,x
2a

+
a,sa,v
2a

− 1

2
a,sc,s,
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so

∂s (2aR20 − 4aγ,sγ,v) = ∂s

[1
2
b,s

2 + 2γ,s
2(ac− b2) + 2γ,x

2 + b,xs − a,vs −
b,sa,x
2a

+
a,sa,v
2a

− 1

2
a,sc,s

]
= b,sb,ss + 4γ,sγ,ss(ac− b2) + 2γ,s

2 (a,sc+ ac,s − 2bb,s) + 4γ,xγ,sx + b,ssx − a,ssv

+
b,sa,sa,x

2a2
− a,s

2a,v
2a2

+
1

2a
(−b,ssa,x − b,sa,xs + a,ssa,v + a,sa,vs)−

1

2
a,ssc,s −

1

2
a,sc,ss

=
1

2a
a,sb,s

2 − 4bb,sγ,s
2 − 4b,sγ,sγ,x

+ 4γ,s

[
2bγ,sx − 2aγ,sv + γ,xx − 1

2

(
a,s

(
c+

b2

a

)
− 4bb,s +

b

a
a,x + 2ac,s − 2b,x + a,v

)
γ,s

− 1

2

(
b

a
a,s − 2b,s +

a,x
a

)
γ,x − 1

2
a,sγ,v

]
+ 2γ,s

2(a,sc+ ac,s − 2bb,s) + 4γ,xγ,sx

+

[
− a,x
2a2

a,sb,s +
1

2a
(a,xsb,s + a,sb,xs)− 4γ,sx(bγ,s + γ,x)− 4γ,s(b,xγ,s + bγ,sx + γ,xx)

]
−
[
− a,v
2a2

a,s
2 +

a,sa,vs
a

− 4a,vγ,s
2 − 8aγ,sγ,sv

]
+
b,sa,sa,x

2a2
− a,va,s

2

2a2

+
1

2a

[
−b,sa,xs −

(
a,sb,s
2a

− 4bγ,s
2 − 4γ,sγ,x

)
a,x +

(
a,s

2

2a
− 4aγ,s

2

)
a,v + a,sa,vs

]
− 1

2
c,s

(
a,s

2

2a
− 4aγ,s

2

)
− 1

2
a,s

(
b,s

2

2a
− 2γ,s

(
2γ,v +

(
b2

a
+ c

)
γ,s + 2

b

a
γ,x

)
− 2

a
γ,x

2

)
=

1

2a
a,sb,s

2 + 4γ,s

[
−1

2

(
a,s

b2

a
+ 2ac,s − 2b,x

)
γ,s −

ba,s
2a

γ,x − 1

2
a,sγ,v

]
+ 2ac,sγ,s

2 +
a,sb,xs
2a

− 4b,xγ,s
2 − a,sa,vs

a
− a,sb,sa,x

4a2
+
a,s

2a,v
4a2

+
a,sa,vs
2a

− c,sa,s
2

4a
+ 2ac,sγ,s

2 − a,sb,s
2

4a
+ 2a,sγ,sγ,v

+ a,s

(
b2

a
+ c

)
γ,s

2 + 2
b

a
a,sγ,sγ,x +

a,s
a
γ,x

2

=
1

4a
a,sb,s

2 +
a,sb,xs
2a

− a,sa,vs
2a

− a,sb,sa,x
4a2

+
a,s

2a,v
4a2

− c,sa,s
2

4a
+ γ,s

2

[
−a,s

b2

a
+ a,sc− 2b,x

]
+
a,s
a
γ,x

2

= a,sR20 −
a,s
2a

(
bb,ss − ac,ss + b,s

2 − bb,sa,s
2a

− b,sa,x
2a

+
a,sa,v
2a

− 1

2
a,sc,s

)
+

1

4a
a,sb,s

2 − a,sb,sa,x
4a2

+
a,s

2a,v
4a2

− c,sa,s
2

4a
+ γ,s

2

[
−a,s

b2

a
+ a,sc

]
+
a,s
a
γ,x

2

= a,sR20 −
a,s
2a

(
−4b2γ,s

2 − 4bγ,sγ,x +
1

2
b,s

2 + 2(−b2 + ac)γ,s
2 + 4aγ,sγ,v + 4bγ,sγ,x + 2γ,x

2

)
+

1

4a
a,sb,s

2 + γ,s
2
[
−a,s
a
(b2 − ac)

]
+
a,s
a
γ,x

2 = a,s (R20 − 2γ,sγ,v) .

Thus if a, b, and c satisfy the Riccati equations (2.3.5 – 2.3.7) and γ satisfies the wave equation (1.3.1), and
if the values of these functions on Σ0

0 satisfy the equation R20 = 2γ,sγ,v, then this equation will continue to
hold for all s > 0. Again, by (2.3.7), the equation R11 = 2γ,x

2 is then also preserved by the evolution.
That the other two equations, R12 = 2γ,xγ,v and R22 = 2γ,v

2, are likewise preserved by the evolution
may be proved using the Bianchi identity and the foregoing, as follows. Now note that

R = gijRij =

(
b2

a
− c

)
R00 + 2

b

a
R01 − 2R02 +

1

a
R11,

while

gij (2γ,iγ,j) = 2

[(
b2

a
− c

)
γ,s

2 + 2
b

a
γ,sγ,x − 2γ,sγ,v +

1

a
γ,x

2

]
,
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so by our work in the previous paragraph, if R = 2gijγ,iγ,j holds on Σ0
0, then it will hold on all of Γ0. (Recall

that we are assuming that the equations (2.3.5 – 2.3.7) hold throughout Γ0.) Further, note that the equation

∇j (γ,iγ,j) =
1

2
∇ig

jkγ,jγ,k

holds since γ satisfies the wave equation (this is just conservation of the stress-energy tensor).
Now the Bianchi identity gives

∇jRji =
1

2
∇iR.

Suppose that (a, b, c, γ) is a solution to the system (2.3.5 – 2.3.7), (1.3.1) which moreover satisfies all six
equations Rij = 2γ,iγ,j on the surface Σ0

0. Then we have on Γ0

∇jRji =
1

2
∇iR =

1

2
∇i

(
2gjkγ,jγ,k

)
= ∇j (2γ,jγ,i) ,

so, writing Tij = Rij − 2γ,iγ,j for convenience, and letting, as per our note in 0.9,

∇kTij = ∂kTij − Γℓ
ikTℓj − Γℓ

jkTiℓ

denote the kij component of the covariant derivative of the tensor T ,

∇jTj2 =

(
b2

a
− c

)
∇0T02 +

b

a
∇0T12 −∇0T22

+
b

a
∇1T02 +

1

a
∇1T12 −∇2T02 = 0,

∇jTj1 =

(
b2

a
− c

)
∇0T01 +

b

a
∇0T11 −∇0T21

+
b

a
∇1T01 +

1

a
∇1T11 −∇2T01 = 0.

Now we already know that T01 = T02 = T11 = 0 on Γ0, so these two equations become simply

b

a
∇0T12 −∇0T22 +

1

a
∇1T12 = 0 (2.3.8)

−∇0T12 = 0. (2.3.9)

The second of these equations is, in full,

0 = ∂0T12 − Γℓ
01Tℓ2 − Γℓ

02Tℓ1

= ∂sT12 −
1

2a
[(ba,s − ab,s)T02 − a,sT12 − (bb,s − ac,s)T10 − b,sT20]

= ∂sT12 −
1

2a
[−a,sT12],

from which we see that
∂sT12 = −a,s

2a
T12,

so that if T12 = 0 on Σ0
0 then T12 will vanish on Γ0. Substituting this into equation (2.3.8) above, we obtain

−∇0T22 = 0, or, in full,
0 = ∂0T22 − Γℓ

02Tℓ2 − Γℓ
02T2ℓ

= ∂sT22 −
1

a
[(bb,s − ac,s)T02 + b,sT12] = ∂sT22,

so that if T22 = 0 on s = 0, then T22 will vanish for all s. This completes the demonstration of the
preservation of the constraint equations by the evolution. QED.
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2.4. Initial data
From the foregoing we obtain the following corollary.

2.4.1. COROLLARY. Suppose that on Γ0 the system

a,ss =
a,s

2

2a
− 4aγ,s

2 b,ss =
1

2a
a,sb,s − 4γ,s (bγ,s + γ,x) (2.3.1)− (2.3.2)

c,ss =
b,s

2

2a
− 2γ,s

(
2γ,v +

(
b2

a
+ c

)
γ,s + 2

b

a
γ,x

)
− 2

a
γ,x

2 (2.3.3)[(
b2

a
− c

)
∂2s + 2

b

a
∂s∂x − 2∂s∂v +

1

a
∂2x − 1

2

((
b2

a
+ c

)
a,s
a

− 4
b

a
b,s +

b

a2
a,x + 2c,s −

2

a
b,x +

a,v
a

)
∂s

− 1

2

(
b

a2
a,s −

2

a
b,s +

a,x
a2

)
∂x − 1

2

a,s
a
∂v

]
γ = 0 (1.3.1)

holds, and that on Σ0
0 the system

−a,vv +
a,v

2

2a
= 4aγ,v

2 (2.4.1)

b,sa,x − 2a(b,xs − a,vs)− a,sa,v − ab,s
2 = 4aγ,x

2 (2.4.2)

ab,vs +
1

2
a,vb,s = 4aγ,xγ,v (2.4.3)

as well as the conditions
b = c = c,s = 0 (2.4.4)

hold. Then the equations (1.1.1)

hγ = 0, Rij = 2∂iγ∂jγ

hold on Γ0.
Proof. By (2.4.4), the equations R11 = 2γ,x

2, R12 = 2γ,xγ,v, and R22 = 2γ,v
2 are equivalent to the

system (2.4.1 – 2.4.3) on Σ0
0. The result then follows directly from Proposition 2.3.2. QED.

We note that in terms of the quantity ℓ =
√
a the equation (2.4.1) becomes

∂2vℓ = −2ℓ(∂vγ)
2. (2.4.5)

We have the following proposition, which will be sharpened considerably after we have introduced the
coordinate scaling in the next chapter.

2.4.1. PROPOSITION. Suppose that on Σ0
0 the quantity γ is specified, that on Σ0

0 the condition (2.4.4) holds
and the quantities

a|Σ0
0
, a,v|Σ0

0
, a,s|Σ0

0
, b,s|Σ0

0

are specified on a line v = v0, and that a|Σ0
0∩{v=v0} has a positive lower bound. Then equations (2.4.1 –

2.4.3) give a unique set of initial data for the Riccati equations (2.3.1 – 2.3.3) on some neighbourhood of
v = v0 in Σ0

0.
Proof. Recall that a full set of initial data for (2.3.1 – 2.3.3) is a specification on s = 0 of

a, b, c, a,s, b,s, c,s.

By the gauge choice, b = c = c,s = 0 on s = 0, so that only the three remaining quantities

a, a,s, b,s

are free. Suppose that these three quantities, together with a,v (this is needed since (2.4.1) is second order)
are specified on v = v0 for some v0 ≥ 0, and that a on that line has a uniform lower bound. Then on some
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open set U in Σ0
0 containing v = v0 equation (2.4.1) can be solved for a, and we may moreover assume,

shrinking U if necessary, that a|U has an upper bound and a positive lower bound on U . (Note that our only
requirement on U is that it be a neighbourhood of the line v = v0.) Given a|U , equation (2.4.3) then gives a
linear, first-order equation for b,s|U , which has a unique solution on U once b,s|U∩{v=v0} is specified. Finally,
given a|U and b,s|U , equation (2.4.2) becomes a linear equation for a,s|U , which has a unique solution on
U once a,s|U∩{v=v0} is specified. (It should also be noted that equations (2.4.2 – 2.4.3) do not give rise to
singularities on U since a|U has a uniform positive lower bound.) This completes the proof. QED.

As stated already, we shall later (see Chapter 5, especially and Proposition 5.4.1) give a much more
precise treatment of the solutions of (2.4.1 – 2.4.3).

A slightly similar setting has been considered in Rendall’s paper [11]. In section 5 of [11] the 3 + 1
vacuum Einstein equations are studied in harmonic coordinates which, somewhat like our situation here,
originate from data prescribed on two transverse null hypersurfaces. In this setting one starts out with a
2-dimensional spacelike hypersurface S, corresponding to our spacelike curve λ(x) (see Section 1.2), from
which null hypersurfaces N1 and N2 are developed, exactly as in our case. For purposes of comparison we
identify x1 (a null geodesic coordinate along N1) with s and x2 (an analogous coordinate along N2) with v.
Subsequently an equivalence class of positive-definite metrics on S is considered, and a conformal factor Ω
introduced to define a particular element of this class; since up to conformal equivalence there is only one
metric on a one-dimensional spacelike curve, Ω can be identified with a in our treatment. Theorem 3 in [11]
then guarantees the existence of solutions to the Einstein equations given the conformal equivalence class of
the metric on S and the specification on S of the quantities Ω, Ω,1, Ω,2, g23,1 and g24,1, where x

3 and x4 are
coordinates along S. We may indicate the correspondence between these quantities and quantities in our
present work as follows:

Ω ∼ a, Ω,1 ∼ a,s, Ω,2 ∼ a,v

g23,1, g24,1 ∼ gvx,s = b,s,

and their specification on S in [11] corresponds to their specification along λ(x), i.e., along s = v = 0, in the
present case.

While our setting is sufficiently different from that in [11] to not allow for any direct application of the
results therein, the above comparison suggests that we have not gone too far off. It is also worth noting, as
pointed out in Chapter 0, that in our case there are constraint equations on only one of the null hypersurfaces,
whereas in [11] there are constraints on both.

This completes those portions of our work which are independent of the coordinate scaling.



3. COORDINATE SCALING

3.1. Introduction and summary
In the previous two chapters we have dealt with the general problem of solving the reduced Einstein

vacuum equations (1.1.1) in our particular gauge, without considering the special problem of finding highly
localised solutions. Our ultimate goal is to find solutions to the system (1.1.1) which are tightly localised (in
xv) on a scale of size k−1/2 × k−1. We shall proceed by first obtaining existence theorems for solutions with
initial data which are so localised, and which have therefore large derivatives in the v direction. It turns
out that the structure of the equations (1.2.9 – 1.2.11), (1.3.1), and (2.4.1 – 2.4.3) allows us to introduce a
scaling of the coordinates x and v, as well as the quantities a − 1, b, c, and γ, which greatly simplifes this
task: with respect to these scaled coordinates, all derivatives will remain bounded (in spaces to be specified)
with respect to k. In particular, we shall ultimately (see Chapter 6) be able to define energies in this scaled
picture which remain bounded, uniformly in k, up to a time proportional to k, and from this the desired
solutions can be readily derived.

In the present chapter we provide some motivation for the scaling we shall use, and then determine the
equations of motion (1.2.9 – 1.2.11), (1.3.1) as well as the constraint equations (2.4.1 – 2.4.3) in the scaled
picture. In Chapter 5 we shall construct a particular class of initial data in the scaled picture and show that
it satisfies the bounds which shall be necessary in Chapter 6. Finally, in Chapter 6 we define energies in the
scaled picture and show that they remain bounded up to a time proportional to k.

3.2. Motivation
Before giving this scaling, we provide some motivation. For convenience in reference, recall that the

Riccati equations for the metric components are (see (1.2.9 – 1.2.11))

∂2sa =
(∂sa)

2

2a
− 4a (∂sγ)

2
∂2sb =

1

2a
(∂sa) (∂sb)− 4∂sγ (b∂sγ + ∂xγ) (3.2.1)− (3.2.2)

∂2sc =
(∂sb)

2

2a
− 2∂sγ

(
2c∂sγ + 2∂vγ +

(
b2

a
− c

)
∂sγ + 2

b

a
∂xγ

)
− 2

a
(∂xγ)

2
, (3.2.3)

while the wave equation for γ is (see (1.3.1))[(
b2

a
− c

)
∂2s + 2

b

a
∂s∂x − 2∂s∂v +

1

a
∂2x − 1

2

(
∂sa

a

(
c+

b2

a

)
− 4

b

a
∂sb+

b

a2
∂xa+ 2∂sc−

2

a
∂xb+

∂va

a

)
∂s

− 1

2

(
b

a2
∂sa−

2

a
∂sb+

∂xa

a2

)
∂x − 1

2

∂sa

a
∂v

]
γ = hγ = 0. (3.2.4)

The scaling we shall use is suggested by the theory of Gaussian beams.* In particular, it is quite
straightforward to show that an approximate Gaussian beam solution to the wave equation hγ = 0 along
the null geodesic x = v = 0 is given by (see Lemma 7.2.3)

γGB = k−ιϕ(x, v)ℜ

A
[

iC − 1
E

∫ s

0
1
a

C2 +
(
1
E

∫ s

0
1
a

)2
] 1

2

e

ikEv− 1
2 ik

1
E

∫ s

0

1
a

C2+

(
1
E

∫ s

0

1
a

)2 x2− 1
2k

[
C

C2+

(
1
E

∫ s

0

1
a

)2 x2+Dv2

] ,

* We shall show in Chapter 7 below that it is possible to find a Gaussian beam-like solution in our current
setting, but depending on two parameters instead of one: first, k, which controls the spatial extent of the
beam; second, a parameter we shall call r, which controls to what extent the energy is concentrated. While
the solutions we construct in Chapter 6, and hence also in Chapter 7, have an existence time which is
independent of k, the existence time of the Gaussian beam-like solutions we construct in Chapter 7 does in
principle depend on r.

It is felt that taking full Gaussian beam initial data may produce more sharply peaked solutions than
those we are able to give here – for example, solutions with ι = 1/2 but ∥γ∥H2 scaling like k instead of k3/4

– but attempting to integrate the usual development of Gaussian beams directly into the system (3.2.1 –
3.2.4) we have here causes difficulties due to the coupling between the coefficients in the wave equation and
γ. It is felt that it might be possible to continue by expanding all quantities in a series in k, but that is
beyond the scope of the present thesis.
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where A, C, D, and E are arbitrary positive constants, a = a(s, 0, 0) is the metric component a along the
geodesic, and ϕ is some C∞ function with compact support satisfying ϕ = 1 on a neighbourhood of (0, 0).
The important point for us is the scaling in the exponential; note that the terms involving x and v are of the
form kv, kv2, and kx2. In terms of Sobolev norms, then, a derivative in v counts essentially for one power
of k, while a derivative in x counts for half a power of k.*

Another motivation for the scaling we shall make comes from a scaling symmetry of the system (3.2.1 –
3.2.4). Before presenting this, we wish to clarify our perspective. The components of the metric h, which in
the coordinate system sxv include a, b, and c, have geometric significance, and, hence, will change in a well-
defined way if we scale the coordinates. To put it more simply, a, b, and c might properly be considered as
components of a tensor (namely the metric tensor h) rather than as scalars. For the purposes of this current
section, however, we ignore this and consider system (3.2.1 – 3.2.3) from a purely analytical standpoint; thus
we consider the functions a, b, and c as scalars which do not change under a coordinate transformation. We
shall discuss how the coordinate scaling impacts the actual components of the metric h later (see Section
6.2).

With this understood, suppose now that (a, b, c, γ) is any solution to the system (3.2.1 – 3.2.4), and
consider the general scaling of coordinates and dependent variables

s = kδs, x = kαx, v = kβv,

∂s = kδ∂s, ∂x = kα∂x, ∂v = kβ∂v,

a = kζa(s, x, v), b = kηb(s, x, v), c = kθc(s, x, v),

γ = kιγ(s, x, v),

(3.2.5)

and define also ℓ =
√
a. The system (3.2.1 – 3.2.3) then gives for a, b, and c

∂2sa =
(∂sa)

2

2a
− 4ak−2ι(∂sγ)

2, ∂2s ℓ = −2ℓk−2ι(∂sγ)
2,

∂2sb = kη−2δ∂2sb = kη−2δ

[
1

2a
k−δ(∂sa)k

−η+δ(∂sb)− 4k−2ι+δ(∂sγ)(k
−η+δb∂sγ + kα∂xγ)

]
=

1

2a
(∂sa)(∂sb)− 4k−2ι∂sγ(b∂sγ + kα+η−δ∂xγ),

∂2sc = kθk−2δ∂sc = kθ−2δ

[
k−2η+2δ+ζ

(
∂sb
)2

2a

− 2k−2ι+δ∂sγ

(
2k−θ+δc∂sγ + 2kβ∂vγ +

(
k−2η+ζ b

2

a
− k−θc

)
kδ∂sγ + 2k−η+ζ b

a
kα∂xγ

)

− k2(α−ι+ζ) 2

a
(∂xγ)

2

]

= kθ−2η+ζ (∂sb)
2

2a
− 2k−2ι∂sγ

(
2kβ+θ−δ∂vγ +

(
kζ+θ−2η b

2

a
+ c

)
∂sγ + 2kθ+α+ζ−η−δ b

a
∂xγ

)

− k2(α−ι+ζ−δ)+θ 2

a
(∂xγ)

2,

* In terms of our previous footnote, it is worth noting that the inconsistent scaling in v – that in one
term v scales with k while in the other it scales with k1/2 – is a major cause of the difficulties mentioned
when attempting to extend the standard Gaussian beam treatment to the coupled system (3.2.1 – 3.2.3),
(3.2.4). In particular, note that if we replace x and v by the scaled variables – see equation (3.3.1) below –
x = k1/2x, v = kv, then the term kv2 will go to v2/k, which goes to zero as k increases, meaning that for
large k the function γGB is only weakly peaked in v. This would render the L2 norm of γGB along the initial
hypersurface Σ0

0 of size k1/4, which – as we shall see in Chapter 6 below – would cause great difficulties for
our present method.
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while the wave equation (3.2.4) becomes[(
k2δ−2η+ζ b

2

a
− k2δ−θc

)
∂2s + 2k−η+ζ+δ+α b

a
∂s∂x − 2kδ+β∂s∂v + kζ+2α 1

a
∂2x

− 1

2

[(
k2δ−θc+ k2δ+ζ−2η b

2

a

)
∂sa

a
− 4k2δ+ζ−2η b

a
∂sb+ kδ+α+ζ−η b

a2
∂xa

+ 2k2δ−θ∂sc− 2kδ+α+ζ−η 1

a
∂xb+ kβ+δ ∂va

a

]
∂s

− 1

2

(
kα+δ+ζ−η b

a2
∂sa− 2kδ+α+ζ−η 1

a
∂sb+ k2α+ζ ∂xa

a2

)
∂x − 1

2
kδ+β ∂sa

a
∂v

]
γ = 0.

For these transformed equations to be formally identical to the original system (3.2.1 – 3.2.4), it is necessary
and sufficient that we be able to cancel all powers of k. From this we see that it is necessary and sufficient
that ι = 0, that

α+ η − δ = 0

θ − 2η + ζ = 0

β + θ − δ = 0

θ + α+ ζ − η − δ = 0

2(α+ ζ − δ) + θ = 0,

(3.2.6)

and that there be a constant λ such that

2δ − 2η + ζ = λ

2δ − θ = λ

−η + ζ + δ + α = λ

δ + β = λ

ζ + 2α = λ.

(3.2.7)

From these, it is straightforward, if slightly tedious, to show that we must have ζ = 0, while

α =
1

2
λ, β = −δ + λ

η = δ − 1

2
λ, θ = 2δ − λ.

(3.2.8)

Now if we do not scale the s coordinate – motivated by the Gaussian beam situation described above – then
we must take δ = 0, whence the first of these give β = 2α. In other words, there is some sort of intrinsic
scaling symmetry to the system which requires that the v coordinate scale with an exponent equal to twice
that of the x coordinate, exactly as occurs with the approximate Gaussian beam.

We note finally that the wave equation in free space in 2 + 1 dimensions, written in terms of null
coordinates sxv as here, is simply

−2∂s∂vγ + ∂2xγ = 0,

which is clearly also invariant under the scaling transformation s = s, x = kαx, v = k2αv.

3.3. Scaling and scaled equations
With the foregoing as motivation, we now give the coordinate scaling we shall use in the rest of this

work. In terms of the parameters defined in (3.2.5), we take α = 1/2, β = 1, δ = 0, ζ = 0, η = 1/2, θ = 0;
finally, we require ι ≥ 1/2 but leave it otherwise unspecified for the moment. It is worth noting that these
choices satisfy the first two equations in (3.2.8) if we take λ = 1, but the equations for η and θ – which we
recall controls the scaling of b – will then fail, and of course the choice ι ≥ 1/2 also breaks the scaling. As
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we shall in great detail in Chapter 5 and Chapter 6 below, though, the extra terms resulting will all be of
lower order in k, and thus in some sense unimportant.

The above choice of scaling parameters gives the scaled coordinates

s = s, x = k1/2x, v = kv,

∂s = ∂s, ∂x = k1/2∂x, ∂v = k∂v,
(3.3.1)

and scaled dependent variables

a = a, ℓ = ℓ, b = k1/2b, c = c, (3.3.2)

γ = kιγ. (3.3.3)

We further define quantities δa, δℓ, and δ−1a by

a = 1 + k−1δa, ℓ = 1 + k−1δℓ, a−1 = 1 + k−1δ−1a. (3.3.4)

Note that all five of the quantities a, δa, ℓ, δℓ, and δ−1a uniquely determine a; we shall use whichever of
them is most convenient for the purpose at hand.

As our work in the sequel will show, given suitable* initial data, the above scaling allows us to obtain
k-independent bounds for δℓ, b, and c in appropriate Sobolev spaces. (See Chapter 6 below for the details.)
For comparison, we note that this implies the following ansätze on a, b, and c:

a = 1 + k−1δa, b = k−1/2b, c = c.

We shall not have occasion to explicitly use these ansätze in the following, however.
We shall always assume that k ≥ 1. This is permissible since we are interested in what happens when

k is arbitrarily large.
The wave and Riccati equations may now be written out in the scaled coordinates. The above choice of

scaling parameters gives for the scaling exponents in the wave equation (cf. (3.2.6), (3.2.7))

2δ − 2η + ζ = −1

2δ − θ = 0

−η + ζ + δ + α = 0

δ + β = 1

ζ + 2α = 1.

The wave equation thus becomes[(
k−1 b

2

a
− c

)
∂2s + 2

b

a
∂s∂x − 2k∂s∂v + k

1

a
∂2x

− 1

2

[(
c+ k−1 b

2

a

)
∂sa

a
− 4k−1 b

a
∂sb+

b

a2
∂xa+ 2∂sc− 2

1

a
∂xb+ k

∂va

a

]
∂s

− 1

2

(
b

a2
∂sa− 2

1

a
∂sb+ k

∂xa

a2

)
∂x − 1

2
k
∂sa

a
∂v

]
γ = 0.

Now since a = ℓ
2
= (1 + k−1δℓ)2, we have

∂ia = 2ℓ∂iℓ = 2k−1ℓ∂iδℓ;

* The particular choice of initial data will affect the exponent ι. For the initial data we construct in
Chapter 5 below, it is sufficient to take ι = 1/2.
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substituting this into the foregoing, collecting powers of k, and multiplying by k−1, we obtain[(
−2∂s∂v + ∂2x

)
+

1

k

(
2
b

a
∂s∂x − c∂2s − δ−1a∂2x −

(
∂sc−

1

a
∂xb+

∂vδℓ

ℓ

)
∂s +

(
1

a
∂sb−

ℓ∂xδℓ

a2

)
∂x − ∂sδℓ

ℓ
∂v

)

+
1

k2

(
b
2

a
∂2s −

(
c
∂sδℓ

ℓ
− 2

b

a
∂sb

)
∂s −

bℓ∂sδℓ

a2
∂x

)
− 1

k3
b
2
ℓ∂sδℓ

a2
∂s

]
γ = 0. (3.3.5)

Note that the leading-order term is simply the free-space (Minkowski) wave operator.
We may similarly write out the scaled Riccati equations. We note that the scaling exponents for these

equations are (again, cf. (3.2.6), (3.2.7))

α+ η − δ = 1

θ − 2η + ζ = −1

β + θ − δ = 1

θ + α+ ζ − η − δ = 0

2(α+ ζ − δ) + θ = 1,

so that the Riccati equations become

∂2sa =
(∂sa)

2

2a
− 4ak−2ι(∂sγ)

2, ∂2s ℓ = −2ℓk−2ι(∂sγ)
2, ∂2sδℓ = −2ℓk1−2ι(∂sγ)

2, (3.3.6)

∂2sb =
1

2a
(∂sa)(∂sb)− 4k−2ι∂sγ(b∂sγ + k∂xγ) =

1

ℓ
k−1(∂sδℓ)(∂sb)− 4k1−2ι∂sγ(∂xγ + k−1b∂sγ),(3.3.7)

∂2sc = k−1 (∂sb)
2

2a
− 2k1−2ι∂sγ

(
2∂vγ + 2k−1 b

a
∂xγ + k−1

(
c+ k−1 b

2

a

)
∂sγ

)
− k1−2ι 2

a
(∂xγ)

2. (3.3.8)

Note that the restriction ι ≥ 1/2 means that the right-hand sides of these equations will not have any positive
powers of k.

3.4. Constraints in the scaled coordinates
Recall the constraint equations (2.4.2 – 2.4.1):

b,sa,x − 2a(b,xs − a,vs)− a,sa,v − ab,s
2 = 4aγ,x

2,

ab,vs +
1

2
a,vb,s = 4aγ,xγ,v,

−a,vv +
a,v

2

2a
= 4aγ,v

2.

We shall now derive the corresponding equations in the scaled coordinates. It is often convenient to work
with the quantity ℓ =

√
a instead of a itself. We have the following proposition.

3.4.1. PROPOSITION. In the coordinates s x v, the equations (2.4.2 – 2.4.1) become

2ℓ · δℓ,vs − ℓ∂x

(
ℓ
−1
b,s

)
− 1

2k
b,s

2
= 2k1−2ιγ,x

2 (3.4.1)

∂v
(
ℓ b,s

)
= 4ℓk1−2ιγ,vγ,x (3.4.2)

−δℓ,vv = 2ℓk1−2ιγ,v
2. (3.4.3)

Proof. We note the following derivatives of ℓ and δℓ:

∂vℓ =
a,v

2
√
a
, ∂2vℓ =

a,vv

2
√
a
−

a,v
2

4a3/2
=

1

2
√
a

(
a,vv −

a,v
2

2a

)
,

∂s∂vℓ =
a,vs

2
√
a
−
a,va,s

4a3/2
=

1

2
√
a

(
a,vs −

a,va,s
2a

)
,

∂s∂vδℓ = k∂s∂vℓ =
k

2
√
a

(
a,vs −

a,va,s
2a

)
.
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Recall also the following derivatives (see (3.3.1 – 3.3.4)):

∂s = ∂s, ∂x = k1/2∂x, ∂v = k∂v,

∂xb = ∂xb, ∂vb = k1/2∂vb,

∂xγ = k1/2−ι∂xγ, ∂vγ = k1−ι∂vγ.

Given these, the equations (2.4.2 – 2.4.1) become

−
(
k1/2∂x

)(
k−1/2b,s

)
+

1

2a

(
k−1/2b,s

(
k1/2∂x

)
a
)

+ka,vs − k
a,sa,v
2a

− 1

2

(
k−1/2b,s

)2
= 2

((
k1/2∂x

)
k−ιγ

)2
−b,xs +

b,sa,x
2a

+ k

(
a,vs −

a,sa,v
2a

)
− 1

2k
b,s

2
= 2γ,x

2k1−2ι

2ℓ · δℓ,vs − ℓ∂x

(
ℓ
−1
b,s

)
− 1

2k
b,s

2
= 2k1−2ιγ,x

2,

which is equation (3.4.1);

k1/2b,vs + k1/2
a,vb,s
2a

= 4k3/2−2ιγ,vγ,x

b,vs +
a,vb,s
2a

= 4k1−2ιγ,vγ,x

∂v
(
ℓ b,s

)
= 4ℓk1−2ιγ,vγ,x,

which is equation (3.4.2); and

−k2a,vv + k2
a,v

2

2a
= 4ak2−2ιγ,v

2

−k2ℓ,vv = 2ℓk2−2ιγ,v
2

−δℓ,vv = 2ℓk1−2ιγ,v
2,

which is equation (3.4.3). This completes the demonstration. QED.

Proposition 2.4.1 in Chapter 2 shows that, given the quantities

δℓ, δℓ,s, b,s.

on a line {s = 0, v = v0} for some v0 ≥ 0, there is a neighbourhood of this line on which the system (2.4.2 –
2.4.1) will have a unique solution.

We now wish to study the solutions to the system (3.4.1 – 3.4.3), and in particular to show that it
admits solutions on sufficiently large regions and with sufficiently well-behaved bounds to serve as initial
data for the equations of motion (3.3.5 – 3.3.8). We shall do this in Chapter 5. First we pause to build up
some analytic machinery for that chapter as well as the work in partial differential equations we shall do in
Chapter 6.



4. INTERLUDE: ANALYTIC PRELIMINARIES

4.1. Introduction
In this chapter we collect some algebraic and analytic results for use in the final two chapters. These

fall into three categories: first, two simple algebraic results; next, more-or-less standard L∞ bounds on
solutions to ordinary differential equations, which will be used to prove the existence of initial data satisfying
appropriate bounds; finally, modifications of standard Poincaré and Sobolev estimates, together with related
results, which will be needed in the analysis of the system (3.3.5 – 3.3.8).

This chapter is independent of the rest of the thesis. In particular, the results we give are in spaces
independent from those on which we solve (0.2.2 – 0.2.5).

4.2. Algebraic results
We have the following lemmata.

4.2.1. LEMMA. Let a ∈ Rn, and let g be a function on a neighbourhood of a which satisfies g(a) ̸= 0. Let
p ≥ 1 and suppose that J is any multiindex for which ∂Jg(a) exists. Let K denote the set of all collections of
multiindices {Kk} whose sum equals J . There is a collection of combinatorial constants {Cp

{Kk} | {Kk} ∈ K}
such that at a

∂J
1

gp
=

∑
{Kk}∈K

Cp
{Kk}

∏
K∈{Kk}

∂Kg

g|{Kk}|+p
,

where |{Kk}| denotes the cardinality of {Kk}.
Proof. This may be seen by induction. If |J | = 1, then it suffices to take Cp

{J} = −1. Suppose the above

formula holds for all J with |J | ≤ j, some j ≥ 1. Then differentiating gives

∂i∂
J 1

gp
=

∑
{Kk}∈K

Cp
{Kk}


∑

K∈{Kk} ∂i∂
Kg

∏
K′∈{Kk}\K

∂K
′
g

g|{Kk}|+p
− (|{Kk}+ 1|)

∂ig
∏

K∈{Kk}
∂Kg

g|{Kk}|+1+p

 ,

which is of the correct form. QED.

Let ∥M∥HS =
(∑

cd |Mcd|2
)1/2

denote the Hilbert-Schmidt norm of a matrix M . (Note that M need
not be square.)

4.2.2. LEMMA. The Hilbert-Schmidt norm has the following properties:
(a) If V is a covector in some Euclidean space and |V | denotes the Euclidean norm, then ∥ViVj∥HS = |V |2.
(b) If A and B are two square matrices, then TrAB ≤ ∥A∥HS∥B∥HS .

Proof. (a) We have

∥ViVj∥2HS =
∑
i,j

V 2
i V

2
j =

(∑
i

V 2
i

)∑
j

V 2
j

 = |V |2 · |V |2 = |V |4.

(b) Since the Hilbert-Schmidt norm on square matrices can be written as ∥A∥2HS = TrA2, and (A,B) 7→
TrAB is an inner product on square matrices, this follows from the Cauchy-Schwartz inequality. QED.

4.2.3. LEMMA. Let f be a real-valued C∞ function on some convex open set O ⊂ Rm. Then there is a C∞

map F : O ×O → Rm such that for all x1,x2 ∈ O,

f(x1)− f(x2) = (x1 − x2) · F (x1,x2).

Proof. This is elementary: define

F (x1,x2) =

∫ 1

0

∇f(x2 + t(x1 − x2)) dt;

44
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then clearly F : O ×O → Rm is C∞, and moreover

f(x1 − x2) =

∫ 1

0

d

dt
f(x2 + t(x1 − x2)) dt =

∫ 1

0

∇f(x2 + t(x1 − x2)) · (x1 − x2) dt = (x1 − x2) · F (x1,x2),

as claimed. QED.

4.2.4. LEMMA. Let O ⊂ Rm be open, let F : O → Rp be C∞, and suppose that f1, · · · , fm : O′ → R1,
O′ ⊂ Rq open, are also C∞. Let K be a multiindex in Rq. Then ∂KF (f1(x), · · · , fm(x)) is a sum of
combinatorial constants multiplying expressions of the form

(∂JF )(f1(x), · · · , fm(x))
∏

∂Kkfk(x), (4.2.1)

where Kk are multiindices on Rq and J is in Rm, satisfying |J | ≤ |K| and
∑

|Kk| = |K|.
Proof. We proceed by induction. If |K| = 1, say K = ∂i, then we have by the chain rule

∂iF (f1(x), · · · , fm(x)) =
∑
j

(∂jF )(f1(x), · · · , fm(x))∂ifj(x),

which is of the desired form. Now suppose that the result holds for all multiindices K with |K| ≤ n, n ≥ 1.
If we differentiate (4.2.1) with respect to ∂i, we obtain by the product and chain rules∑

j

(∂j∂
JF )(f1(x), · · · , fm(x))∂ifj(x)

∏
∂Kkfk(x)

+ (∂JF )(f1(x), · · · , fm(x))
∑

∂i∂
K∗
f∗(x)

∏
Kk ̸=K∗

∂Kkfk(x),

which is again of the correct form. QED.

4.3. L∞ bounds for ordinary differential equations
We recall that Proposition 2.4.1 shows that the constraint equations (3.4.1 – 3.4.3) can be solved locally

as ordinary differential equations for the initial data a, a,s, and b,s. The following results will be applied in
the next chapter to derive L∞ bounds on these initial data, as well as the initial data for γ. Those bounds
will also allow us to provide lower bounds on the interval of existence of a, a,s, and b,s.*

Let Mm×m(R), where m is a positive integer, denote the set of m×m matrices over R.

4.3.1. PROPOSITION. Let [0, X] be some compact interval in R1, and suppose that x : [0, X] → Rm,
M : [0, X] →Mm×m(R), and b : [0, X] → Rm are C∞ functions on [0, X] which satisfy

ẋ = Mx+ b

on (0, X). Then on [0, X], x must satisfy

|x|(t) ≤ eX∥∥M(t)∥HS∥L∞ (|x|(0) +X ∥|b|(t)∥L∞) ,

where | · | denotes the Euclidean norm on Rm, and ∥ · ∥L∞ denotes the L∞ norm on [0, X].
Proof. For simplicity we write everything in index notation; upper and lower indices are equivalent since

we are working with a Euclidean metric. The differential equation becomes

ẋi = Mijxj + bi.

* We note that the following results could be sharpened considerably in many places by replacing quantities
like X∥f∥L∞([0,X]) with ∥f∥L1([0,X]). On the other hand, the bounds in the form we give them are suitable
for our purposes, and to directly apply results with L1 norms in place of L∞ norms in Chapter 5 would
require us to introduce yet another series of norms on the initial data.
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Let ϵ > 0, and define e = |x|2 + ϵ = xixi + ϵ; then

ė = 2xiẋi = 2xiMijxj + 2bixi,

from which we see, by Lemma 4.2.2, that we have on [0, X]

ė ≤ 2∥M∥HS |x|2 + 2|b||x| = 2∥M∥HSe+ 2|b|e1/2.

Dividing through by e1/2, and multiplying by the integrating factor exp
[(

−
∫ t

0
∥M(t′)∥HS dt

′
)]

, we see that

this is equivalent to

d

dt

{[
exp

[(
−
∫ t

0

∥M(t′)∥HS dt
′
)]]

e1/2
}

≤ |b|(t)e−
∫ t

0
∥M(t′)∥HS dt′

,

whence we obtain

e1/2 ≤ e1/2(0)e

∫ t

0
∥M(t′)∥HS dt′

+

∫ t

0

e

∫ t

t′
∥M(t′′)∥HS dt′′ |b(t′)| dt′

≤ e1/2(0)eX∥∥M(t)∥HS∥L∞ +X∥|b|(t)∥L∞eX∥∥M(t)∥HS∥L∞

= eX∥∥M(t)∥HS∥L∞
(
e1/2(0) +X∥|b|(t)∥L∞

)
,

from which the result follows by taking ϵ→ 0. QED.

We obtain the following three corollaries.

4.3.1. COROLLARY. Let f , g, F be C∞ functions on an interval [0, X], and suppose that f satisfies

f ′ + gf = F

on [0, X]. Then on [0, X], f satisfies

|f | ≤ [|f(0)|+X∥F∥L∞ ] eX∥g∥L∞ ,

where ∥ · ∥L∞ denotes the L∞ norm on [0, X].
Proof. This is just Proposition 4.3.1 in the case m = 1. QED.

4.3.2. COROLLARY. Let f , h, g, F be C∞ functions on an interval [0, X], and suppose that f satisfies

f ′′ + hf ′ + gf = F (4.3.1)

on [0, X]. Then on [0, X], f satisfies[
|f |2(t) + |f ′|2(t)

]1/2 ≤
([

|f |2(0) + |f ′|2(0)
]1/2

+X∥F∥L∞

)
eX[1+∥h∥L∞+∥g∥L∞ ],

where ∥ · ∥L∞ denotes the L∞ norm on [0, X].
Proof. Note that the equation (4.3.1) is equivalent to the system

f ′ = u

u′ = −gf − hu+ F,

which is of the form of that in Proposition 4.3.1 with

x =

(
f
u

)
, M =

(
0 1
−g −h

)
, b =

(
0
F

)
;

since for any t ∈ [0, X]

|x(t)| =
[
|f |2(t) + |f ′|2(t)

]1/2
, ∥M(t)∥HS ≤ 1 + |g(t)|+ |h(t)|, |b(t)| = |F (t)|,
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the result follows from Proposition 4.3.1. QED.

4.3.3. COROLLARY. In Corollary 4.3.2, suppose that h = 0 and f(X) = f ′(X) = 0. Then on [0, X] we have

|f(t)|, |f ′(t)| ≤ X∥F∥L∞eX[1+∥g∥L∞ ].

Proof. This follows by replacing x by X − x in the differential equation satisfied by f . QED.

Clearly, many terms like X∥g∥L∞ in the foregoing results could be replaced with the L1 norms which
they bound. In the applications we shall make of these results below, though, it is more natural to deal with
the L∞ norms, which is why we have stated the foregoing as we have.

We conclude this section with one result on L∞ Sobolev spaces. Let U be any open set in some linear
submanifold of Rp, and let J denote a multiindex in derivatives tangent to U . We define the Sobolev norm

∥f∥Wm,∞(U) =
∑

|J|≤m

∥∥∂Jf∥∥
L∞(U)

(4.3.2)

(this is equivalent to the usual definition with a maximum instead of a sum), let Wm,∞(U) denote the set
of all functions on U for which the above is defined and finite, and note the following lemma.

4.3.1. LEMMA. For any m ≥ 0 there exist constants Cm and Ci
m such that, for any f, g ∈Wm,∞(U),

∥fg∥Wm,∞(U) ≤ Cm∥f∥Wm,∞(U)∥g∥Wm,∞(U),

and for any f ∈Wm,∞(U) for which ∥1/f∥L∞(U) is finite,∥∥∥∥ 1f
∥∥∥∥
Wm,∞(U)

≤ Ci
m

(
1 + ∥f∥Wm,∞(U)

)m ·
∥∥∥∥ 1f
∥∥∥∥m+1

L∞(U)

.

Proof. The first inequality is a trivial application of the product rule

∂I(fg) =
∑
J≤I

(
I
J

)
∂I−Jf∂Jg,

where I − J is the componentwise difference and J ≤ I if and only if I − J has nonnegative entries. The
second inequality follows from Lemma 4.2.1: if |I| ≤ m, then

∂I
1

f
=

∑
{Kk}∈K

Cp
{Kk}

∏
K∈{Kk}

∂Kf

f |{Kk}|+1

≤
∑

{Kk}∈K

Cp
{Kk}

(
1 + ∥f∥Wm,∞(U)

)|{Kk}| ·
∥∥∥∥ 1f
∥∥∥∥|{Kk}|+1

≤ Ci
m

(
1 + ∥f∥Wm,∞(U)

)m ·
∥∥∥∥ 1f
∥∥∥∥m+1

,

as claimed. QED.

4.4. Poincaré- and Sobolev-type inequalities.
As usual, when deriving energy bounds we shall need to avail ourselves of Poincaré and Sobolev inequal-

ities on spacelike surfaces of constant τ . However, these surfaces shrink to a line in the limit as τ → 0+,
which means that the standard versions of the Poincaré and Sobolev inequalities cannot be applied directly
as the ‘constants’ could potentially go to infinity. Thus in this section we derive appropriate replacements
which can be used in our context.
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The general definitions of Sobolev norms in 0.9 give rise to the following special cases. If X ⊂ Rn is
any open subset of an affine submanifold of Rp, or any such set with some or all of its boundary points
included,, and m ≥ 1, we have, according to (0.9.2),

∥f∥2Hm
◦ (X) =

∑
1≤|I|≤m

∥∂If∥2L2(X), (4.4.1)

where I indicates a multiindex in the directions tangential to X. Further, if L > 0, we define ΩL = R1×[0, L]
and ∂ΩL = R1 × {0}. Let m ≥ 1. Then we have

∥f∥2H1(∂ΩL) =

∫ +∞

−∞
|f(x, 0)|2 dx+

∫ +∞

−∞
|∂xf(x, 0)|2 dx. (4.4.2)

Here these definitions are for all functions f for which the right-hand sides exist.
We shall denote a generic point in ΩL by (x, y). We have the following two results, which adapt the

Poincaré inequality and a Sobolev inequality, respectively, to our situation.

4.4.1. PROPOSITION. Let L > 0, and let f ∈ H1(ΩL) ∩ L2(∂ΩL). Then

∥f∥L2(ΩL) ≤
√
2L
[√

L ∥∂yf∥L2(ΩL) + ∥f∥L2(∂ΩL)

]
.

Proof. It suffices to show this for f ∈ C∞(ΩL), and that case is elementary:

∥f∥2L2(ΩL) =

∫ +∞

−∞

∫ L

0

|f |2 dy dx ≤ 2

∫ +∞

−∞

∫ L

0

[∣∣∣∣∫ y

0

∂yf(x, y
′) dy′

∣∣∣∣2 + |f(x, 0)|2
]
dy dx

≤ 2

∫ +∞

−∞

∫ L

0

|f(x, 0)|2 + L

∫ L

0

|∂yf |2 dy′ dx ≤ 2L
[
L|∂yf |2L2(ΩL) + |f(x, 0)|2L2(∂ΩL)

]
,

from which the result follows immediately. QED.

4.4.2. PROPOSITION. Let L ≤
√
2, and let m ≥ 2. There is a constant C, independent of L, such that for all

f ∈ Hm(ΩL) ∩H1(∂ΩL)
∥f∥L∞(ΩL) ≤ C

[
∥f∥Hm

◦ (ΩL) + ∥f∥H1(∂ΩL)

]
. (4.4.3)

Proof. It suffices to show this for f ∈ C∞(ΩL) having support which is compact in the first variable.
Let L ≤

√
2. We note the following elementary version of the Poincaré inequality: if g ∈ C∞([0, L]), then

for any x ∈ [0, L],

|g(x)| =
∣∣∣∣∫ x

0

g′(u) du+ g(0)

∣∣∣∣ ≤ |g(0)|+
∫ L

0

|g′(u)| du ≤ |g(0)|+ L1/2∥g′∥L2([0,L]),

by the Cauchy-Schwartz inequality; in other words, there is a constant C, independent of L (more precisely,
depending only on an upper bound for L, here

√
2), such that for g ∈ C∞([0, L]) we have

∥g∥2L∞([0,L]) ≤ C
[
∥g′∥2L2([0,L]) + |g(0)|2

]
.

Now let f ∈ C∞(ΩL) have support compact in the first variable, and for any x ∈ R1 define fx ∈ C∞([0, L])
by fx(y) = f(x, y). Then clearly for all x ∈ R1 we have (here fx is a function of one variable, and f ′x is its
derivative, f ′x(y) = ∂yf(x, y))

∥fx(y)∥2L∞([0,L]) ≤ C
[
∥f ′x∥2L2([0,L]) + |f(x, 0)|2

]
.

Further,

∥f(x, y)∥2L∞(ΩL) ≤
∥∥∥∥fx(y)∥2L∞([0,L])

∥∥∥
L∞(R1)

≤ C
∥∥∥[∥f ′x∥2L2([0,L]) + |f(x, 0)|2

]∥∥∥
L∞(R1)

;
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now if we let C ′ denote the Sobolev embedding constant on R1, we have

∥|f(x, 0)|2∥L∞(R1) = ∥f(x, 0)∥2L∞(R1) ≤ C ′ 2
[
∥f(x, 0)∥2L2(R1) + ∥∂xf(x, 0)∥2L2(R1)

]
and, since f has compact support in x,

∥∥∥∥f ′x∥2L2([0,L])

∥∥∥
L∞(R1)

≤
∫ ∞

−∞
dx

∣∣∣∣∣∂x
∫ L

0

|∂yf |2 dy

∣∣∣∣∣ =
∫ ∞

−∞

∫ L

0

2|∂yf∂x∂yf | dy dx

≤
∫ ∞

−∞

∫ L

0

|∂yf |2 + |∂x∂yf |2 dy dx ≤ ∥f∥2Hm
◦ (ΩL),

so finally

∥f(x, y)∥2L∞(ΩL) ≤ 2C(C ′ + 1)2
[
∥f∥2Hm

◦ (ΩL) + ∥f∥2H1(∂ΩL)

]
,

from which the result follows. QED.

We shall denote the constant in this proposition by C0 when necessary.

We now wish to prove bounds on norms of products. We begin with the following extension lemma. We
let C∞

c (ΩL) denote the set of functions on ΩL which are C∞ and have compact support.

4.4.1. LEMMA. Let L ≤
√
2, let m ≥ 0, and let ϕ ∈ C∞(R1) have support contained in [−1, 3] and satisfy

ϕ|[−1/2,2] = 1. Then there is an extension map e : C∞
c (ΩL) → Hm

0 (R1 × [−1, 3]) such that
(i) e(f)|ΩL

= f ,

(ii) ∥e(f)∥Hm(R1×[−1,3]) ≤ Ce
[
∥f∥Hm(ΩL) +

∑m
ℓ=0

∥∥∂ℓyf∥∥Hm−ℓ(∂ΩL)

]
,

where ∂y denotes the one-sided derivative into ΩL, and Ce is a constant depending only on m and ϕ (in
particular, Ce is independent of L and the size of the support of f).

Proof. The main idea is to extend ∂my f by 0 and then integrate m times in y, multiplying by a cutoff
at the very end. We first show how to do this in one dimension. Fix some f ∈ L2([−1, 3]), and let a0, a1,
· · ·, am be a sequence of real numbers. We first define, for x ∈ [−1, 3],

I(f, a)(x) = a+

∫ x

0

f(t) dt.

Now since [−1, 3] has finite measure, we have f ∈ L1([−1, 3]) as well, so that I(f, a)(x) is differentiable
almost everywhere and

d

dx
I(f, a)(x) = f(x)

as functions in L1. Thus
∥I(f, a)∥H1

◦([−1,3]) = ∥f∥L2([−1,3]).

We now claim that
∥I(f, a)∥L2([−1,3]) ≤ 4(|a|+ ∥f∥L2([−1,3])).

It suffices to show this for f ∈ C∞([−1, 3]). For such f , we have clearly

∥I(f, a)∥L2([−1,3]) ≤ 2|a|+
∥∥∥∥∫ x

0

f(t) dt

∥∥∥∥
L2([−1,3])

,∥∥∥∥∫ x

0

f(t) dt

∥∥∥∥2
L2([−1,3])

≤
∫ 3

−1

[∫ x

0

f(t) dt

]2
dx ≤

∫ 3

−1

|x|
∣∣∣∣∫ x

0

|f(t)|2 dt
∣∣∣∣ dx

≤ 3

∫ 3

−1

∫ 3

−1

|f(t)|2 dt dx = 12∥f∥2L2([−1,3]),

so

∥I(f, a)∥L2([−1,3]) ≤ 4
(
|a|+ ∥f∥L2([−1,3])

)
,
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as claimed. Thus we have
∥I(f, a)∥H1([−1,3]) ≤ 5(|a|+ ∥f∥L2([−1,3])).

We now define I◦k(f) inductively by

I◦1 (f) = I(f, a0), I◦k+1(f) = I(I◦k(f), ak).

We claim that ∥I◦k(f)∥L2([−1,3]) ≤ 4k
(∑k−1

ℓ=0 |aℓ|+ ∥f∥L2([−1,3])

)
. This may be shown by induction:

∥I◦1 (f)∥L2([−1,3]) = ∥I(f, a0)∥L2([−1,3]) ≤ 4
(
|a0|+ ∥f∥L2([−1,3])

)
,

∥I◦k+1(f)∥L2([−1,3]) = ∥I(I◦k(f), ak)∥L2([−1,3]) ≤ 4
(
|ak|+ ∥I◦k(f)∥L2([−1,3])

)
≤ 4

(
|ak|+ 4k

[
k−1∑
ℓ=0

|aℓ|+ ∥f∥L2([−1,3])

])
≤ 4k+1

(
k∑

ℓ=0

|aℓ|+ ∥f∥L2([−1,3])

)
,

establishing the claim. Now we note moreover that

d

dx
I◦k+1(f) = I◦k(f); (4.4.4)

thus

∥I◦k(f)∥Hk([−1,3]) ≤ k4k

(
k∑

ℓ=0

|aℓ|+ ∥f∥L2([−1,3])

)
,

and similarly there must be some constant C depending only on ϕ and k such that

∥ϕI◦k(f)∥Hk([−1,3]) ≤ k4kC

(
k∑

ℓ=0

|aℓ|+ ∥f∥L2([−1,3])

)
. (4.4.5)

We now define the extension map e. It suffices to work with f ∈ C∞(ΩL) with support compact in the
first variable. Pick such an f , and define first

F (x, y) =

{
∂my f(x, y), y ∈ [0, L]

0, otherwise

clearly F (x, ·) ∈ L2([−1, 3]) for every x. We then define

e(f)(x, y) = ϕ(y)I◦m(F (x, ·))(y),

where the sequence for each I◦m is aℓ = (∂ℓyf)(x, 0). Clearly e(f) is zero outside R1× [−1, 3]. It is also clearly
C∞ in x. Further, the bound (4.4.5) will hold with k = m and f = F (x, ·). Thus, noting that all of this
holds with f replaced by ∂ixf for any i, and that differentiating by x commutes with e, we have

∥e(f)∥Hm(R1×[−1,3]) ≤
∑

j+k≤m

∥∂jx∂ky e(f)∥L2(R1×[−1,3])

=
∑

j+k≤m

∥∂ky e(∂jxf)∥L2(R1×[−1,3])

≤
m∑

k=0

m−k∑
j=0

k4kC

∥∥∥∥∥
k∑

ℓ=0

|∂jx∂ℓyf(x, 0)|+ ∥∂jxf(x, ·)∥L2([−1,3])

∥∥∥∥∥
L2(R1)

≤ C ′

[
∥f∥Hm(ΩL) +

m∑
ℓ=0

∥(∂ℓyf)(x, 0)∥Hm−ℓ(∂ΩL)

]
,

completing the proof. QED.
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It is worth noting that the Hm norm on the right-hand side of the inequality in (ii) can be replaced with a
norm only on the x derivatives of f . Further, by continuity, the map e can clearly be extended to the set of
all functions f ∈ Hm(ΩL) which satisfy also ∂ℓyf ∈ Hm−ℓ(∂ΩL), ℓ = 0, · · · ,m (in a trace sense, for example).

This allows us to derive the following lemma; see [12], Lemma 6.16.

4.4.2. LEMMA. Let m ≥ 2, L ≤
√
2. Let f1, · · ·, fk ∈ Hm(ΩL) satisfy ∂ℓyfi ∈ Hm−ℓ(∂ΩL), ℓ = 0, · · · ,m,

i = 1, · · · , k, and let I1, · · ·, Ik be multiindices with |I1+ · · ·+ Ik| ≤ m. Then there is a constant C such that

∥∥∂I1f1 · · · ∂Ikfk∥∥L2(ΩL)
≤ C (Ce)

k
k∏

i=1

(
m∑
ℓ=0

∥∂ℓyfi∥Hm−ℓ(∂ΩL) + ∥fi∥Hm(ΩL)

)
.

Proof. This follows from the result just cited, together with the embedding in Lemma 4.4.1 and the
Sobolev inequality on R2: specifically, for i = 1, · · ·, k, let f̃i be the extension by 0 of e(fi) to all of R2; then
by [12], Lemma 6.16, and the Sobolev inequality on R2 we have

∥∥∥∂I1 f̃1 · · · ∂Ik f̃k∥∥∥
L2(R2)

≤ C

k∏
i=1

∥f̃i∥Hm(R2).

But by the lemma ∥f̃i∥Hm(R2) ≤ Ce(
∑m

ℓ=0 ∥∂ℓyfi∥Hm−ℓ(∂ΩL) + ∥fi∥Hm(ΩL)), so that we have

∥∥∂I1f1 · · · ∂Ikfk∥∥ ≤
∥∥∥∂I1 f̃1 · · · ∂Ik f̃k∥∥∥

L2(R2)
≤ C (Ce)

m
k∏

i=1

(
m∑
ℓ=0

∥∂ℓyfi∥Hm−ℓ(∂ΩL) + ∥fi∥Hm(ΩL)

)
,

as claimed. QED.

The constant can evidently be taken to depend only on m (by taking a maximum over multiindices);
we denote it by CM when convenient.

The form of the next result follows as an easy corollary, but we give a separate derivation which is more
careful with the constant.

4.4.3. LEMMA. Let m ≥ 2, L ≤
√
2. There is a constant C ≥ 1 such that if f1, f2, · · · , fk ∈ Hm(ΩL) satisfy

∂ℓyfi ∈ Hm−ℓ(∂ΩL), ℓ = 0, · · · ,m, i = 1, · · · , k,

∥f1 · · · fk∥Hm(ΩL) ≤ Ck
k∏

i=1

(
m∑
ℓ=0

∥∂ℓyfi∥Hm−ℓ(∂ΩL) + ∥fi∥Hm(ΩL)

)
.

Proof. As in the lemma, the key point here is that the constant C does not depend on L. Let
f, g ∈ Hm

0 (R2); then there is a constant C ′ such that

∥f · g∥Hm(R2) ≤ C ′∥f∥Hm(R2)∥g∥Hm(R2).

We may assume C ′ ≥ 1 without loss of generality. Now by the lemma, we may extend the fi to functions
e(fi) in H

m
0 (R1 × [−1, 3]); extending by 0 outside of R1 × [−1, 3], we obtain functions f̃i on R2, which still

satisfy

∥f̃i∥Hm(R2) ≤ Ce

(
m∑
ℓ=0

∥∂ℓyfi∥Hm−ℓ(∂ΩL) + ∥fi∥Hm(ΩL)

)
.

Thus finally

∥f1f2 · · · fk∥Hm(ΩL) ≤ ∥f̃1 · f̃2 · · · f̃k∥Hm(R2) ≤ C ′ k−1∥f̃1∥Hm(R2)∥f̃2∥Hm(R2) · · · ∥f̃k∥Hm(R2)

≤ C ′ k(Ce)k
k∏

i=1

(

m∑
ℓ=0

∥∂ℓyfi∥Hm−ℓ(∂ΩL) + ∥fi∥Hm(ΩL)),

so taking C = max{C ′Ce, 1} (and recalling that Ce is independent of L) gives the result. QED.

We denote the constant C by CM or CM
m when convenient.



5. EXISTENCE OF INITIAL DATA

5.1. Introduction
In this chapter we shall construct initial data for the system (3.3.5 – 3.3.8),[(

−2∂s∂v + ∂2x
)
+

1

k

(
2
b

a
∂s∂x − c∂2s − δ−1a∂2x −

(
∂sc−

1

a
∂xb+

∂vδℓ

ℓ

)
∂s +

(
1

a
∂sb−

ℓ∂xδℓ

a2

)
∂x − ∂sδℓ

ℓ
∂v

)

+
1

k2

(
b
2

a
∂2s −

(
c
∂sδℓ

ℓ
− 2

b

a
∂sb

)
∂s −

bℓ∂sδℓ

a2
∂x

)
− 1

k3
b
2
ℓ∂sδℓ

a2
∂s

]
γ = 0 (3.3.5)

∂2sa =
(∂sa)

2

2a
− 4ak−2ι(∂sγ)

2, ∂2s ℓ = −2ℓk−2ι(∂sγ)
2, ∂2sδℓ = −2ℓk1−2ι(∂sγ)

2 (3.3.6)

∂2sb =
1

2a
(∂sa)(∂sb)− 4k−2ι∂sγ(b∂sγ + k∂xγ) =

1

ℓ
k−1(∂sδℓ)(∂sb)− 4k1−2ι∂sγ(∂xγ + k−1b∂sγ) (3.3.7)

∂2sc = k−1 (∂sb)
2

2a
− 2k1−2ι∂sγ

(
2∂vγ + 2k−1 b

a
∂xγ + k−1

(
c+ k−1 b

2

a

)
∂sγ

)
− k1−2ι 2

a
(∂xγ)

2 (3.3.8)

which satisfy the following two conditions:
(1) The solution obtained from the initial data, when substituted into the metric (0.2.1) via (cf. (0.3.35))

a = [1 + k−1δℓ]2, b = k−1/2b, c = c, γ = k−1/2γ, (5.1.1)

will give a solution to the Einstein vacuum equations;
(2) The initial data, together with their transverse derivatives on Σ0 and U0, satisfy the bounds (0.3.31 –

0.3.33) on Σ0 and U0. More specifically, this requires us to find bounds* on the quantities

∂J∂ℓsδℓ, ∂J∂ℓsb, ∂J∂ℓsc (5.1.2)

on Σ0, and bounds on
∂I∂ℓsγ, ∂J∂ℓs∂τγ, (5.1.3)

on Σ0 ∪ U0, where in all cases I and J are multiindices in x and v and ℓ ∈ {0, 1}, and we recall (see
equation (0.3.19)) that τ = (s+ v)/

√
2.

Satisfying condition (1) comes down to finding initial data which satisfy the constraint equations (0.2.24
– 0.2.26) and the gauge conditions, see Corollary 2.4.1. Let us lay out the process systematically. It is clear
that sufficient initial data for the system (3.3.5 – 3.3.8) by itself, in isolation from condition (1), is given by

∂ℓsδℓ|s=0, ∂ℓsb|s=0, ∂ℓsc|s=0, (5.1.4)

γ|s=0, γ|v=0, (5.1.5)

where ℓ = 0, 1, and where the functions in (5.1.5) satisfy the consistency conditions (1.3.2). The gauge
condition (2.4.4) fixes three of the six functions in (5.1.4):

b|s=0 = c|s=0 = ∂sc|s=0 = 0. (5.1.6)

Given γ|s=0, the constraint equations, written in the form (0.2.24 – 0.2.26)

∂2δℓ

∂v2
= −2(1 + k−1δℓ)k1−2ι (∂vγ)

2
(0.2.24)

∂v
(
[1 + k−1δℓ] ∂sb

)
= 4(1 + k−1δℓ)k1−2ι∂vγ∂xγ (0.2.25)

2(1 + k−1δℓ) · ∂
2δℓ

∂v∂s
= (1 + k−1δℓ)∂x

(
[1 + k−1δℓ]−1∂sb

)
+

1

2k

(
∂sb
)2

+ 2k1−2ι (∂xγ)
2
, (0.2.26)

* These bounds will be with respect to various different norms. We shall obtain data which are compactly
supported, in the which case the norms of the initial data in all of these spaces are bounded by L∞ norms.
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give ordinary differential equations in v whose solution will give the remaining three functions in (5.1.4),

δℓ|s=0, ∂sδℓ|s=0, ∂sb|s=0, (5.1.7)

given, for some v0 ≥ 0, the values (see Proposition 2.4.1)

δℓ|s=0, v=v0
, ∂vδℓ|s=0, v=v0

, ∂sδℓ|s=0, v=v0
, ∂sb|s=0, v=v0

.

To sum up, we have the following lemma.

5.1.1. LEMMA. Suppose given the quantities

γ|s=0, γ|v=0, δℓ|s=0, v=v0
, ∂vδℓ|s=0, v=v0

, ∂sδℓ|s=0, v=v0
, ∂sb|s=0, v=v0

, (5.1.8)

where v0 is such that {(0, x, v0) |x ∈ R} ⊂ Σ0, and γ|s=0 and γ|v=0 satisfy the consistency conditions (1.3.2).
Then on some neighbourhood of {(0, x, v0) ∈ Σ0 |x ∈ R} in Σ0 there is a unique set of initial data (5.1.4),
(5.1.5) taking the values indicated in (5.1.8) and satisfying the constraint equations (0.2.24 – 0.2.26). Any
solution to (3.3.5 – 3.3.8) corresponding to such initial data will give, via (5.1.1) and (0.2.1), a solution to
the Einstein vacuum equations.

Proof. The first statement follows from the foregoing, and the second follows from Corollary 2.4.1.QED.

This takes care of condition (1).
Condition (2) is much trickier. Obtaining bounds on the initial data (5.1.4 – 5.1.5) and their derivatives

tangent to the initial hypersurfaces is not difficult. Note however that obtaining bounds on the quantities
in (5.1.2 – 5.1.3) – which are necessary to allow us to close our estimates with respect to the energies En[γ]
and En[h] (see equation (0.3.30) and equation (6.2.25)) – will require, on both hypersurfaces, bounds on
derivatives with respect to

ζ =
1√
2
(s− v),

and hence will require that we bound derivatives with respect to s on Σ0 and with respect to v on U0, for
all four functions δℓ, b, c, γ. (See also the conditions (0.3.31 – 0.3.33) and the definitions (0.3.26 – 0.3.27).)
For δℓ, b, and c, this can be done using the Riccati equations (3.3.6 – 3.3.8) and the constraint equations
(0.2.24 – 0.2.26). For γ, note that the wave equation (3.3.5) on Σ0 simplifies by (5.1.6) to[

−2∂s∂v + ∂2x + k−1

(
−δ−1a∂2x − ∂vδℓ

ℓ

)
∂s +

(
1

a
∂sb−

ℓ∂xδℓ

a2

)
∂x − ∂sδℓ

ℓ
∂v

]
γ = 0; (5.1.9)

given the quantities in (5.1.7), as well as γ|s=0, this is an ordinary differential equation in v for ∂sγ|s=0, and
hence we can obtain ∂sγ|s=0 given

∂sγ|s=0, v=v0

for v0 as before. Similarly, as we shall discuss in more detail later (see Proposition 5.2.2), differentiating
(3.3.5 – 3.3.8) with respect to s allows us to obtain

∂ℓsδℓ|s=0, ∂ℓsb|s=0, ∂ℓsc|s=0, ∂ℓsγ|s=0 (5.1.10)

for ℓ = 0, 1, · · · ,m given

∂ℓsδℓ|s=0, v=v0
, ∂ℓsb|s=0, v=v0

, ∂ℓsc|s=0, v=v0
, ∂ℓsγ|s=0, v=v0

,

for ℓ = 0, 1, · · · ,m, and moreover to obtain L∞ bounds for the quantities in (5.1.10) in terms of L∞ bounds
on γ|s=0, ∂xγ|s=0, and ∂vγ|s=0, all of which are known completely once γ|s=0 is specified. (There is a loss
of derivative in these bounds but this does not cause any difficulties here as γ|s=0 is entirely specified.) A
similar method (which is however rather more involved, due to some nontrivial coupling; see Proposition
5.3.2) works to determine the transverse derivatives ∂ℓvγ|v=0, etc.. Further differentiating with respect to
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tangential derivatives (∂x and ∂v on Σ0, ∂x and ∂s on U0) allows us to obtain bounds on the tangential
derivatives of the quantities in (5.1.10). This is all spelled out in great detail in Section 5.2 and Section 5.3.

On Σ0 there is an extra issue to be dealt with, which does not come up on U0. Note (compare our
discussion at the end of Section 0.2) that to determine the quantities in (5.1.10) we must integrate equations
(0.2.24 – 0.2.26) and (5.1.9) and its s derivatives with respect to v – and v ranges over a interval [0, kT

√
2]

with length of size k. In order for the s derivatives of γ to have bounds in L2(Σ0) which are independent
of k – as required by (0.3.31) – we must be able to prove that this integration does not lead to factors of k.
The simplest way to ensure this is suggested by the following proposition.*

5.1.1. PROPOSITION. Let C > 0 be some constant independent of k, let δv1, δv2 ∈ [0, C], and suppose that
the set

Σ∗ = {(0, x, v) ∈ Σ0 | v ∈ (δv1, kT
√
2− δv2)} (5.1.11)

satisfies
Σ∗ ∩ supp γ|Σ0 = ∅. (5.1.12)

If v0 ∈ (δv1, kT
√
2− δv2) and δℓ, ∂sδℓ, ∂sb is the solution to (0.2.24 – 0.2.26) on Σ0 satisfying

δℓ|s=0, v=v0
= 0, ∂vδℓ|s=0, v=v0

= 0, ∂sδℓ|s=0, v=v0
= 0, ∂sb|s=0, v=v0

= 0,

then
δℓ|s=0 = 0, ∂vδℓ|s=0 = 0, ∂sδℓ|s=0 = 0, ∂sb|s=0 = 0

on Σ∗.
Proof. Note that, by equation (5.1.12), on Σ∗ the constraint equations (0.2.24 – 0.2.26) become

∂2δℓ

∂v2
= 0 (5.1.13)

∂v
(
[1 + k−1δℓ] ∂sb

)
= 0 (5.1.14)

2(1 + k−1δℓ) · ∂
2δℓ

∂v∂s
= (1 + k−1δℓ)∂x

(
[1 + k−1δℓ]−1∂sb

)
+

1

2k

(
∂sb
)2
. (5.1.15)

(5.1.13 – 5.1.14) together with the conditions δℓ|s=0, v=v0
= ∂vδℓ|s=0, v=v0

= ∂sb|s=0, v=v0
= 0 clearly give

δℓ = ∂sb = 0 on Σ∗, whence (5.1.15) becomes

2
∂2δℓ

∂v∂s
= 0,

and ∂sδℓ|s=0, v=v0
= 0 implies ∂sδℓ = 0 on Σ∗ also. QED.

Because of this proposition, we shall assume for the rest of this chapter that all our choices of γ|s=0

are of the following form. Let δv1, δv2 ∈ R, δv1, δv2 ∈ (0, 1) be two fixed numbers,† independent of k, and
assume that k is large enough that kT/

√
2 ∈ (δv1, kT

√
2 − δv2). Let ϖ1, ϖ2 be C∞ functions on R2 with

support contained in
[0, 1]× [0, δv1], [0, 1]× [0, δv2],

respectively, and which, together with all of their derivatives, have L∞ bounds on R2 which are independent
of k. (This condition will be satisfied, for example, if ϖ1 and ϖ2 are fixed functions independent of k.) We
assume in particular that they satisfy

∥∂vϖi∥L∞ ≤ 1

2
, ∥∂xϖi∥L∞ ≤ 1

2
. (5.1.16)

* See also the footnote at the end of Section 0.2, and the discussion in Section 0.5 – we believe it may be
possible to deal with this issue by other methods, such as, for example, by using a special class of functions
for γ which will make all terms of higher order in k vanish identically which might appear upon integrating
(5.1.9) and its s derivatives. That is however beyond the scope of the current work.

† The restriction δv1, δv2 < 1 is purely for technical convenience.
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Now define ϖ0(x, v) on Σ0 by

ϖ0(x, v) =

 ϖ1(x, v), v ∈ [0, δv1]
0, v ∈ [δv1, kT

√
2− δv2]

ϖ2(x, v − (kT
√
2− δv2)), v ∈ [kT

√
2− δv2, kT

√
2]

; (5.1.17)

note that ϖ0, together with all of its derivatives, has an L∞ bound on Σ0 which is independent of k, and
also satisfies (5.1.16) (since the supports of the two ‘blips’ comprising ϖ0 are disjoint and (5.1.16) involves
an L∞ norm). We now specify

γ(0, x, v) = o ·ϖ0(x, v), (5.1.18)

where o ≤ 1 is a scaling parameter (also independent of k) which we shall set later, and

δℓ|s=0, v=kT/
√
2 = 0, ∂vδℓ|s=0, v=kT/

√
2 = 0, ∂sδℓ|s=0, v=kT/

√
2 = 0, ∂sb|s=0, v=kT/

√
2 = 0.

(5.1.19)
We define also the function γ0 on Σ0 by

γ0(x, v) = o ·ϖ0(x, v), (5.1.20)

so that (5.1.18) may be written γ|Σ0
= γ0. With these choices we have specified everything in (5.1.8) except

for γ|v=0. We will choose this (see Section 5.3) so that for ℓ = 0, · · · ,m, m some positive integer, we have

∂ℓsγ|s=0, v=kT/
√
2 = 0; (5.1.21)

logic similar to that used in Proposition 5.1.1 will then allow us to conclude that ∂ℓsγ|s=0 must vanish when

v ∈ (δv1, kT
√
2− δv2). (Note that (5.1.21) is not part of the specification of the initial data – the transverse

derivatives ∂ℓsγ|s=0 are quantities derived from the other choices of initial data. What we are saying here
is that we can force (5.1.21) by an appropriate choice of γ|v=0, which is part of the initial data.) This will
complete our specification of the initial data, and we shall assume for the rest of the chapter that all initial
data is chosen in this way.

On Σ0, the problem, as thus phrased, has a formal reflection symmetry in the line v = kT/
√
2, in that

we shall obtain the quantities in (5.1.2 – 5.1.3) for v ∈ [0, kT/
√
2] by integrating backwards from kT/

√
2

to 0, and for v ∈ [kT/
√
2, kT

√
2] by integrating forwards from kT/

√
2 to kT

√
2, and these problems are

mapped into each other by exchanging ϖ1 and ϖ2 and mapping

v 7→ kT
√
2− v. (5.1.22)

Note that equation (0.2.24) is preserved by (5.1.22); the other equations we solve are preserved only up to
signs, but since we are only interested in obtaining bounds, signs will not matter. It thus suffices to consider
just one half of the problem. Since the half with v ∈ [0, kT/

√
2] is the only one which matters for determining

γ|v=0, we shall focus on it in the following, with the understanding that the other case follows by the same
logic. Thus in the next two sections, unless otherwise noted, we assume v ∈ [0, kT/

√
2].

5.2. Initial data on s = 0
In this section (only) we let I denote a multiindex in x and v.
We have the conditions

δℓ|s=0,v=kT/
√
2 = δℓ,v|s=0,v=kT/

√
2 = δℓ,s|s=0,v=kT/

√
2 = b,s|s=0,v=kT/

√
2 = 0, (5.2.1)

which imply (for k sufficiently large) the conditions

δℓ|s=0,v=1 = δℓ,v|s=0,v=1 = δℓ,s|s=0,v=1 = b,s|s=0,v=1 = 0. (5.2.2)

In all of the results in this section we shall assume that (5.2.1), and hence (5.2.2), holds.
We define the set

Σ
1
2
0 = {(0, x, v) ∈ Σ0 | v ≤ kT/

√
2}.
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As observed at the end of Section 5.1, the results we prove below on Σ
1
2
0 will also hold on the complement

Σ0\Σ
1
2
0 .
In accordance with our definition of Wm,∞ (see (4.3.2)), we have, for any (say Cm) function f defined

on Σ
1
2
0 ,

∥f∥
Wm,∞(Σ

1
2
0 )

=
∑

j1+j2≤m

sup

(0,x,v)∈Σ
1
2
0

∣∣∣∂j1x ∂j2v f(0, x, v)∣∣∣ .
We now have the following results. Recall that on Σ

1
2
0 we have γ = γ0.

5.2.1. PROPOSITION. Let m be a fixed positive integer. There is a combinatorial constant Cu
m > 0 such that

any solution to (0.2.24 – 0.2.26) with initial data given by (5.1.18) and (5.2.2) satisfies on s = 0 the bounds

0 ≥ δℓ ≥ −k1−2ι∥∂vγ0∥2L∞ , (5.2.3)

∥δℓ∥
Wm,∞(Σ

1
2
0 )

≤ Cu
mk

1−2ι∥γ,v∥2
Wm,∞(Σ

1
2
0 )

[
1 + ∥γ,v∥2

Wm,∞(Σ
1
2
0 )

]m
, (5.2.4)

∥∥∥∥1ℓ
∥∥∥∥
Wm,∞(Σ

1
2
0 )

≤ Cu
m

(
2 + Cu

mk
−2ι
∥∥γ,v∥∥2Wm,∞(Σ

1
2
0 )

(1 +
∥∥γ,v∥∥2Wm,∞(Σ

1
2
0 )
)m
)m

(
1− k−2ι

∥∥γ,v∥∥2L∞(Σ
1
2
0 )

)m+1 , (5.2.5)

∥∥b,s∥∥
Wm,∞(Σ

1
2
0 )

≤ Cu
mk

1−2ι

1 + Cu
mk

−2ι
∥∥γ,v∥∥2Wm,∞(Σ

1
2
0 )

(
1 +

∥∥γ,v∥∥2Wm,∞(Σ
1
2
0 )

)m

1− k−2ι
∥∥γ,v∥∥2L∞(Σ

1
2
0 )


m+1

·
∥∥γ,v∥∥

Wm,∞(Σ
1
2
0 )

∥∥γ,x∥∥
Wm,∞(Σ

1
2
0 )
, (5.2.6)

∥∥ℓ,s∥∥
Wm,∞(Σ

1
2
0 )

≤ Cu
mk

1−2ι

2 + Cu
m+1k

−2ι
∥∥γ,v∥∥2Wm+1,∞(Σ

1
2
0 )

(1 +
∥∥γ,v∥∥2Wm+1,∞(Σ

1
2
0 )
)m+1

1− k−2ι
∥∥γ,v∥∥2L∞(Σ

1
2
0 )


3m+6

·
(∥∥γ,v∥∥

Wm+1,∞(Σ
1
2
0 )

∥∥γ,x∥∥
Wm+1,∞(Σ

1
2
0 )

+
∥∥γ,v∥∥2Wm+1,∞(Σ

1
2
0 )

∥∥γ,x∥∥2Wm+1,∞(Σ
1
2
0 )

+
∥∥γ,x∥∥2Wm,∞(Σ

1
2
0 )

)
.(5.2.7)

Proof. We shall derive the result for separate constants in each place, after which the result as stated
follows by letting Cu

m be the maximum of all of the constants. Since all results in this proposition are to

hold on Σ
1
2
0 , we drop the s = 0 subscript for notational simplicity. It suffices to prove the result for v ∈ [0, 1];

the result will then follow for v ∈ [0, kT/
√
2] by Proposition 5.1.1.

Consider (5.2.3). Recall that we have the conditions (see (5.2.2))

δℓ|v=1 = ∂vδℓ|v=1 = 0, so ℓ|v=1 = 1, ∂vℓ|v=1 = 0.

Thus there is some v0 ∈ [0, 1] such that on [v0, 1], ℓ ≥ 1/2 > 0, and on this interval we have

δℓ,vv = −2ℓk1−2ιγ,v
2 ≤ 0,

which, since δℓ,v|v=1 = 0, implies that

δℓ,v = −
∫ 1

v

δℓ,vv dv
′ ≥ 0 (5.2.8)

on [v0, 1], so ℓ is nondecreasing and hence must satisfy ℓ ≤ ℓ|v=1 = 1 on [v0, 1]. Since, by (5.1.16), γ,v
2 ≤ 1/4,

we obtain on [v0, 1] that

δℓ,vv ≥ −1

2
.
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Since 1− v0 ≤ 1 and δℓ,v|v=1 = 0, this implies that on [v0, 1]

δℓ,v ≤ 1

2
,

whence since also δℓ|v=1 = 0, on [v0, 1]

δℓ ≥ −1

2
.

Thus finally (since k ≥ 1) ℓ = 1 + k−1δℓ ≥ 1/2 on [v0, 1] for any v0 ≥ 0, and hence ℓ ≥ 1/2 on [0, 1]. From
(5.2.8) we then see that δℓ ≤ 0 on [0, 1].

Substituting ℓ ≤ 1 into (0.2.24), we obtain

δℓ,vv ≥ −2k1−2ι∥γ,v∥2
L∞(Σ

1
2
0 )
,

δℓ,v = −
∫ 1

v

δℓ,vv dv
′ ≤ 2(1− v)k1−2ι∥γ,v∥2

L∞(Σ
1
2
0 )
,

δℓ = −
∫ 1

v

δℓ,v dv
′ ≥ −2

(
1

2
− v +

1

2
v2
)
k1−2ι∥γ,v∥2

L∞(Σ
1
2
0 )

= −(1− v)2k1−2ι∥γ,v∥2
L∞(Σ

1
2
0 )
,

so since v ∈ [0, 1] equation (5.2.3) follows. Note that we also have∥∥∥∥1ℓ
∥∥∥∥
L∞(Σ

1
2
0 )

≤ 1

1− k−2ι∥γ,v∥2
L∞(Σ

1
2
0 )

,

which will be used in proving (5.2.5), (5.2.6) and (5.2.7).
The proof of (5.2.4) is by induction on m. For m = 0 it follows from (5.2.3) with Cu

0 = 1. Now suppose
it holds up to some m ≥ 0, let I be a multiindex in x and v with |I| = m + 1, and differentiate equation
(0.2.24) using ∂I :

∂2v∂
Iδℓ = −2k1−2ι∂Iδℓγ,v

2 − 2k1−2ι
∑

|J|≥1, J≤I

(
I
J

)
∂I−Jδℓ ∂J

[
γ,v

2
]
.

By induction and Lemma 4.3.1, and since k ≥ 1, ι ≥ 1/2, every term in the sum is bounded by

C ′∥γ,v∥2
W |I−J|,∞(Σ

1
2
0 )

[
1 + ∥γ,v∥2

W |I−J|,∞(Σ
1
2
0 )

]|I−J|

∥γ,v∥2
Wm,∞(Σ

1
2
0 )

≤ C ′∥γ,v∥2
Wm,∞(Σ

1
2
0 )

[
1 + ∥γ,v∥2

Wm,∞(Σ
1
2
0 )

]m
,

since |I − J | ≤ m− 1. Thus we may write

∂2v∂
Iδℓ = −2k1−2ι∂Iδℓγ,v

2 − 2k1−2ιF

where

∥F∥
L∞(Σ

1
2
0 )

≤ C∥γ,v∥2
Wm,∞(Σ

1
2
0 )

[
1 + ∥γ,v∥2

Wm,∞(Σ
1
2
0 )

]m
for some constant C. By Corollary 4.3.3, then, we have (since δℓ|

Σ
1
2
0

is supported on {(0, x, v) ∈ Σ
1
2
0 |x, v ∈

[0, 1]})

∥∂Iδℓ∥
L∞(Σ

1
2
0 )

≤ 2k1−2ι∥F∥
L∞(Σ

1
2
0 )
e
1+2k1−2ι∥γ,v∥

2

L∞(Σ

1
2
0

)

≤ 2k1−2ιC∥γ,v∥2
Wm,∞(Σ

1
2
0 )

[
1 + ∥γ,v∥2

Wm,∞(Σ
1
2
0 )

]m
e2,
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using ∥γ,v∥
L∞(Σ

1
2
0 )

≤ 1/2 and k1−2ι ≤ 1. This gives the desired result.

(5.2.5) follows from this and Lemma 4.2.1:∥∥∥∥1ℓ
∥∥∥∥
Wm,∞(Σ

1
2
0 )

≤ Ci
m

(
2 + k−1

∥∥δℓ∥∥
Wm,∞(Σ

1
2
0 )

)m

· 1(
1− k−2ι∥γ,v∥2

L∞(Σ
1
2
0 )

)m+1 ,

so the result follows by substituting in (5.2.4).

To prove (5.2.6), we recall equation (0.2.25):

∂v
(
ℓ b,s

)
= 4ℓk1−2ιγ,vγ,x;

integrating and using b,s|v=1 = 0, this gives

b,s = −4

ℓ
k1−2ι

∫ 1

v

(1 + k−1δℓ)γ,vγ,x dv
′.

We note first that

−∂v
∫ 1

v

(1 + k−1δℓ)γ,vγ,x dv
′ = (1 + k−1δℓ)γ,vγ,x = −

∫ 1

v

∂v
[
(1 + k−1δℓ)γ,vγ,x

]
dv′,

and similarly that ∂x commutes with the integral. Since moreover for any function f on [0, 1] and any
a, b ∈ [0, 1] we have ∣∣∣∣∣

∫ b

a

f(t) dt

∣∣∣∣∣ ≤ ∥f∥L∞([0,1]),

this fact together with Lemma 4.3.1 and equations (5.2.3), (5.2.4) allows us to conclude that there is a
constant C such that

∥∥b,s∥∥
Wm,∞(Σ

1
2
0 )

≤ Ck1−2ι

∥∥∥∥1ℓ
∥∥∥∥
Wm,∞(Σ

1
2
0 )

[
1 + k−1

∥∥δℓ∥∥
Wm,∞(Σ

1
2
0 )

] ∥∥γ,v∥∥
Wm,∞(Σ

1
2
0 )

∥∥γ,x∥∥
Wm,∞(Σ

1
2
0 )

≤ Ck1−2ι

1 + Cu
mk

−2ι
∥∥γ,v∥∥2Wm,∞(Σ

1
2
0 )

(
1 +

∥∥γ,v∥∥2Wm,∞(Σ
1
2
0 )

)
1− k−2ι

∥∥γ,v∥∥2L∞(Σ
1
2
0 )


m+1 ∥∥γ,v∥∥

Wm,∞(Σ
1
2
0 )

∥∥γ,x∥∥
Wm,∞(Σ

1
2
0 )
,

as claimed.

(5.2.7) may be proved similarly. We have the equation (0.2.26):

2ℓ · δℓ,vs − ℓ∂x

(
ℓ
−1
b,s

)
− 1

2k
b,s

2
= 2k1−2ιγ,x

2;

integrating, we obtain

δℓ,s = −1

2

∫ 1

v

∂x

(
b,s

ℓ

)
+

1

2ℓ
k−1b,s

2
+

2

ℓ
k1−2ιγ,x

2 dv′.

Note that there is a loss of derivative in the first term in the integral, inasmuch as one derivative of δℓ
depends on two derivatives of b; this will not however impact us since our initial data γ0 is C∞. Since k ≥ 1,

we may bound the second term in Wm,∞(Σ
1
2
0 ) by its norm in Wm+1,∞(Σ

1
2
0 ); thus there is a constant C such
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that

∥δℓ,s∥
Wm,∞(Σ

1
2
0 )

≤ C


2 + Cu

m+1k
−2ι
∥∥γ,v∥∥2Wm+1,∞(Σ

1
2
0 )

(1 +
∥∥γ,v∥∥2Wm+1,∞(Σ

1
2
0 )
)m+1

1− k−2ι
∥∥γ,v∥∥2L∞(Σ

1
2
0 )


m+2

·

[
Cu

m+1k
1−2ι

2 + Cu
m+1k

−2ι
∥∥γ,v∥∥2Wm+1,∞(Σ

1
2
0 )

(1 +
∥∥γ,v∥∥2Wm+1,∞(Σ

1
2
0 )
)m+1

1− k−2ι
∥∥γ,v∥∥2L∞(Σ

1
2
0 )


m+2

·
∥∥γ,v∥∥

Wm+1,∞(Σ
1
2
0 )

∥∥γ,x∥∥
Wm+1,∞(Σ

1
2
0 )

+ Cu
m+1k

1−4ι

2 + Cu
m+1k

−2ι
∥∥γ,v∥∥2Wm+1,∞(Σ

1
2
0 )

(1 +
∥∥γ,v∥∥2Wm+1,∞(Σ

1
2
0 )
)m+1

1− k−2ι
∥∥γ,v∥∥2L∞(Σ

1
2
0 )


2m+4

·
∥∥γ,v∥∥2Wm+1,∞(Σ

1
2
0 )

∥∥γ,x∥∥2Wm+1,∞(Σ
1
2
0 )

]

+ Ck1−2ι

2 + Cu
mk

−2ι
∥∥γ,x∥∥2Wm,∞(Σ

1
2
0 )

(1 +
∥∥γ,v∥∥2Wm,∞(Σ

1
2
0 )
)m

1− k−2ι
∥∥γ,v∥∥2L∞(Σ

1
2
0 )


m+1 ∥∥γ,x∥∥2Wm,∞(Σ

1
2
0 )


≤ Ck1−2ι

2 + Cu
m+1k

−2ι
∥∥γ,v∥∥2Wm+1,∞(Σ

1
2
0 )

(1 +
∥∥γ,v∥∥2Wm+1,∞(Σ

1
2
0 )
)m+1

1− k−2ι
∥∥γ,v∥∥2L∞(Σ

1
2
0 )


3m+6

·
(∥∥γ,v∥∥

Wm+1,∞(Σ
1
2
0 )

∥∥γ,x∥∥
Wm+1,∞(Σ

1
2
0 )

+
∥∥γ,v∥∥2Wm+1,∞(Σ

1
2
0 )

∥∥γ,x∥∥2Wm+1,∞(Σ
1
2
0 )

+
∥∥γ,x∥∥2Wm,∞(Σ

1
2
0 )

)
,

as claimed. QED.

This gives the following corollary.

5.2.1. COROLLARY. Consider any solution to (0.2.24 – 0.2.26) with initial data given by (5.1.18) and (5.2.2).
For every ϵ > 0 there is a δ > 0, independent of o and k, such that∥∥γ,v∥∥

Wm+1,∞(Σ
1
2
0 )
,
∥∥γ,x∥∥

Wm+1,∞(Σ
1
2
0 )
< δ implies ∥δℓ∥

Wm,∞(Σ
1
2
0 )
, ∥b,s∥

Wm,∞(Σ
1
2
0 )
, ∥δℓ,s∥

Wm,∞(Σ
1
2
0 )
< ϵ.

Moreover, δℓ, b,s and δℓ,s all vanish identically for v > 1.
Proof. Since ∥∥γ,v∥∥

L∞(Σ
1
2
0 )
,
∥∥γ,v∥∥

Wm,∞(Σ
1
2
0 )

≤
∥∥γ,v∥∥

Wm+1,∞(Σ
1
2
0 )

and ∥∥γ,x∥∥
Wm,∞(Σ

1
2
0 )

≤
∥∥γ,x∥∥

Wm+1,∞(Σ
1
2
0 )
,

the first statement follows from continuity of the upper bounds in Proposition 5.2.1 and the observation that
these bounds vanish when

∥∥γ,v∥∥
Wm+1,∞(Σ

1
2
0 )

=
∥∥γ,x∥∥

Wm+1,∞(Σ
1
2
0 )

= 0. The second statement follows from

Proposition 5.1.1. QED.

We note that the conditions on
∥∥γ,v∥∥

Wm+1,∞(Σ
1
2
0 )

and
∥∥γ,x∥∥

Wm+1,∞(Σ
1
2
0 )

in Corollary 5.2.1 and the

similar results below can be reformulated as a smallness condition on the parameter o, see (5.1.18).
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Our next aim is to produce a generalisation of this corollary to higher s derivatives of δℓ,s, b,s and c,s,
as well as s derivatives of γ. We first pause to consider exactly how these higher s derivatives are to be
obtained. Our final aim is of course to solve the system (3.3.5 – 3.3.8), at least for s < T ′. Thus we seek
functions a, b, c and γ for s ≥ 0 in some neighbourhood of zero which satisfy the Riccati equations

∂2sδℓ = −2ℓk1−2ι(∂sγ)
2, ∂2sb =

1

ℓ
k−1(∂sδℓ)(∂sb)− 4k1−2ι∂sγ(∂xγ + k−1b∂sγ),

∂2sc = k−1 (∂sb)
2

2a
− 2k1−2ι∂sγ

(
2∂vγ + 2k−1 b

a
∂xγ + k−1

(
c+ k−1 b

2

a

)
∂sγ

)
− k1−2ι 2

a
(∂xγ)

2,

(5.2.9)

and the wave equation[(
−2∂s∂v + ∂2x

)
+
1

k

(
2
b

a
∂s∂x − c∂2s − δ−1a∂2x −

(
∂sc−

1

a
∂xb+

∂vδℓ

ℓ

)
∂s +

(
1

a
∂sb−

ℓ∂xδℓ

a2

)
∂x − ∂sδℓ

ℓ
∂v

)

+k−2

(
b
2

a
∂2s −

(
c
∂sδℓ

ℓ
− 2

b

a
∂sb

)
∂s −

bℓ∂sδℓ

a2
∂x

)
− k−3 b

2
ℓ∂sδℓ

a2
∂s

]
γ = 0. (5.2.10)

Now on s = 0 we have c = 0, so given γ|s=0 the wave equation (5.2.10) becomes an ordinary differential
equation (in v) for ∂sγ|s=0, from which we can determine ∂sγ|

Σ
1
2
0

(and ∂sγ|
Σ0\Σ

1
2
0

) given γ|s=0, v=kT/
√
2. The

Riccati equations (5.2.9) at s = 0 then allow us to obtain ∂2sω, ω ∈ {δℓ, b, c} on Σ
1
2
0 ; differentiating the

wave equation with respect to s at s = 0, we can then obtain ∂2sγ|
Σ

1
2
0

given ∂2sγ|s=0, v=v0
, and so forth. In

particular, we are able to obtain a priori expressions for all s derivatives of δℓ, b, c, and γ, knowing only
that they satisfy the Riccati and wave equations with, respectively, γ replaced by any function satisfying
the initial conditions on γ, and δℓ, b, c replaced by any set of functions satisfying the initial conditions on
δℓ, b, and c.

5.2.2. PROPOSITION. Consider any solution to (0.2.24 – 0.2.26) with initial data given by (5.1.18) and (5.2.2).
Let m ≥ 0, and suppose that

∂ℓsγ|s=0,v=kT/
√
2 = 0, ℓ = 0, · · · ,m. (5.2.11)

Then the following two statements hold:
(i) For every ϵ > 0 there is a δ > 0, independent of o and k, such that∥∥γ,v∥∥

Wm+1,∞(Σ
1
2
0 )
,
∥∥γ,x∥∥

Wm+1,∞(Σ
1
2
0 )
< δ implies ∥∂I∂ℓsω∥

L∞(Σ
1
2
0 )
< ϵ,

and moreover ∂I∂ℓsω vanishes for v > 1, where ω ∈ Ω0 = {δℓ, b, c}, |I|+ 2ℓ ≤ m;
(ii) For every ϵ > 0 there is a δ > 0, independent of o and k, such that∥∥γ,v∥∥

Wm+1,∞(Σ
1
2
0 )
,
∥∥γ,x∥∥

Wm+1,∞(Σ
1
2
0 )
< δ implies ∥∂I∂ℓsγ∥

L∞(Σ
1
2
0 )
< ϵ,

and moreover ∂I∂ℓsγ vanishes for v > 1, where |I|+ 2ℓ ≤ m.
Proof. Fix some m ≥ 0, and let Ω0 = {δℓ, b, c} for convenience. The proof is by induction on ℓ. For

ℓ = 0, (i) and (ii) follow from the previous corollary and γ|s=0 = γ0 since we have |I| ≤ m in this case. (i)
also holds for ℓ = 1 and all I satisfying |I| ≤ m, again by the previous corollary and the fact that c,s = 0

on Σ
1
2
0 . Now suppose that (i) and (ii) hold for |I| + 2ℓ ≤ m and ℓ ≤ ℓ0, ℓ0 ≥ 0. We shall show that they

hold also for ℓ = ℓ0 + 1. Let ℓ = ℓ0 + 1, and let I be such that |I| + 2ℓ ≤ m. Note that this implies that
|I| ≤ m− 2. We show (i) first. If ℓ = 1 then (i) is already known to be true, so we may assume that ℓ ≥ 2
in this case. Now δℓ, b and c satisfy on s = 0 the Riccati equations

∂2sδℓ = −2ℓk1−2ι(∂sγ)
2, ∂2sb =

1

ℓ
k−1(∂sδℓ)(∂sb)− 4k1−2ι∂sγ(∂xγ + k−1b∂sγ),

∂2sc = k−1 (∂sb)
2

2a
− 2k1−2ι∂sγ

(
2∂vγ + 2k−1 b

a
∂xγ + k−1

(
c+ k−1 b

2

a

)
∂sγ

)
− k1−2ι 2

a
(∂xγ)

2;
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differentiating with respect to ∂I∂ℓ−2
s , we see by the product rule that there exist polynomials P1, P2, P3 in

{∂I′
∂ℓ

′

s ω | |I ′| ≤ |I|, ℓ′ ≤ ℓ− 1} and {∂I′
∂ℓ

′

s γ | |I ′|+ 2ℓ′ ≤ |I|+ 2ℓ− 2} with no constant term such that

∂I∂ℓsδℓ = P1, ∂I∂ℓsb = P2, ∂I∂ℓsc = P3.

Note that |I| + 2ℓ − 2 ≤ m − 1, so that all of the arguments in the above polynomials are bounded in

L∞(Σ
1
2
0 ) by the induction step, and vanish for v > 1; thus by continuity of polynomials and the fact

that the polynomials have zero constant term, we have that if ϵ > 0 there must be a δ > 0 such that∥∥γ,v∥∥
Wm+1,∞(Σ

1
2
0 )
,
∥∥γ,x∥∥

Wm+1,∞(Σ
1
2
0 )
< δ implies ∥∂I∂ℓsω∥

L∞(Σ
1
2
0 )
< ϵ, and that ∂I∂ℓsω must vanish for v > 1,

for all ω ∈ Ω0, showing (i).
(ii) can be shown in a similar fashion. Here we must include the case ℓ = 1. Recall that γ must satisfy

the wave equation (3.3.5) for s ≤ T ′:[(
−2∂s∂v + ∂2x

)
+

1

k

(
2
b

a
∂s∂x − c∂2s − δ−1a∂2x −

(
∂sc−

1

a
∂xb+

∂vδℓ

ℓ

)
∂s +

(
1

a
∂sb−

ℓ∂xδℓ

a2

)
∂x − ∂sδℓ

ℓ
∂v

)

+k−2

(
b
2

a
∂2s −

(
c
∂sδℓ

ℓ
− 2

b

a
∂sb

)
∂s −

bℓ∂sδℓ

a2
∂x

)
− k−3 b

2
ℓ∂sδℓ

a2
∂s

]
γ = 0.

We may rewrite this schematically as

−2∂v∂sγ = 2k−1 b

a
∂x∂sγ − k−1c∂2sγ + k−2 b

2

a
∂2sγ + P1∂

2
xγ + P i

2∂iγ, (5.2.12)

where P1 and P i
2 are polynomials in Ω

′
= Ω0 ∪ ∂sΩ0 ∪ {∂xδℓ, ∂vδℓ, ∂xb, δ−1a} with coefficients which are

constants or nonpositive powers of k and with no constant terms, and ∂i ∈ {∂s, ∂x, ∂v}. Differentiating this
with ∂I∂ℓ−1

s , we obtain

−2∂v∂
I∂ℓsγ = 2k−1 b

a
∂x∂

I∂ℓsγ + k−1

[
k−1 b

2

a
− c

]
∂I∂ℓ+1

s γ + P 0
2 ∂

I∂ℓsγ + P, (5.2.13)

where P is a polynomial in ∂I∂ℓ−1
s

[
Ω

′ ∪ {∂2xγ, ∂xγ, ∂vγ}
]
with no constant term. Since ℓ − 1 = ℓ0 and

|I|+2(ℓ−1) = |I|+2ℓ−2 ≤ m−2, we see that all of the independent variables in P are bounded and vanish

for v > 1, by the induction step. Moreover, on Σ
1
2
0 we have b = c = 0, so that equation (5.2.13) reduces to

−2∂v∂
I∂ℓsγ = P 0

2 ∂
I∂ℓsγ + P.

Since ∂ℓsγ|s=0, v=kT/
√
2 = 0, and thus ∂ℓsγ|s=0, v=1 = 0, we may integrate this to obtain

∂I∂ℓsγ =
1

2

∫ 1

v

Pe−
1
2

∫ v

v′ P
0
2 dv′

dv′;

noting that P 0
2 and P both vanish for v > 1 by the induction step, we see that ∂I∂ℓsγ does also and

∥∂I∂ℓsγ∥
L∞(Σ

1
2
0 )

≤ 1

2
∥P∥

L∞(Σ
1
2
0 )
e

1
2∥P

0
2 ∥

L∞(Σ

1
2
0

) ;

since P and P 0
2 go to zero uniformly as

∥∥γ,v∥∥
Wm+1,∞(Σ

1
2
0 )

and
∥∥γ,x∥∥

Wm+1,∞(Σ
1
2
0 )

do (by induction and

continuity of polynomials), so does ∥∂I∂ℓsγ∥
L∞(Σ

1
2
0 )
. This completes the proof. QED.

We note one last time that all of the results in this section are still true if we replace v by kT
√
2 − v,

and hence hold on Σ0\Σ
1
2
0 , and hence on all of Σ0.
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The specification of the initial data on U0 is more complicated, since we need our choice to be such that
(5.2.11) holds. We consider this now.

5.3. Initial data on v = 0
In this section (only) we let I denote a multiindex in x and s. We also assume that on s = 0 the

quantities
∂ℓsa, ∂ℓsb, ∂ℓsc, ∂ℓsγ

have been solved for as described in the previous section, from initial data given by (5.1.18) and (5.2.2) (see
Proposition 5.2.2).

We now describe the initial data for γ on v = 0. Let ∂ℓsγ(0, x, 0) denote the derivatives of ∂ℓsγ at
s = v = 0 as solved for in Proposition 5.2.2, assuming as there that ∂ℓsγ|s=0,v=kT/

√
2 have been set to zero,

for ℓ up to some m. Recall (see above equation (0.3.37)) that we have χ ∈ C∞(R1) which has support
contained in [−2, 2], and which satisfies χ|[−1,1] = 1. We define

U(s, x, 0) = χ(2s)

m∑
ℓ=0

sℓ

ℓ!
∂ℓsγ(0, x, 0). (5.3.1)

Note that for s ∈ [1/2, 1], derivatives of U with respect to s will add extra powers of 2, but since we are only
interested in taking finitely many derivatives such powers only contribute overall constant factors, which we
may absorb without particular comment. Clearly

∂ℓsU(0, x, 0) = ∂ℓsγ(0, x, 0). (5.3.2)

We define γ on v = 0 by
γ|v=0(s, x, 0) = U(s, x, 0);

by solving the equations for ∂ℓsγ|Σ0 obtained in Proposition 5.2.2 backwards, it is evident that this choice
will give ∂ℓsγ|s=0,v=1 = 0. This choice of data clearly satisfies the first of the consistency equations (1.3.2).

As on Σ0, we shall also need the transverse derivatives of γ along U0, which in this case are the v
derivatives. Given γ|v=0 as above, we may solve the first two Riccati equations (3.3.6 – 3.3.7) to obtain δℓ
and b along U0; however, the equations for ∂vγ, ∂vδℓ, and c all couple together, and the process of obtaining
appropriate bounds therefore requires a more careful treatment than on Σ0. We shall prove the following
analogue to Proposition 5.2.2. We set U0

0 = {(s, x, 0) ∈ R3 | s ∈ [0, 1]}. Note that U is supported on
{(s, x, 0) ∈ U0

0 |x ∈ [0, 1]}.
We have the following straightforward proposition.

5.3.1. PROPOSITION. For every ϵ > 0 there is a δ > 0, independent of o and k, such that∥∥γ,v∥∥
W 2m+1,∞(Σ

1
2
0 )
,
∥∥γ,x∥∥

W 2m+1,∞(Σ
1
2
0 )
< δ implies ∥U∥Wm,∞(U0

0 )
< ϵ.

Proof. Let ϵ > 0. Note that the condition ∥U∥Wm,∞(U0
0 )
< ϵ is equivalent (dividing ϵ by a combinatorial

constant) to the condition that for all I with |I| ≤ m,

∥∂IU∥L∞(U0
0 )
< ϵ. (5.3.3)

Let

U∗ =

m∑
ℓ=0

sℓ

ℓ!
∂ℓsγ(0, x, 0),

and note that Proposition 5.2.2 implies that there is a δ > 0 such that for all I with |I| ≤ m,∥∥γ,v∥∥
W 2m+1,∞(Σ

1
2
0 )
,
∥∥γ,x∥∥

W 2m+1,∞(Σ
1
2
0 )
< δ implies ∥∂IU∗∥L∞(U0

0 )
< ϵ. (5.3.4)

The extra factor of 2 is necessary since I can contain up to m derivatives in s. Since for any I with |I| ≤ m
we must have (by Lemma 4.3.1) that, for some constant C depending on χ (through Cχ, see (0.3.37))

∥∂U∥L∞(U0
0 )

≤ C∥∂IU∗∥L∞(U0
0 )
,
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the result now follows. QED.

5.3.2. PROPOSITION. For every ϵ > 0 there is a δ > 0, independent of o and k, such that the following two
statements hold:
(i) ∥∥γ,v∥∥

W 2m+5,∞(Σ
1
2
0 )
,
∥∥γ,x∥∥

W 2m+5,∞(Σ
1
2
0 )
< δ implies ∥∂I∂ℓvω∥L∞(U0

0 )
< ϵ,

where ω ∈ {δℓ, b, c}, |I|+ 2ℓ ≤ m (2ℓ ≤ m− 2 if ω = c);
(ii) ∥∥γ,v∥∥

W 2m+5,∞(Σ
1
2
0 )
,
∥∥γ,x∥∥

W 2m+5,∞(Σ
1
2
0 )
< δ implies ∥∂I∂ℓvγ∥L∞(U0

0 )
< ϵ,

where |I|+ 2ℓ ≤ m.
Proof. Fix m ≥ 1; we will proceed by induction on ℓ. Suppose ℓ = 0. Part (ii) holds for ℓ = 0 by

Proposition 5.3.1. Let as above Ω0 = {δℓ, b, c}, and recall that for ω ∈ Ω0 we have the Riccati equations
(3.3.6 – 3.3.8)

∂2sδℓ = −2ℓk1−2ι(∂sγ)
2, ∂2sb =

1

ℓ
k−1(∂sδℓ)(∂sb)− 4k1−2ι∂sγ(∂xγ + k−1b∂sγ),

∂2sc = k−1 (∂sb)
2

2a
− 2k1−2ι∂sγ

(
2∂vγ + 2k−1 b

a
∂xγ + k−1

(
c+ k−1 b

2

a

)
∂sγ

)
− k1−2ι 2

a
(∂xγ)

2.

These equations may be rearranged as follows:

∂2sδℓ+ 2k−2ι(∂sγ)
2δℓ = −2k1−2ι(∂sγ)

2, (5.3.5)

∂2sb− k−1 ∂sδℓ

ℓ
∂sb+ 4k−2ι(∂sγ)

2b = −4k1−2ι∂sγ∂xγ, (5.3.6)

∂2sc+ 2k−2ι(∂sγ)
2c = −4k1−2ι∂sγ∂vγ +R0,0(a, ℓ

−1
, b, ∂sb, ∂sγ, ∂xγ), (5.3.7)

where R is a polynomial with coefficients made up of constants and nonpositive powers of k, and with no
constant term. Since ∂2sc depends on ∂vγ, which we have not yet bounded, we leave c for the moment and
verify (i) for δℓ and b. By Corollary 4.3.2, we may write for ℓ ∈ {0, 1}, bounding δℓ, ∂sδℓ, and ∂sb on
s = v = 0 by their bounds on Σ0, and since on U0

0 we have γ = U ,

∥∂ℓsδℓ∥L∞(U0
0 )

≤
([

∥δℓ∥2L∞(Σ0)
+ ∥∂sδℓ∥2L∞(Σ0)

]1/2
+ 2k1−2ι∥∂sU∥2L∞(U0

0 )

)
e
1+2k−2ι∥∂sU∥2

L∞(U0
0
) ,

∥∂ℓsb∥L∞(U0
0 )

≤
(
∥∂sb∥L∞(Σ0) + 4k1−2ι∥∂sU∥L∞(U0

0 )
∥∂xU∥L∞(U0

0 )

)
e
1+k−1 ∂sδℓ

ℓ
+4k−2ι∥∂sU∥2

L∞(U0
0
) ,

so that by Corollary 5.2.1, Proposition 5.2.1, and Proposition 5.3.1, part (i) holds for ∂I = ∂js , j = 0, 1
(assuming m ≥ 1). Part (i) for arbitrary I then holds by induction, as follows. To simplify our work we
write ω0 = δℓ, ω1 = b. Then the first two equations (5.3.5 – 5.3.6) are of the form

∂2sωi + P1,i∂sωi + P2,iωi = P0,i, (5.3.8)

where Pj,i, j ̸= 0 are polynomials in {ωℓ, ∂sωℓ, ∂sγ | ℓ < i} while P0,i is a polynomial in (letting ∂0 = ∂s,
∂1 = ∂x, ∂2 = ∂v)

ΩP,i = {ωℓ, ∂sωℓ, ∂jγ | ℓ < i, j ≤ i}

(note that this contains the previous set), with coefficients which are made of constants and nonpositive
powers of k, and zero constant term. Suppose now that (i) holds for ℓ = 0 and derivative operators ∂I , ∂s∂

I

with |I| ≤ m0, some m0 ≥ 0;* note that this form of the inductive hypothesis corresponds to the base case

* For clarity, we remind the reader that I is a multiindex in s and x; thus ∂s∂
I can also be written as ∂J

for some multiindex J .
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just proved. Since we only need to prove (i) for I satisfying |I| ≤ m, if m0 = m then we are done. Otherwise,
let J be such that ∂J = ∂I∂j for some j ∈ {0, 1}, |J | ≤ m. Applying ∂J to (5.3.8), we see that after moving
lower-order derivatives of ωi to the right-hand side we have

∂2s∂
Jωi + P1,i∂s∂

Jωi + P2,i∂
Jωi = P,

where P is a polynomial in ∂JΩP,i ∪{∂I′
ωi, ∂

I′
∂sωi | |I ′| ≤ |I|} with coefficients made of constants and non-

positive powers of k and no constant term. P will then go to zero with
∥∥γ,v∥∥

W 2m+5,∞(Σ
1
2
0 )
,
∥∥γ,x∥∥

W 2m+5,∞(Σ
1
2
0 )

for i = 0, by the inductive step and Proposition 5.3.1, since in this case we have

∂JΩP,i = {∂J∂sγ},

and |J |+ 1 ≤ m+ 1 so Proposition 5.3.1 is applicable; since P1,0 and P2,0 are polynomials with no constant
term in the same set (in this case), they will also go to zero with

∥∥γ,v∥∥
W 2m+5,∞(Σ

1
2
0 )
,
∥∥γ,x∥∥

W 2m+5,∞(Σ
1
2
0 )
. Thus

by Corollary 4.3.1 again, we have that ∂Jω0, ∂
J∂sω0 go to zero with

∥∥γ,v∥∥
W 2m+5,∞(Σ

1
2
0 )
,
∥∥γ,x∥∥

W 2m+5,∞(Σ
1
2
0 )
.

Since these are the only elements of ΩP,1\ΩP,0, the same is true for ∂Jω1 and ∂J∂sω1. Thus the inductive
step is seen to hold for δℓ and b. Note that for these two quantities we actually have that (i) holds for
derivatives of the form ∂s∂

J with |J | ≤ m+1 (because we are assuming γ,v and γ,x bounded in W 2m+5,∞).

To sum up, then, we have shown that part (i) holds also for ω ∈ {δℓ, b} if we require ℓ = 0.
We now consider the case ℓ = 1. We shall bound the quantities c, ∂sc, ∂vδℓ, and ∂vγ simultaneously. To

bound ∂vδℓ we use the constraint equation R11 = 2γ,x
2. In a moment we shall also need R12 = 2γ,xγ,v, so

we write both out together. From the expression for the Ricci tensor derived in Section 2.2, these equations
are

ac,sa,s − (b2 − ac)a,ss + b,sa,x − a(2b,xs − 2a,vs) +
b2a,s

2

2a
− 1

2
ca,s

2 − a,sa,v − ab,s
2 = 4aγ,x

2,

− bb,s
2 − (b2 − ac)b,ss + b(a,vs − b,xs) +

b2a,sb,s
2a

− ba,va,s
2a

+
bb,sa,x
2a

+ a(b,vs − c,xs) + ba,vc,s −
1

2
ca,sb,s +

1

2
a,sc,x +

1

2
a,vb,s = 4aγ,xγ,v.

In terms of the scaled coordinates and scaled quantities, these become

ac,sa,s + aca,ss + b,sa,x − a(2b,xs − 2δa,vs)−
1

2
ca,s

2 − a,sδa,v

+ k−1

(
b
2
a,s

2

2a
− ab,s

2 − b
2
a,ss

)
= 4ak1−2ιγ,x

2, (5.3.9)

a
(
b,vs − c,xs

)
+ k−1

[
b(δa,vs − b,xs) + acb,ss + bδa,vc,s +

1

2
δa,sc,x +

1

2
δa,vb,s

]
+ k−2

[
−bb,s

2 − b
2
b,ss −

bδa,vδa,s
2a

+
bb,sδa,x

2a
− 1

2
cδa,sb,s

]
+ k−3 b

2
δa,sb,s
2a

= 4ak1−2ιγ,xγ,v.(5.3.10)

Equation (5.3.9) may be solved for δa,vs; doing this, and writing in terms of δℓ, we obtain

∂s∂vδℓ = P1∂vδℓ+ P0,1c+ P0,2c,s + P0,0, (5.3.11)

where P1 and P0,i are polynomials in δℓ, 1/ℓ, b, δℓ,s, b,s, δℓ,x, δℓ,ss, b,xs, and γ,x and which have coefficients
as usual and no constant terms. Note that the quantities on which P1 and P0,i depend are quantities which
we have already bounded; we shall term such quantities known quantities for convenience. Similarly, for c
we have the equation (5.3.7):

∂2sc+ 2k−2ι(∂sγ)
2c = −4k1−2ι∂sγ∂vγ +R0,0(a, ℓ

−1
, b, ∂sb, ∂sγ, ∂xγ),
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where we note that the coefficients of c and ∂vγ, as well as all of the arguments of R0,0, are again known
quantities. Finally, recall the version of the wave equation we used in the proof of Proposition 5.2.2 above
(equation (5.2.12)):

−2∂v∂sγ = 2k−1 b

a
∂x∂sγ − k−1c∂2sγ + k−2 b

2

a
∂2sγ + P1∂

2
xγ + P i

2∂iγ; (5.3.12)

where P1 and P i
2 are polynomials in Ω

′
= Ω0 ∪ ∂sΩ0 ∪ {∂xδℓ, ∂vδℓ, ∂xb, δ−1a} with coefficients made of

constants and nonpositive powers of k and no constant terms. More carefully, ∂vδℓ appears only to linear
order in the term involving ∂sγ, so that we may rewrite this as

∂v∂sγ = Q1∂vγ +Q0,1∂vδℓ+Q0,2c+Q0,3∂sc+Q0,0, (5.3.13)

where Q1, Q0,1 and Q0,0 are polynomials in known quantities. Combining equations (5.3.11 – 5.3.13), we
obtain the four by four system

∂s∂vδℓ = P1∂vδℓ+ P0,1c+ P0,2c,s + P0,0

∂sc = c,s

∂sc,s = −2k−2ι(∂sγ)
2c− 4k1−2ι∂sγ∂vγ +R0,0

∂s∂vγ = Q0,1∂vδℓ+Q1∂vγ +Q0,0

which may be rewritten in matrix form as

∂s


∂vδℓ
c
c,s
∂vγ

 =


P1 P0,1 P0,2 0
0 0 1 0
0 −2k−2ι(∂sγ)

2 −4k1−2ι∂sγ
Q0,1 Q0,2 Q0,3 Q1



∂vδℓ
c
c,s
∂vγ

+


P0,0

0
R0,0

Q0,0

 . (5.3.14)

Since at s = v = 0 we have that c = c,s = ∂vγ = 0, while ∂vδℓ goes to zero with
∥∥γ,v∥∥

W 2m+5,∞(Σ
1
2
0 )

and∥∥γ,x∥∥
W 2m+5,∞(Σ

1
2
0 )
, Proposition 4.3.1 shows that ∂vδℓ, c, c,s, and ∂vγ must go to zero with

∥∥γ,v∥∥
W 2m+5,∞(Σ

1
2
0 )
,∥∥γ,x∥∥

W 2m+5,∞(Σ
1
2
0 )

also. Thus (i) holds with ℓ = 0, I = ∂js (j = 0, 1), ω = c, and also with ℓ = 1, I = (0, 0),

ω = δℓ, while (ii) holds with I = (0, 0) and ℓ = 1. Now noting that the quantities on the right-hand side of
system (5.3.14) involving γ have at most two derivatives, and those involving δℓ and b have at most one, we
see that we may differentiate it by ∂J for any J satisfying |J | ≤ m, and the resulting dependent variables
will still go to zero with

∥∥γ,v∥∥
W 2m+5,∞(Σ

1
2
0 )
,
∥∥γ,x∥∥

W 2m+5,∞(Σ
1
2
0 )
. This proves (i) for ω = δℓ and ℓ = 1, and

also for ω = c and ℓ = 0.
To show (i) for ω = b we use equation (5.3.10). Solving for ∂s∂vb, we see that we have

∂s∂vb = S, (5.3.15)

where S is a polynomial in known quantities and involves derivatives of metric components up to order 2.
Thus we may differentiate this equation by any multiindex J with |J | ≤ m−2 and obtain another polynomial
in known quantities, showing that (i) holds for ω = b and ℓ = 1 also.

We may now proceed by induction. Suppose that (i) holds for δℓ and b for ℓ ≤ ℓ0 and for c for ℓ < ℓ0,
and that (ii) holds for ℓ ≤ ℓ0, where ℓ0 ≥ 1. Then differentiating system (5.3.14) ℓ0 + 1 times with respect
to v, and moving the lower-order (in v) terms to the forcing term, we see that (i) (for ω = δℓ or ω = c) and
(ii) hold for J = (0, 0) in this case; moreover, we may further differentiate by any J with |J | ≤ m− 2ℓ0 − 2,
and again move the lower-order terms to the forcing term, to conclude that (i) (for ω = δℓ or ω = c) and (ii)
hold for this value of ℓ as well (with ℓ = ℓ0 if ω = c). Differentiating (5.3.15) in the same fashion allows us
to conclude that (i) holds for ω = b as well. This completes the proof. QED.

5.4. Summary
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To sum up, then, the initial data for the system (3.3.5 – 3.3.8) corresponding to the choice of γ|s=0 in
equation (5.1.18) is obtained as follows. Fix some n ≥ 4 (the same as that in Chapter 6, immediately below).
Set

b|s=0 = c|s=0 = c,s|s=0 = 0, (5.4.1)

as required by the gauge choice (see Proposition 1.2.1 and the preceding discussion); set (see equation
(5.1.18))

γ(0, x, v) = o ·ϖ0(x, v), (5.4.2)

where ϖ0 is given by (see equation (5.1.17))

ϖ0(x, v) =

 ϖ1(x, v), v ∈ [0, δv1]
0, v ∈ [δv1, kT

√
2− δv2]

ϖ2(x, v − (kT
√
2− δv2)), v ∈ [kT

√
2− δv2, kT

√
2]
, (5.1.17)

and ϖ1, ϖ2 are C
∞ functions on R2 with support contained in [0, 1]×[0, δv1] and [0, 1]×[0, δv2], respectively,

all of whose derivatives have L∞ bounds independent of k, and which also satisfy (see equation (5.1.16))

∥∂vϖi∥L∞ ≤ 1

2
, ∥∂xϖi∥L∞ ≤ 1

2
. (5.1.16)

Now solve the constraint equations

∂2δℓ

∂v2
= −2(1 + k−1δℓ)k1−2ι (∂vγ)

2
(0.2.24)

∂v
(
[1 + k−1δℓ] ∂sb

)
= 4(1 + k−1δℓ)k1−2ι∂vγ∂xγ (0.2.25)

2(1 + k−1δℓ) · ∂
2δℓ

∂v∂s
= (1 + k−1δℓ)∂x

(
[1 + k−1δℓ]−1∂sb

)
+

1

2k

(
∂sb
)2

+ 2k1−2ι (∂xγ)
2
, (0.2.26)

for δℓ|s=0, b,s|s=0 and δℓ,s|s=0 with the conditions (see equation (5.1.19))

δℓ|s=0,v=kT/
√
2 = δℓ,v|s=0,v=kT/

√
2 = δℓ,s|s=0,v=kT/

√
2 = b,s|s=0,v=kT/

√
2 = 0, (5.4.3)

and the wave equation (3.3.5) and its s derivatives, in concert with the s derivatives of the Riccati equations
(3.3.6 – 3.3.8), for ∂ℓsγ on s = 0 as in Proposition 5.2.2, with the conditions

∂ℓsγ|s=0,v=kT/
√
2 = 0, ℓ = 1, · · · , n+ 1 (5.4.4)

(the s-differentiated Riccati equations give ∂ℓsω directly, with no need to specify any additional conditions),
and finally use this to obtain (see equations (5.3.1), (5.3.2))

γ|v=0(s, x, 0) = χ(2s)

m∑
ℓ=0

sℓ

ℓ!
∂ℓsγ(0, x, 0). (5.4.5)

This will complete the determination of the initial data. Differentiating the wave and Riccati equations
(3.3.5 – 3.3.8) with respect to tangential derivatives (on Σ0 and U0) then allows us to bound the tangential
derivatives of the quantities in (5.1.2 – 5.1.3). We then obtain the following final results.

5.4.1. PROPOSITION. Let the initial data be as specified in (5.4.1 – 5.4.5). For every ϵ > 0 there is a δ > 0,
independent of o and k, such that

o < δ implies
∥∥∥∂ℓ1s ∂ℓ2x ∂ℓ3v ω∥∥∥

L∞(Σ0)
< ϵ,

∥∥∥∂ℓ1s ∂ℓ2x ∂ℓ3v γ∥∥∥
L∞(Σ0)

< ϵ, (5.4.6)∥∥∥∂ℓ1s ∂ℓ2x ∂ℓ3v ω∥∥∥
L∞(U0

0 )
< ϵ,

∥∥∥∂ℓ1s ∂ℓ2x ∂ℓ3v γ∥∥∥
L∞(U0

0 )
< ϵ,
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where ℓ1 = 0, · · · , n+ 1, ℓ2, ℓ3 = 0, · · · , n. Moreover, the quantities

∂ℓ1s ∂
ℓ2
x ∂

ℓ3
v ω|Σ0∪U0

0
, ∂ℓ1s ∂

ℓ2
x ∂

ℓ3
v γ|Σ0∪U0

0

are supported on the complement of (see (5.1.11))

Σ∗ = {(0, x, v) ∈ Σ0 | v ∈ (δv1, kT
√
2− δv2)}.

Finally, (0.3.31 – 0.3.33) hold.
Proof. This follows from Propositions 5.2.2 and 5.3.2 by taking m sufficiently large (m = 5(n + 1) is

certainly sufficient) and noting that there is a constant C, independent of o, such that

∥γ0∥W 2m+5,∞(Σ0) + ∥γ0∥W 2m+5,∞(U0
0 )

≤ Co.

The second assertion follows by construction, and the third by inspection. QED.

5.4.1. COROLLARY. Proposition 5.4.1 remains valid if we replace the differential operator

∂ℓ1s ∂
ℓ2
x ∂

ℓ3
v

by
∂ℓs∂

ℓ1
τ ∂

ℓ2
ξ ∂

ℓ3
ζ

where ℓ = 0, 1, ℓ1, ℓ2, ℓ3 = 0, · · · , n, and τ = 1√
2
(s+ v), ξ = x, ζ = 1√

2
(s− v).

Proof. This is clear since the derivative operators span the same space, and the coordinate transforma-
tion is linear. QED.

Finally, note that since the initial data have support which is contained in the strip {x ∈ [0, 1]} and has
measure independent of k, Proposition 5.4.1 and Corollary 5.4.1 remain valid if we replace the L∞ norms by
L2 norms, and hence by arbitrary Sobolev norms (at the expense in the latter case, of course, of increasing
the number of derivatives of the function ϖ0 we must bound, i.e., the number m in the proof of Proposition
5.4.1).



6. EXISTENCE OF SOLUTIONS

6.1. Introduction and summary
This chapter contains the main work in partial differential equations we perform in this thesis.
We begin in Section 6.2 by defining quantities we shall use throughout this chapter, describing again

the modification of the main system (3.3.5 – 3.3.8) we shall actually solve (see our discussion after Theorem
0.3.3 above), and stating our basic bootstrap assumptions. We continue in Section 6.3 by showing how to
bound a litany of quantities we shall need later, given the bootstrap assumptions and conditions on the
initial data; as part of our work we introduce a particular algebra of C∞ functions* which lies at the core
of our arguments in deriving the energy bounds. In Section 6.4 we use a suitable energy current from a
uniformly time-like vector field to derive energy bounds for the wave γ and the derivatives necessary to close
the estimates. In Section 6.5 we apply these energy inequalities to derive extension results of sorts, and in
Section 6.6 we prove existence up to a time independent of k. Finally, in Section 6.7 we prove properties of
the solution for use in comparing it with the literature.

6.2. Definitions
We fix a positive integer n ≥ 4; we shall estimate all our quantities in Hn. Recall that by the ansatz

(0.2.14) – which is justified by the bootstrap assumptions (0.3.34) and conditions (0.3.31 – 0.3.32), see also
equation (6.2.27), equation (6.2.26) and equation (6.2.28) – ‘barred’ quantities such as δℓ, b, c, γ etc. are
bounded – independent of k – in suitable function spaces, and in particular in L∞. See the footnote following
(0.2.7).

In terms of the scaled coordinates s x v, we define coordinates τξζ by

τ =
1√
2
(s+ v), ξ = x, ζ =

1√
2
(s− v); (6.2.1)

were our metric h the Minkowski metric these would be standard timelike-spacelike coordinates, and hence
will be so also for h an L∞-small perturbation of the Minkowski metric.

As discussed in Section 3.2 above, we have treated a, b and c as scalars under the coordinate scaling, so
that the quantities a, b and c are not the metric components in the scaled coordinates. A straightforward
calculation gives in fact the following result. For convenience in analysing the wave equation, we define a

scaled metric h = kh, whence h
−1

= k−1h−1. In the s x v coordinate system, these have representations (for
the first, see also equation (0.2.13))†

hij =

 0 0 −1
0 1 0
−1 0 0

+
1

k

 0 0 0
0 δa b
0 b c

 , (h
−1

)ij =

 0 0 −1
0 1 0
−1 0 0

+
1

k

 k−1 b
2

a − c b
a 0

b
a δ−1a 0
0 0 0

 ,

(6.2.2)
while in the τξζ system they have the representation

hij =

−1 0 0
0 1 0
0 0 1

+
1

k


c
2

b√
2

− c
2

b√
2

δa − b√
2

− c
2 − b√

2
c
2

 ,

(h
−1

)ij =

−1 0 0
0 1 0
0 0 1

+
1

k


b
2

2ka − c
2

b
a
√
2

b
2

2ka − c
2

b
a
√
2

δ−1a b
a
√
2

b
2

2ka − c
2

b
a
√
2

b
2

2ka − c
2

 ;

(6.2.3)

* While we ultimately obtain existence only in the Sobolev space Hn−1, we proceed by constructing a
sequence, every element of which is C∞; thus while the algebra we use could presumably be closed off inside
some Sobolev space, there is no need to do so and we do not.

† Recall our convention (see Section 0.9) that in the matrix representation of a tensor the first index
represents the row and the second the column. Thus, for example, the next equation states that h(∂s, ∂v) =
−1, h(∂x, ∂v) = k−1b, etc.

68
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from this we see that h is the Minkowski metric plus a correction proportional to k−1. We let η denote the

Minkowski metric, and define δh = k(h−η), δh−1 = k(h
−1−η−1); these are given by, in the s x v coordinate

system (by (6.2.2)),

δhij =

 0 0 0
0 δa b
0 b c

 , δh−1
ij
=

 k−1 b
2

a − c b
a 0

b
a δ−1a 0
0 0 0

 ,

and in the τξζ coordinate system (by (6.2.3)),

δhij =


c
2

b√
2

− c
2

b√
2

δa − b√
2

− c
2 − b√

2
c
2

 , δh−1
ij
=


b
2

2ka − c
2

b
a
√
2

b
2

2ka − c
2

b
a
√
2

δ−1a b
a
√
2

b
2

2ka − c
2

b
a
√
2

b
2

2ka − c
2

 .

We have so far worked on the region Γ0 constructed in Chapter 1, namely (see (1.2.3))

Γ0 = {(s, x, v) ∈ R3 | s ∈ [0, S), v ∈ [0, V )}.

We now restrict attention to the subset (see (0.3.20); this is actually the set Γ′ in (0.3.36))

Γ = {(s, x, v) ∈ R3 | 0 ≤ s ≤ 2T ′, −∞ < x <∞, 0 ≤ v ≤ kT
√
2, τ ≤ kT},

where T ′, T > 0 do not depend on k, but do dependon the size of the initial data through the parameter
ν to be introduced below, see equation (6.2.26), equation (6.2.28), and equation (6.6.2). Recall (again, see
(0.3.20)) that we foliate Γ by the timelike hypersurfaces

Aσ = Γ ∩ {τ = σ};

Γ has the following four boundary sets (see Figure 4.1):

Σ0 = Γ ∩ {s = 0}, U0 = Γ ∩ {v = 0}, Σ1 = Γ ∩ {s = 2T ′}, AkT .

For σ ≥ 0, define υ = υ(σ) = σ − T ′√2; then we define also the three sets

Γσ = Γ ∩ {(τ, ξ, ζ) ∈ R3 | (τ, ζ) ∈ Dσ},
Σ′

σ = {(υ, ξ,−υ) ∈ Σ0 | υ ∈ [υ(σ), σ]}
Bυ = Γσ ∩Aυ,

(6.2.4)

where Dσ is the triangle with sides Σ′
σ and Aσ and in the last line υ ∈ [υ, σ] (see Figure 4.1). Note that, in

the notation of Chapter 4, Bσ = ∂Aσ.
We take the L2 and Hk norms on all of these sets using coordinate Lebesgue measure, i.e., dx dv, ds dx,

dx dv, and dξ dζ, respectively.
For technical reasons, we want Σ1 to be a null hypersurface; to ensure this, we modify the metric h,

and hence the wave equation (3.3.5), as follows. Define

δ̃ℓ = χ

(
s

T ′

)
δℓ, b̃ = χ

(
s

T ′

)
b, c̃ = χ

(
s

T ′

)
c, (6.2.5)

where χ is the cutoff introduced in 5.3 (we recall that χ is in C∞(R1), with support contained in [−2, 2],
and satisfies χ = 1 on [−1, 1]). Similarly, define

ã = (1 + k−1δ̃ℓ)2, δ̃a = k(ã− 1), δ̃−1a = k(ã
−1 − 1). (6.2.6)
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On any Sobolev space, the map f 7→ f · χ(s/T ′) will clearly have a norm bounded by some power of 1/T ′,
which is independent of k. More carefully, let

Cχ = sup {χ(ℓ)(x) |x ∈ R1, ℓ ∈ {0, · · · , n+ 1}}. (6.2.7)

Then if I is any multiindex in τξζ with |I| ≤ n+ 1, we have∥∥∂I [χ(s/T ′)f ]
∥∥
L2(Aσ)

≤ (|I|+ 1)T ′ −|I|Cχ∥∂If∥L2(Aσ); (6.2.8)

the factor of |I|+ 1 comes from the product rule.

We define further the modified metric h̃ = η+ k−1δ̃h, h̃−1 = η−1 + k−1δ̃h−1, where δ̃h and δ̃h−1 in the
s x v coordinate system have the representations

δ̃hij =

 0 0 0

0 δ̃a b̃
0 b̃ c̃

 , δ̃h−1
ij
=

 k−1 b̃
2

ã
− c̃ b̃

ã
0

b̃

ã
δ̃a 0

0 0 0

 ; (6.2.9)

informally, we replace ‘barred’ quantities by ‘tilde-barred’ quantities. This leads directly to the following
modified wave equation, which is the equation we impose on γ for the rest of the chapter:

0 =
(
−2∂s∂vγ + ∂2xγ

)
+

1

k

(
−δ̃−1a∂2xγ − c̃∂2sγ + 2

b̃

ã
∂s∂xγ − 1

2

(
2∂sc̃−

2

ã
∂xb̃+

∂v δ̃a

ã

)
∂sγ +

1

ã
∂sb̃∂xγ − 1

2

∂xδ̃a

ã
2 ∂xγ − ∂sδ̃a

ã
∂vγ

)

+ k−2

 b̃2
ã
∂2sγ − 1

2

(
c̃
∂sδ̃a

ã
− 4

b̃∂sb̃

ã
+
b̃∂xδ̃a

ã
2

)
∂sγ − 1

2

b̃

ã
2 ∂sδ̃a∂xγ

− k−3

1

2

b̃
2

ã
2 ∂sδ̃a∂sγ

 , (6.2.10)

Note that a solution to equation (6.2.10) will satisfy (3.3.5) when s ≤ T ′. We do not modify the equations
satisfied by the metric components, which are still

∂2sδℓ = −2ℓk1−2ι(∂sγ)
2, ∂2sb =

1

ℓ
k−1(∂sδℓ)(∂sb)− 4k1−2ι∂sγ(∂xγ + k−1b∂sγ), (6.2.11)− (6.2.12)

∂2sc = k−1 (∂sb)
2

2a
− 2k1−2ι∂sγ

(
2∂vγ + 2k−1 b

a
∂xγ + k−1

(
c+ k−1 b

2

a

)
∂sγ

)
− k1−2ι 2

a
(∂xγ)

2.(6.2.13)

τ

kT

ζ

σ Aσ

AkT

vs

2T ′

kT
√
2

Bυ

U0

Σ0

Σ1

Σ′
σ

Γ

Γσ

Figure 6.2.1
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Recall that we have defined the following quantity µ, see equation (0.3.21):

1 +
1

k
µ =

√
1 + 1

k (δ̃a+
c̃
2 ) +

1
2k2 (̃cδ̃a− b̃

2

)√
1− c̃

2k

; (6.2.14)

note that µ will be uniformly bounded in k. We also define the following quantities,* (compare (0.3.22 –
0.3.24)) which describe the deviation of the boundary integrals in the energy inequality from the correspond-
ing integrals in the Minkowski case:

On Γ, indices cd correspond to τ, ξ ζ:

∆cd
A (τ, ξ, ζ) =

(
1 +

1

k
µ

)− c̃
4

−1 0 0
0 1 0
0 0 1

+
1

2

(
1− c̃

2k

)
δ̃h−1

cd

+
1

2
µ

 1 0 0
0 1 0
0 0 1

 ; (6.2.15)

On Σ0 and Σ1, indices cd correspond to x v:

∆cd
Σ =

δ̃ℓ√
2

(
1 0
0 1

2̃a

)
+

1

2
√
2

(
1 + k−1δ̃ℓ

)
δ̃−1a

(
0 0
0 1

)
; (6.2.16)

On U0, indices cd correspond to s x v:

∆cd
U = δ̃ℓ

 1√
2

0 0

0 1
2
√
2

0
0 0 0

+
1

2
√
2

(
1 + k−1δ̃ℓ

)
δ̃h−1

cd
. (6.2.17)

We note that ∆cd
Σ is identically zero on Σ1 because of the cutoff, but we carry it along sometimes anyway

for symmetry.† Note also that ∆cd
U is zero if c or d is 2, i.e., it only involves s (c, d = 0) and x (c, d = 1). We

define the following norms for use with these quantities: if M is a (2,0)-tensor on some Euclidean space, we
define (letting |ui|, |ui| denote the Euclidean norm)

∥M∥ = sup
{∣∣M cdud

∣∣ | |ud| = 1
}
,

∥M∥HS =

∑
c,d

(
M cd

)21/2

.
(6.2.18)

This gives a norm on the pointwise values of the quantities ∆cd
A , ∆cd

Σ , and ∆cd
U .

The initial data for the system (6.2.10 – 6.2.13) will be that constructed in Chapter 5; see equations
(5.4.1 – 5.4.5) and Proposition 5.4.1. We recall that this initial data satisfies b = c = c,s = 0 on Σ0,
while on Σ0 the support of δℓ, ∂sδℓ, ∂sb, and ∂

ℓ
sγ (ℓ = 0, 1, · · · , n + 1) are all contained in that of γ0, i.e.,

{(x, v) ∈ R2 |x, v ∈ [0, 1]}.
We define the following sets of dependent variables (compare (0.3.25)):

Ω0 = {δℓ, b, c}, Ω = {δℓ, b, c, ∂xδℓ, ∂vδℓ, ∂xb}

Ω̃0 = {δ̃ℓ, b̃, c̃}, Ω̃ = {δ̃ℓ, b̃, c̃, ∂xδ̃ℓ, ∂v δ̃ℓ, ∂xb̃}.
(6.2.19)

The significance of these sets will become more apparent later (see, for example, Lemma 6.3.4 and ensuing
discussion). For the moment we note that the (nonconstant) coefficients appearing in the wave equation are

precisely the elements of Ω̃ ∪ ∂sΩ̃0 (∂sΩ̃0 = {∂sδ̃ℓ, ∂sb̃, ∂sc̃}).

* These quantities take the form given here with respect to the s x v and τ ξ ζ coordinate systems. They
do not, in general, transform as tensors to more general coordinate systems.

† We also note that it does not seem strictly necessary to cutoff δℓ, only c and (probably) b. Thus keeping
∆cd

Σ on Σ1 may lead to some generalisations of the succeeding results.
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We let I = (i1, i2) denote a multiindex, and set |I| = i1 + i2, ∂
I = ∂i1ξ ∂

i2
ζ . We shall bound the initial

data by the following (cf. (0.3.26)):

ιn,ℓ[h](σ) =
√
2
∑

|I|≤n−1

∑
ω∈Ω

∥∥∂I∂ℓsω∥∥2L2(Σ′
σ)
,

ιn[h](σ) =

1∑
ℓ=0

ιn,ℓ[h](σ),

IΣ0
[f ] =

∫
Σ0

1√
2

[
1

2
(∂xf)

2 + (∂vf)
2

]
+ k−1∆cd

Σ ∂cf∂df dv dx

IU0 [f ] =

∫
U0

1√
2

[
(∂sf)

2 +
1

2
(∂xf)

2

]
+ k−1∆cd

U ∂cf∂df ds dx

ιX,n,ℓ[γ] =
∑

|I|≤n−1

IX [∂I∂ℓsγ]

ιX,n[γ] =

1∑
ℓ=0

ιX,n,ℓ[γ],

(6.2.20)

where in the last two lines X denotes one of Σ0 and U0. We also define the following quantities, which are
squares of norms along lines in Σ0, for use in applying Proposition 4.4.2 and Lemma 4.4.1:*

I◦m[f ](σ) =
∑

|I|≤m

∥∥∂If∥∥2
L2(∂Aσ)

, I1m[f ](σ) =
∑

|I|≤m

∥∥∂If∥∥2
H1(∂Aσ)

,

ι[h](σ) =

1∑
ℓ=0

∑
ω∈Ω

I◦n−1[∂
ℓ
sω](σ), ι1[h](σ) =

1∑
ℓ=0

∑
ω∈Ω

I1n−1[∂
ℓ
sω](σ),

I[γ](σ) =

1∑
ℓ1,ℓ2=0

2∑
i=0

I◦n−1[∂
ℓ1
s ∂

ℓ2
i γ](σ), I1[γ](σ) =

1∑
ℓ1,ℓ2=0

2∑
i=0

I1n−1[∂
ℓ1
s ∂

ℓ2
i γ](σ),

(6.2.21)

where here ∂0 = ∂τ , ∂1 = ∂ξ, and ∂2 = ∂ζ . We have clearly

ι[h](σ) ≤ ι1[h](σ), I[h](σ) ≤ I1[h](σ). (6.2.22)

We note the following bounds, for use in applying Proposition 4.4.2:

∑
|I|+ℓ≤1

1∑
m=0

∑
ω∈Ω

∥∥∂I∂ℓτ∂mx ω∥∥2L2(∂Aσ)
≤ ι[h](σ),

1∑
ℓ=0

∑
|I|≤2

1∑
m=0

∥∥∂I∂ℓs∂mx γ∥∥2L2(∂Aσ)
≤ I[γ].

(6.2.23)

Note that, by Corollary 5.4.1, all quantities in (6.2.20 – 6.2.23) can be made as small as we like by taking
the parameter o in the definition of γ0 (see equations (5.1.18 – 5.1.18), (5.4.2)) sufficiently small.

* Our use of the H1 norm in I1m[f ] is dictated by the following considerations. As noted, the quantities
I1m[f ] will be used in applying Lemmas 4.4.1 – 4.4.3, so we need I1m[f ] to bound L2 norms of ∂If . For
the purposes of dealing with the so-called admissible nonlinearities we shall introduce below, we wish I1m[f ]
itself to satisfy a multiplication inequality. The H1 norm seems to be the most general choice which can
simultaneously satisfy both of these requirements. Note that the extra x derivative appearing in the H1

norm in the definition of I1m is no cause for concern since we are working only with initial data.
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We define energies* on the spacelike hypersurfaces Aσ as follows; cf. (0.3.29 – 0.3.30). Setting

ϵ[f ](σ) =

∫
Aσ

1

2

[
(∂τf)

2 + (∂ξf)
2 + (∂ζf)

2
]
+ k−1∆cd

A ∂cf∂df dξ dζ, (6.2.24)

we define

En[γ](σ) =
∑

|I|≤n−1

1∑
ℓ=0

ϵ[∂I∂ℓsγ](σ),

En,ℓ[h](σ) =
∑

|I|≤n−1

∑
ω∈Ω

∣∣∂I∂ℓsω∣∣2L2(Aσ)
,

En[h](σ) =

1∑
ℓ=0

En,ℓ[h](σ).

(6.2.25)

These give squares of (semi-) norms of C∞ functions on Aσ, and it is effectively with respect to these that
we shall close the energy estimates for the system (6.2.10 – 6.2.13). Note that every element of Ω ∪ ∂sΩ is
bounded in Hn−1(Aσ) by En[h](σ)

1/2 (see Proposition 6.3.1 in the next section).
The notation En[h] is used for convenience; clearly, what we are really bounding is the (scaled) metric

components δℓ, b, and c. Until we introduce admissible nonlinearities in Definition 6.3.1 below, we shall only
work with a single metric. Our convention beyond that will be explained at that point.

We shall proceed via a bootstrap argument. Fix ν ∈ (0, 1), assume that the initial data satisfy (see
(0.3.31))

sup
σ≤kT

ιn[h](σ) ≤
1

32
ν2, ιΣ0,n[γ] + ιU0,n[γ] ≤

1

12
ν2, (6.2.26)

and make the bootstrap assumption (see (0.3.34))

En[h](σ) ≤ ν2,

En[γ](σ) ≤ ν2
(6.2.27)

for σ ∈ [0, ς]. At this point the dependence of ς on k is unknown; we will show (see Theorem 6.5.1, Theorem
6.6.1) that it is bounded below by kT .

We assume that the initial data also satisfy (see (0.3.32 – 0.3.33))

ι1[h](σ) ≤ 1

1 +
√
2(n+ 2)C2

SCχ

ν2,

I1[γ](σ) ≤ 1

1 +
√
2(n+ 2)C2

SCχ

ν2,

(6.2.28)

where CS is the Sobolev embedding constant on R1, and σ ∈ [0, ς]. Note that initial data satisfying (6.2.26)
and (6.2.28) exist, by Corollary 5.4.1.

The significance of the leading constant will not become apparent until we come to prove existence at
the end of the chapter; until then, we only need the weaker conditions

ι1[h](σ) ≤ ν2,

I1[γ](σ) ≤ ν2.

By (6.2.22), these give
ι[h](σ) ≤ ν2,

I[γ](σ) ≤ ν2.
(6.2.29)

* We term the quantity En[h](σ) an energy not because of any resemblance to a physically or geometrically
significant energy but because its use in proving bounds is analogous to that of the energy for the wave γ
defined above.
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While these last bounds shall often be used in conjunction with the bootstrap assumption (6.2.27), they are
not part of it, but rather additional smallness conditions on the initial data.

6.3. Quantities bounded by the bootstrap
In this section we show how the results in Chapter 4 can be used to bound quantities appearing in the

system (6.2.10 – 6.2.13) in terms of the energies defined in (6.2.25) and the norms on the initial data in
(6.2.20) and (6.2.21). The inequalities allowing us to bound the energies in terms of integrals over the bulk
will be derived in the next section.

The bounds we prove are of two kinds. The first (through Corollary 6.3.5) follow directly from the
definitions of the energies, the bootstrap assumptions, and the smallness assumptions on the initial data,
as given in equations (6.2.25 – 6.2.29) above, and in particular make no use of the equations of motion.
These bounds are therefore independent of T ′. In the second set we apply the equations of motion, and the
resulting bounds will in general depend on T ′.

We first make some additional definitions. The function

µ0(x) =

{
(1+x)−1/2−1

x , x ̸= 0

− 1
2 , x = 0

is continuous on (−1,∞); let
Cµ = sup

x∈[−3/4,3/4]

|µ0(x)| <∞,

so that for x ∈ [−3/4, 3/4] we have
(1 + x)−1/2 ≤ 1 + Cµ|x|.

(Geometrically – since µ0(x) is just the slope of a secant line on the graph of y = (1 + x)−1/2 – it appears
that Cµ = 4/3, but the precise numerical value is not important.) Now define also

µ(ν) =

[
2Cµ +

15

2

]
C0ν + 15Cµ (C0ν)

2
,

∆A(ν) = µ(ν) + 98C0ν,

∆Σ(ν) = 10C0ν, ∆U (ν) = 17C0ν,

and assume (without loss of generality, since none of the above quantities depend on k)

k ≥ 20max
{
µ(ν),∆A(ν),∆Σ(ν),∆U (ν)

}
. (6.3.1)

In particular, k ≥ 12C0ν.
Recall that the quantities µ, ∆A, ∆Σ, and ∆U were defined in equations (6.2.14) – (6.2.17) above.

6.3.1. PROPOSITION. Suppose that Ω is such that the bootstrap assumption (6.2.27) and the bounds (6.2.29)
hold. Then (recall n ≥ 4)
(a) ∥∂ℓsω∥Hn−1(Aσ) ≤ En[h](σ)

1/2 for all ω ∈ Ω, ℓ ∈ {0, 1}.
(b) ∥∂ℓiω∥L∞(Aσ) ≤ 4C0ν for all ω ∈ Ω, where ∂i denotes any derivative in τ , ξ, or ζ and ℓ ∈ {0, 1}.
(c) If k satisfies (6.3.1), then the following bounds hold for σ ∈ [0, ς]:

∥µ∥L∞(Aσ) ≤ µ, ∥∆A∥L∞(Aσ) ≤ ∆A(ν), ∥∆Σ∥L∞(Aσ∩Σ0) ≤ ∆Σ(ν), ∥∆U∥L∞(Aσ∩U0) ≤ ∆U (ν),

where the norms on the quantities ∆A, ∆Σ, and ∆U are as defined in equations (6.2.18) above.
Proof. (a) This is evident from the definition of En[h](σ) (see (6.2.25)).
(b) Recall (see (6.2.23)) that ι[h](σ) bounds the sum over Ω, i and ℓ of ∥∂ℓiω∥2H1(∂Aσ)

. Now let ω ∈ Ω =

{δℓ, b, c, ∂xδℓ, ∂vδℓ, ∂xb}, and suppose first that ℓ = 0. Then by (a) and Proposition 4.4.2, since n ≥ 4,

∥ω∥L∞(Aσ) ≤ C0

[
∥ω∥Hn−2(Aσ) + ∥ω∥H1(∂Aσ)

]
≤ C0

[
En[h](σ)

1/2 + ι[h](σ)1/2
]
≤ 4C0ν.
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Now if ℓ = 1 and ∂i = ∂ξ or ∂i = ∂ζ , then

∥∂iω∥L∞(Aσ) ≤ C0

[
∥∂iω∥Hn−2(Aσ) + ∥∂iω∥H1(∂Aσ)

]
≤ C0

[
∥ω∥Hn−1(Aσ) + ι[h](σ)1/2

]
≤ C0

[
En[h](σ)

1/2 + ι[h](σ)1/2
]
≤ 4C0ν.

Since ∂τ =
√
2∂s − ∂ζ , the case ∂i = ∂τ can be handled as follows:

∥∂τω∥L∞(Aσ) ≤ C0

[
∥∂τω∥Hn−2(Aσ) + ∥∂τω∥H1(∂Aσ)

]
≤ C0

[√
2∥∂sω∥Hn−2(Aσ) + ∥ω∥Hn−1(Aσ) + ι[h](σ)1/2

]
≤ C0

[
3En[h](σ)

1/2 + ι[h](σ)1/2
]
≤ 4C0ν,

completing the proof of this part.
(c) This part is entirely straightforward, though slightly tedious. First, we note that by (a) and equation

(6.3.1) we have

∥δℓ∥L∞(Aσ) ≤ 4C0ν, ∥b∥L∞(Aσ) ≤ 4C0ν, ∥c∥L∞(Aσ) ≤ 4C0ν,

1

k
∥δℓ∥L∞(Aσ) ≤

1

12
,

1

k
∥b∥L∞(Aσ) ≤

1

12
,

1

k
∥c∥L∞(Aσ) ≤

1

12
.

(6.3.2)

Moreover, we have

δa = k(a− 1) = δℓ

(
2 +

1

k
δℓ

)
,

so

∥δa∥L∞(Aσ) ≤ 12C0ν,
1

k
∥δa∥L∞(Aσ) ≤

1

4
;

thus moreover
1

a
=

1

1 + 1
k δa

≤ 1

1− 1
4

=
4

3
,

so

∥δ−1a∥L∞(Aσ) = k

∥∥∥∥1a − 1

∥∥∥∥
L∞(Aσ)

= k

∥∥∥∥a− 1

a

∥∥∥∥
L∞(Aσ)

≤ 4

3
∥δa∥L∞(Aσ) ≤ 16C0ν,

1

k
∥δ−1a∥L∞(Aσ) ≤

1

3
.

Since replacing barred quantities with tilde-barred ones amounts to multiplying δℓ, b and c by the cutoff,
which preserves the bounds in (6.3.2), the above bounds are also valid for the tilde-barred quantities. Now
we note that for x ∈ [−1,∞) we have (1 + x)1/2 ≤ 1 + x/2; by the definition of Cµ and the bound
k−1∥c∥L∞(Aσ) ≤ 1/12, we have (

1− c̃

2k

)−1/2

≤ 1 + Cµ
c̃

2k
.

Pulling this together, we have the bound

µ = k


√
1 + 1

k (δ̃a+
c̃
2 ) +

1
2k2 (̃cδ̃a− b̃

2

)√
1− c̃

2k

− 1


≤ k

[{
1 +

1

2

(
1

k
(12C0ν + 2C0ν) +

1

2k2
(
64C2

0ν
2
))}{

1 +
2

k
CµC0ν

}
− 1

]
≤ 2CµC0ν +

1

2
(14C0ν + C0ν) + CµC0ν(15C0ν) ≤

[
2Cµ +

15

2

]
C0ν + 15Cµ (C0ν)

2
= µ.
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Now we wish to bound the operator norms of the matrices ∆A, ∆Σ, and ∆U . We shall do this by bounding
their Hilbert-Schmidt norms and using the bound

∥A∥ ≤ ∥A∥HS ,

where ∥·∥ denotes the operator norm and ∥·∥HS the Hilbert-Schmidt norm. Noting that, from the foregoing,∣∣∣∣∣∣ b̃
2

2kã

∣∣∣∣∣∣ ≤ 32

3k
C2

0ν
2 ≤ 2

9
C0ν,

∣∣∣∣∣ c̃2
∣∣∣∣∣ ≤ 2C0ν,

∣∣∣∣∣ b̃

ã
√
2

∣∣∣∣∣ ≤ 16

3
C0ν,

we see that

∥δ̃h−1∥HS ≤ C0ν

[
4

(
2

9
+ 2

)2

+ 4

(
16

3

)2

+ 162

]1/2
≤ 47C0ν,

so that

∥∆A∥ ≤ ∥∆A∥HS ≤
(
1 +

1

k
µ

)(
C0ν

√
3 +

1

2
(2)∥δ̃h−1∥HS

)
+

1

2
µ
√
3

≤ 2(49C0ν) + µ ≤ 98C0ν + µ = ∆A(ν),

∥∆Σ∥ ≤ ∥∆Σ∥HS ≤ 4C0ν

(
1 +

(
2

3

)2
)1/2

+
1

4

(
1 +

1

12

)
16C0ν ≤ 10C0ν = ∆Σ(ν),

∥∆U∥ ≤ ∥∆U∥HS ≤ 4C0ν

(
1

2
+

1

8

)1/2

+
1

4

(
1 +

1

12

)
47C0ν ≤ 17C0ν = ∆U (ν),

and since these bounds are uniform, this completes the proof. QED.

We note the following bounds derived in the above proof for future reference.

6.3.1. COROLLARY. Under the conditions of Proposition 6.3.1, we have

∥δa∥L∞(Aσ) ≤ 12C0ν, ∥δ−1a∥L∞(Aσ) ≤ 16C0ν,
1

a
≤ 4

3
, ∥δ̃h−1∥HS ≤ 47C0ν.

Proposition 6.3.1, together with Lemma 4.2.2, also allow us to bound IX [f ].

6.3.2. COROLLARY. Under the conditions of Proposition 6.3.1, we have

1

6
∥f∥H1

◦(Σ0) ≤IΣ0
[f ] ≤ ∥f∥H1

◦(Σ0),

1

6
∥f∥H1

◦(U0) ≤IU0
[f ] ≤ ∥f∥H1

◦(U0),

where the norms were defined in (4.4.1 – 4.4.2) above.
Proof. Given Lemma 4.2.2, this follows from Proposition 6.3.1 as well as equation (6.3.1). We show it

for IΣ0
[f ]; the proof for IU0

[f ] is exactly analogous. We have

IΣ0
[f ] =

∫
Σ0

1√
2

[
1

2
(∂xf)

2 + (∂vf)
2

]
+ k−1∆cd

Σ ∂cf∂df dv dx.

Now (letting c and d represent x and v)∣∣∆cd
Σ ∂cf∂df

∣∣ ≤ ∥∆Σ∥HS∥∂cf∂df∥HS ≤ ∆Σ(ν)|∂cf |2 = ∆Σ(ν)
[
(∂xf)

2 + (∂vf)
2
]
,

whence

IΣ0 [f ] ≤
∫
Σ0

1√
2

[
1

2
(∂xf)

2 + (∂vf)
2

]
+

1

20

[
(∂xf)

2 + (∂vf)
2
]
dv dx

≤
∫
Σ0

(∂xf)
2 + (∂vf)

2 dv dx = ∥f∥H1
◦(Σ0),
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and similarly

IΣ0
[f ] ≥

∫
Σ0

1

2
√
2

[
(∂xf)

2 + (∂vf)
2
]
− 1

20

[
(∂xf)

2 + (∂vf)
2
]
dv dx

≥ 1

6

∫
Σ0

(∂xf)
2 + (∂vf)

2 dv dx,

as claimed. QED.

We now have the following proposition.

6.3.2. PROPOSITION. Suppose that Ω satisfies the bootstrap condition (6.2.27) and the bounds on initial
data (6.2.29).
(a) For any f ∈ C∞(Γ) and any σ ∈ [0, ς],

9

10

[
∥f∥2H1

◦(Aσ)
+ ∥∂τf∥2L2(Aσ)

]
≤ 2ϵ[f ](σ) ≤ 11

10

[
∥f∥2H1

◦(Aσ)
+ ∥∂τf∥2L2(Aσ)

]
,

and thus

9

10

[
∥f∥2Hn

◦ (Aσ)
+ ∥∂τf∥2Hn−1

◦ (Aσ)

]
≤ 2En[f ](σ) ≤

11

10

[
∥f∥2Hn

◦ (Aσ)
+ ∥∂τf∥2Hn−1

◦ (Aσ)

]
.

(b) If γ satisfies the bootstrap condition (6.2.27) and the bounds on initial data (6.2.29), then for σ ∈ [0, ς]∥∥∂ℓi γ∥∥L∞(Aσ)
≤ 4C0ν,

where as in Proposition 6.3.1 ∂i denotes any of the derivatives ∂τ , ∂ξ, ∂ζ , and ℓ ∈ {0, 1}.
Proof. (a) By Proposition 6.3.1(c) and the bounds (6.3.1) on k, we have that k−1∥∆A(σ)∥ ≤ 1/20 for

σ ∈ [0, ς]; thus for such σ and any f ∈ C∞(Γ) we have by Lemma 4.2.2,

1

k
|∆c

Ad(σ)∂cf∂df | ≤
1

k
∥∆A(σ)∥

[
(∂τf)

2 + (∂ξf)
2 + (∂ζf)

2
]

≤ 1

20

[
(∂τf)

2 + (∂ξf)
2 + (∂ζf)

2
]
;

thus

ϵ[f ](σ) =

∫
Aσ

1

2

[
(∂τf)

2 + (∂ξf)
2 + (∂ζf)

2
]
+ k−1∆cd

A ∂cf∂df dξ dζ

≥
∫
Aσ

1

2
· 9

10

[
(∂τf)

2 + (∂ξf)
2 + (∂ζf)

2
]
dξ dζ,

and similarly

ϵ[f ](σ) ≤
∫
Aσ

1

2
· 11
10

[
(∂τf)

2 + (∂ξf)
2 + (∂ζf)

2
]
dξ dζ.

This gives the first set of inequalities. Substituting into the definition of En[f ](σ) then gives the second set.
(b) As in Proposition 6.3.1(b), note that I[f ](σ) is effectively the sum over i and ℓ of ∥∂ℓi f∥2H1(Aσ∩Σ0)

.

By Proposition 4.4.2 and part (a), then, we have∥∥∂ℓi γ∥∥L∞(Aσ)
≤ C0

[
∥∂ℓi γ∥Hn−2

◦ (Aσ)
+ ∥∂ℓi γ∥H1(Aσ∩Σ0)

]
≤ C0

[
11

10
En[γ](σ)

1/2 + I[γ](σ)1/2
]
≤ 4C0ν,

as claimed. QED.

We wish to express Lemmata 4.4.1 – 4.4.3 in our current setting. Now technically Aσ is a subset of R3;
to avoid messy but inconsequential notational issues, we shall also use Aσ to denote the projection of this
set onto the plane τ = 0, and when convenient consider functions on Aσ as functions on this projection. (In
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particular, this is the sense in which statement (i) in the first lemma below is to be understood.) Then for
σ ∈ [0, ς] we may apply the lemmata with Aσ in place of ΩL; in this case, we have also (since in this context
y = ζ)

m∑
ℓ=0

∥∂ℓyf |τ=σ∥Hm−ℓ(∂ΩL) ≤
√
mI1m[f ](σ)1/2,

so absorbing the factor of
√
m into the various constants, we have the following.

6.3.1. LEMMA. Let σ ∈ [0, ς], let m ≥ 0, and let ϕ ∈ C∞(R1) have support contained in [−1, 3] and satisfy
ϕ|[−1/2,1/2] = 1. Then there is an extension map e : C∞

c (Aσ) → Hm
0 (R1 × [−1, 3]) such that

(i) e(f)|Aσ
= f ,

(ii) ∥e(f)∥Hm(R1×[−1,3]) ≤ Ce
[
∥f∥Hm(Aσ) + I1m[f ](σ)1/2

]
,

where Ce is a constant depending only on m and ϕ (in particular, Ce is independent of σ and the size of the
support of f).

6.3.2. LEMMA. Let m ≥ 2, σ ∈ [0, ς]. Let f1, · · ·, fp ∈ Hm(Aσ) satisfy ∂ℓζfi ∈ Hm−ℓ(∂Aσ), ℓ = 0, · · · ,m,
i = 1, · · · , p, and let I1, · · ·, Ip be multiindices with |I1+ · · ·+ Ip| ≤ m. Then there is a constant C such that

∥∥∂I1f1 · · · ∂Ipfp∥∥L2(Aσ)
≤ C (Ce)

p
p∏

i=1

(
I1[fi]

1/2 + ∥fi∥Hm(Aσ)

)
.

6.3.3. LEMMA. Let m ≥ 2, σ ∈ [0, ς]. There is a constant C ≥ 1 such that if f1, f2, · · · , fp ∈ Hm(Aσ) satisfy
∂ℓyfi ∈ Hm−ℓ(∂ΩL), ℓ = 0, · · · ,m, i = 1, · · · , p,

∥f1 · · · fp∥Hm(Aσ) ≤ Cp

p∏
i=1

(
I1[fi]

1/2 + ∥fi∥Hm(Aσ)

)
.

Lemma 6.3.1 gives the following corollary:

6.3.3. COROLLARY. If f ∈ Ω (see (6.2.19)) or f ∈ {∂ℓ1s ∂
ℓ2
i γ | ℓ1, ℓ2 ∈ {0, 1}}, then for m ≤ n− 1

∥e(f)∥Hm({σ}×R2) ≤ Ce
[
∥f∥Hm(Aσ) + ν

]
.

Proof. This follows from the Lemma 6.3.1 and the bounds (6.2.29). QED.

Since we can bound ∥f∥Hn−1(Aσ) for f as in the corollary by something like ν, this shows that for us the
additive term does not fundamentally change the size of the norm.

We have also (see Lemma 4.2.4):

6.3.4. COROLLARY. Let m ≥ 0. There is a constant CH , depending on m, such that the following holds. Let
O ⊂ Rp be open, let F : O → Rq be C∞, and suppose that f1, · · · , fp : Aσ → R1 satisfy the conditions in
Lemma 6.3.2. Suppose that D = sup

|J|≤m
x∈O

|∂JF (x)| <∞. Then

∥F (f1(x), · · · , fp(x))∥Hm(Aσ) ≤ CD

p∏
i=1

(
I1[fi]

1/2 + ∥fi∥Hm(Aσ)

)m
.

Proof. This follows from Lemma 4.2.4 and Lemma 6.3.2. QED.

Obviously this bound is far from optimal, but it will be sufficient for our purposes.

We also have the following corollary which will be needed when treating the wave equation (6.2.10).

6.3.5. COROLLARY. If Ω is such that (6.2.27) and (6.2.28) are satisfied, then for m ≤ n − 1 there is a
combinatorial constant Cδ

m depending only on m such that (ℓ ∈ {0, 1})

∥∂ℓsδ−1a∥Hm(Aσ) ≤ Cδ
mCM (Ce)m

(
4

3

) 1
2m+2 (

I1m[δℓ](σ)1/2 + ∥δℓ∥Hm(Aσ)

)m
,

I1m[∂ℓsδ
−1a](σ) ≤ Cδ

m

(
4

3

)m (
I1m[a](σ)

)m
.
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In particular, there is a constant C
δ−1a

≥ 1 such that

∥∂ℓsδ−1a∥Hn−1(Aσ) ≤ C
δ−1a

ν, I1m[∂ℓsδ
−1a](σ) ≤ C

δ−1a
ν2.

Proof. We have, since a = (1 + k−1δℓ)2,

δ−1a = k

(
1

a
− 1

)
=

2δℓ+ k−1δℓ
2

(1 + k−1δℓ)2
=

2δℓ+ k−1δℓ
2

ℓ
2 =

δℓ

ℓ
+
δℓ

ℓ
2 ,

∂sδ−1a = −k∂sa
a2

= −2
∂sδℓ

(1 + k−1δℓ)3
= −2

∂sδℓ

ℓ
3 .

Now by the product rule for differentiation, if I is any multiindex, then

∂I(fh) =
∑
J≤I

(
I
J

)
∂I−Jf∂Jh,

where (j1, j2) ≤ (i1, i2) means j1 ≤ i1, j2 ≤ i2, and(
(i1, i2)
(j1, j2)

)
=

i1!i2!

j1!(i1 − j1)!j2!(i2 − j2)!
.

Further, if g ̸= 0, J is a multiindex and p ≥ 1, then, by Lemma 4.2.1, letting K denote the set of all collections
of multiindices {Kk} whose sum equals J , there is a collection of combinatorial constants {Cp

{Kk} | {Kk} ∈ K}
such that

∂J
1

gp
=

∑
{Kk}∈K

Cp
{Kk}

∏
K∈{Kk}

∂Kg

g|{Kk}|+p
,

where |{Kk}| denotes the cardinality of {Kk}.
If we now take f = ∂ℓsδℓ and h = ℓ

−p
, for p = 1, 2, 3, then since ∂iℓ = k−1∂iδℓ, we see that ∂I(∂ℓsδℓ/ℓ

p
)

is a sum of terms of the form

k−eCℓ
−(P+p)∏

∂Ii∂ℓsδℓ, (6.3.3)

where e ≥ 0, C is combinatorial, P ≤ |I|, and
∑
Ii = I. Since the number of such terms is also combinatorial

in nature, k ≥ 1, and the number of factors in each term is no greater than |I|, we may apply Lemma 6.3.2to
find ∥∥∥∥∥∂I ∂ℓsδℓℓp

∥∥∥∥∥
L2(Aσ)

≤ CCM (Ce)
|
I|
(
4

3

)(|I|+p)/2∏(
I1|I|[∂

ℓ
sδℓ](σ)

1/2 +
∥∥∂ℓsδℓ∥∥H|I|(Aσ)

)|I|
.

Since the number of multiindices with order less than or equal to m is combinatorial, the first inequality
follows by summing over all such multiindices I. The second inequality follows from (6.3.3) and the fact that
for any f , g,

I1m[fg](σ) ≤ I1m[f ](σ)I1m[g](σ). (6.3.4)

The final set of inequalities now follows from the bootstrap assumptions (6.2.27) and (6.2.28), since ν < 1.
QED.

We now define a class of nonlinearities sufficiently broad to encompass everything we will have to deal
with. (It would be quite sufficient to consider only functions polynomial in the variables; but the treatment
does not seem to be particularly more complicated for the general case. There is evidently some connection
between what we do here and jet bundles, but we do not need that machinery here.) Our terminology is
borrowed from Ringström [12]. In this definition, ν is the quantity appearing in the bootstrap (6.2.27) and
the condition (6.2.28); in other words, it is a proxy for certain norms of the quantities involved. The spaces
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are defined in terms of pairs of quadruples (a, b, c, γ) to facilitate the existence proof in Section 6.6, which is
by iteration.*

6.3.1. DEFINITION. Fix some particular choice of initial data satisfying (6.2.26) and (6.2.28). Define sets X
and X as follows:

X = {(a1, b1, c1, γ1, a2, b2, c2, γ2) ∈ [C∞(Γ)]8 | γi solves (6.2.10) with a, b, c replaced with ai, bi, ci, i = 1, 2,

a2, b2, c2 solve (6.2.11 – 6.2.13) with γ replaced by γ1,

(ai, bi, ci, γi) satisfy (6.2.27) and (6.2.28), i = 1, 2,

ai, bi, ci, γi agree on s = 0 and v = 0

with the chosen initial data},

X = {(a, b, c, γ) ∈ [C∞(Γ)]4 | (a′, b′, c′, γ′, a, b, c, γ) ∈ X for some (a′, b
′
, c′, γ′) ∈ [C∞(Γ)]4}.

Note that the requirement (a′, b
′
, c′, γ′, a, b, c, γ) ∈ X in the definition of X imposes restrictions on the

quadruple (a′, b
′
, c′, γ′). An admissible nonlinearity of degree m and exponent p, where 2 ≤ m ≤ n − 1 and

p > 0, is a function Φ : X → C∞(Γ) which has the following property: there exist constants Cm
1 (Φ) and

Cm
2 (Φ) such that for all (a, b, c, γ) ∈ X we have

∥Φ(a, b, c, γ)∥Hm(Aσ) ≤ Cm
1 (Φ)νp, I1m[Φ(a, b, c, γ)](σ) ≤ [Cm

2 (Φ)]2ν2p.

We denote the set of admissible nonlinearities of degree m by X̂m,p, or simply X̂ if the degree and exponent
are clear from the context. It is a normed vector space under the following norm:

∥Φ∥
X̂m,p = inf{C1 + C2 | ∥Φ(a, b, c, γ)∥Hm(Aσ) ≤ C1ν

p, I1m[Φ](σ) ≤ C2
2ν

2p for all (a, b, c, γ) ∈ X}.

We further let

X0 = {(a, b, c, γ) ∈ [C∞(Γ)]4 | (a, b, c, γ) satisfy (6.2.27) and (6.2.28),

a, b, c, γ agree on s = 0 and v = 0 with the initial data

constructed in Chapter 5},

and define a restricted admissible nonlinearity of degree m and exponent p to be a Φ ∈ X̂m,p which extends
to X0 and satisfies

∥Φ(a, b, c, γ)∥Hm(Aσ) ≤ Cm
1 (Φ)νp, I1m[Φ(a, b, c, γ)](σ) ≤ [Cm

2 (Φ)]2ν2p

for all (a, b, c, γ) ∈ X0. We denote the set of all restricted admissible nonlinearities by X̂m,p
0 (or, as with

X̂m,p, simply X̂0 if the degree and exponent are clear from the context) and define the norm

∥Φ∥
X̂m,p

0

= inf{C1 + C2 | ∥Φ(a, b, c, γ)∥Hm(Aσ) ≤ C1ν
p, I1m[Φ](σ) ≤ C2

2ν
2p for all (a, b, c, γ) ∈ X0}.

Note that, by equation (6.2.22), we have also

I◦m[Φ(a, b, c, γ)](σ) ≤ [∥Φ∥
X̂m,p ]

2ν2p.

Note also that, if (a′, b
′
, c′, γ′, a, b, c, γ) ∈ X, then (a′, b

′
, c′, γ′), (a, b, c, γ) ∈ X0.

Since we assume ν < 1, we have νp < νq when q < p, so X̂m,p ⊂ X̂m,q and X̂m,p
0 ⊂ X̂m,q

0 if q < p.

* One could of course also try to prove existence using a fixed-point theorem. We considered that approach
but abandoned it as at least as complicated in the current setting since proving the necessary continuity
results involved estimates very similar to those used in Theorem 6.6.1 to show convergence of the sequence
obtained by iteration.
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We shall principally work with the case m = n− 1, but we shall have occasion to use m = n− 2 as well;
note that since n ≥ 4 we have n − 1, n − 2 ≥ 2. (The space X̂m,p could clearly be defined also for m < 2,

but since some of the results below do not hold for m < 2 and we shall never need to consider X̂m,p for
m < 2 we exclude that case altogether.) We shall also usually have p ≥ 1. It is worth noting that Φ(a, b, c, γ)
denotes the image of the solution (a, b, c, γ) under the map Φ, not any kind of functional composition. In
particular, derivative maps (e.g., Φ(a, b, c, γ) = ∂ℓsγ) will be admissible nonlinearities when we can prove the
appropriate bounds.

We have the following proposition.

6.3.3. PROPOSITION. (i) Under pointwise multiplication of functions, X̂m,p × X̂m,q → X̂m,p+q, and if

Φ ∈ X̂m,p, Ψ ∈ X̂m,q, then
∥ΦΨ∥

X̂m,p+q ≤ C∥Φ∥
X̂m,p∥Ψ∥

X̂m,q

for some constant C. Further, the map (i ∈ {1, 2})

∂i : Φ 7→
(
(a, b, c, γ) 7→ ∂i

[
Φ(a, b, c, γ)

])
maps X̂m,p to X̂m−1,p (when m ≥ 3).

(ii) Let F : R17 → R1 be C∞, independent of k, and satisfy F (0) = 0; then the map

(a, b, c, γ) 7→ F (δ−1a,Ω, ∂sΩ0, ∂vb, ∂xc, ∂vc, γ, ∂τγ, ∂ξγ, ∂ζγ),

which we denote by F ◦, is in X̂m,1. If Q = [−16C0ν, 16C0ν]× [−4C0ν, 4C0ν]
16 and CF = sup {∂JF (x) |x ∈

Q, |J | ≤ m}, then there is a combinatorial constant C depending only on m such that

∥F ◦∥
X̂m,1 ≤ CFC0C(Cδ−1a

CM )m.

Proof. (i) Let Φ, Ψ ∈ X̂, let (a, b, c, γ) ∈ X, and let f = Φ(a, b, c, γ), g = Ψ(a, b, c, γ); then by Lemma
6.3.3 we have

∥Φ(a, b, c, γ)Ψ(a, b, c, γ)∥Hm(Aσ) ≤ C ′
[
I1m[f ](σ)1/2 + ∥f∥Hm(Aσ)

] [
I1m[g](σ)1/2 + ∥g∥Hm(Aσ)

]
≤ C ′∥Φ∥

X̂m,p∥Ψ∥
X̂m,qν

p+q,

while by the product rule there is clearly some combinatorial constant C ′′ such that

I1m[fg] ≤ C ′′ 2I1m[f ]I1m[g] ≤ C ′′ 2[Cm
2 (Φ)Cm

2 (Ψ)]2ν2(p+q) < C ′′ 2∥Φ∥2
X̂m,p

∥Ψ∥2
X̂m,p

ν2(p+q);

from these two inequalities the stated result follows:

∥ΦΨ∥
X̂m,p ≤ inf{C1 | ∥Φ(a, b, c, γ)Ψ(a, b, c, γ)∥Hm(Aσ) ≤ C1ν

p+q}

+ inf{C2 | I1m[Φ(a, b, c, γ)Ψ(a, b, c, γ)] ≤ C2
2ν

2(p+q)}
≤ C ′∥Φ∥

X̂m,p∥Ψ∥
X̂m,q + C ′′∥Φ∥

X̂m,p∥Ψ∥
X̂m,q = (C ′ + C ′′)∥Φ∥

X̂m,p∥Ψ∥
X̂m,q .

The second part follows from the observation that

∥∂if∥Hm−1(Aσ) ≤ ∥f∥Hm(Aσ), I1m−1[∂if ](σ) ≤ I1m[f ](σ).

(ii) By the chain rule and product rule, if I is a multiindex in ξ and ζ with |I| ≤ m, then the most
stupendous quantity

∂I
[
F (δ−1a,Ω, ∂sΩ0, ∂vb, ∂xc, ∂vc, γ, ∂τγ, ∂ξγ, ∂ζγ)

]
can be written as a sum of terms of the form (denoting for convenience the argument of F by X̌ =
(δ−1a,Ω, ∂sΩ0, ∂vb, ∂xc, ∂vc, γ, ∂τγ, ∂ξγ, ∂ζγ))

(∂JF )(X̌)
∏

∂I
′
χ̌, (6.3.5)
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where the sum of all multiindices I ′ in each product is exactly equal to I, and χ̌ denotes some element of X̌.
(Here a particular element of X̌ may appear multiple times.) Now by Proposition 6.3.1(a) and 6.3.2(a), if χ̌
is any component of X̌ except δ−1a, then

∥χ̌∥Hm(Aσ) ≤ 2ν, I1m[χ̌](σ)1/2 ≤ ν,

while by Corollary 6.3.5

∥∂ℓsδ−1a∥Hm(Aσ) ≤ C
δ−1a

ν, I1m[∂ℓsδ
−1a](σ) ≤ C

δ−1a
ν2,

so that for all χ̌ in X̌ we have
I1m[χ̌](σ)1/2 + ∥χ̌∥Hm(Aσ) ≤ 3C

δ−1a
ν.

By Lemma 6.3.2, then, since there are at most |I| ≤ m terms in the product,∥∥∥∏ ∂I
′
χ̌
∥∥∥
L2(Aσ)

≤ (CM )m(3C
δ−1a

)mνm ≤ (3C
δ−1a

CM )mν,

so that we have finally that ∥∥∂IF (X̌)
∥∥
L2(Aσ)

≤ CFC
′(3C

δ−1a
CM )mν,

where C ′ is a combinatorial constant. Similarly, since F (0) = 0, we may write, doing a Lipschitz estimate,

F (X̌) ≤
∑
χ̌∈X̌

CF · |χ̌|, (6.3.6)

so by Proposition 6.3.1(a), Proposition 6.3.2(a), Proposition 4.4.1, and the bootstrap conditions (6.2.29), we
have for some numerical constant C ′′

∥F (X̌)∥L2(Aσ) ≤ 17CFC
′′ν.

Thus, letting C = max{17C ′′, 3mC ′}, we see that

∥F (X̌)∥Hm(Aσ) ≤ CFC0C(Cδ−1a
CM )mν.

The bound on I1m[F (X̌)] follows from (6.3.5) and (6.3.6) by using (6.2.28) and multiplicativity of I1 (see
(6.3.4)). QED.

We note that our proof of the multiplicative property in (i) did not require Φ and Ψ to be evaluated at

the same points in X̂, though as we shall only have limited use for this result we shall not take the time
to formalise it. We note further that we made no use of the equations satisfied by (a, b, c, γ), only that the
bounds (6.2.27 – 6.2.29) were satisfied. Thus we have the following corollary:

6.3.6. COROLLARY. Proposition 6.3.3 holds for restricted admissible nonlinearities ifX and X̂ are everywhere
replaced by X0 and X̂0.

Recall the second part of (6.2.25):

En,ℓ[h](σ) =
∑

|I|≤n−1

∑
ω∈Ω

∣∣∂I∂ℓsω∣∣2L2(Aσ)
,

En[h](σ) =

1∑
ℓ=0

En,ℓ[h](σ).

(6.3.7)

As noted after (6.2.25) above, this notation needs clarification when we are dealing with multiple metrics
simultaneously, as we do when working with admissible nonlinearities. We make the following convention.
Elements of X are always denoted by quadruples consisting of the kernel letters a, b, c, and γ, modified by
primes, subscripts, etc., as needed. We shall denote the corresponding 2 + 1 metric by performing on the
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kernel letter h the same modifications; thus h1 is the metric corresponding to a1, b1, c1, and so on. The
kernel letter δℓ, modified also in the same way, shall refer to the quantity k(a− 1)1/2 with a replaced by the
appropriately modified symbol. Then En[h](σ), with h appropriately modified, will refer to the quantity in
(6.3.7) with Ω formed from the appropriately modified δℓ, b, and c. This set will be denoted by the kernel
letter Ω modified in the same way. For example, if we have (a1, b1, c1, γ1) ∈ X, then we would define

Ω1 = {δℓ1, b1, c1, ∂xδℓ1, ∂vδℓ1, ∂xb1}

En,ℓ[h](σ) =
∑

|I|≤n−1

∑
ω∈Ω1

∣∣∂I∂ℓsω∣∣2L2(Aσ)

En[h](σ) =

1∑
ℓ=0

En,ℓ[h](σ).

We now produce a litany of admissible nonlinearities* which will be used in the next section to derive
energy inequalities. For simplicity, we denote maps such as (a, b, c, γ) 7→ ∂2sa by simply ∂2sa (exactly as, for
example, one denotes the function x 7→ x2 on R1 by x2).

6.3.4. LEMMA. The following are admissible nonlinearities of degree n− 1 and exponent 1:

δℓ, δ−1a, b, c, ∂sδℓ, ∂sb, ∂sc, ∂xδℓ, ∂vδℓ, ∂xb;

the following are admissible nonlinearities of degree n− 1 and exponent 2:

∂2sδℓ, ∂2sb, ∂2sc, ∂2s∂xδℓ, ∂2s∂vδℓ, ∂2s∂xb;

all tilde-barred correspondents of the above are admissible nonlinearities of the same degree and exponent,
respectively;
the following are admissible nonlinearities of degree n− 1 and exponent 1:

γ, ∂τγ, ∂ξγ, ∂ζγ, ∂sγ, ∂s∂τγ, ∂s∂ξγ, ∂s∂ζγ, ∂2ξγ;

and finally
∂3sγ

is an admissible nonlinearity of degree n− 2 and exponent 1.
Proof. We note first of all that all of these quantities do indeed give maps X → C∞(Γ), and thus the

only question is whether the relevant bounds hold. Next, multiplying by χ(s/T ′) will change the norms we
use by at most T ′ −N for some positive integer N , and such a factor will not impact the result.

That δ−1a is an admissible nonlinearity follows from Corollary 6.3.5. All other quantities in the first
two lines except δ−1a are trivially admissible nonlinearities by definition of En[h](σ) and (6.2.27). Similarly,
and for the same reason, the quantities γ, ∂τγ, ∂ξγ, and ∂ζγ (and hence also ∂sγ and ∂vγ), as well as their s
derivatives, are admissible nonlinearities. In fact, all of these are actually restricted admissible nonlinearities.

To deal with the other terms, let (a, b, c, γ) ∈ X, and let (a′, b
′
, c′, γ′) be such that (a′, b

′
, c′, γ′, a, b, c, γ) ∈

X. Recall that this implies that (a′, b
′
, c′, γ′) ∈ X0, and in particular the quantities a′, b

′
, c′, γ′ must satisfy

the bounds (6.2.27 – 6.2.29).
To deal with ∂2sδℓ, ∂

2
sb, and ∂

2
sc, we make use of the Riccati equations:

∂2sδℓ = −2ℓk1−2ι(∂sγ
′)2, ∂2sb =

1

ℓ
k−1(∂sδℓ)(∂sb)− 4k1−2ι∂sγ

′(∂xγ
′ + k−1b∂sγ

′),

∂2sc = k−1 (∂sb)
2

2a
− 2k1−2ι∂sγ

′

(
2∂vγ

′ + 2k−1 b

a
∂xγ

′ + k−1

(
c+ k−1 b

2

a

)
∂sγ

′

)
− k1−2ι 2

a
(∂xγ

′)2.

* We advise the reader not to be put off by the fact that all of these quantities appear to be rather linear.
The space X, inasmuch as it involves solutions to nonlinear equations, is itself not linear, so it does not
really make sense to speak of a map from X being linear. More fundamentally, though, the quantities in the
lemma below are really the building blocks from which the elements of X̂m,p we shall have the most use for
later are built by multiplication.
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Note that 1/a = 1 + k−1δ−1a. Now the function γ′ need not be unique given (a, b, c, γ), but clearly the
right-hand sides of each of the above equations must be. Now (a, b, c, γ′) ∈ X0, and since k ≥ 1, every

quantity on the right-hand side of these equations, considered as a function of (a, b, c, γ′), is in X̂n−1,1
0 . Since

multiplication maps X̂n−1,1
0 × X̂n−1,1

0 → X̂n−1,2
0 , we see that the quantities ∂2sδℓ, ∂

2
sb and ∂

2
sc, considered as

functions of (a, b, c, γ′), are also in X̂n−1,2
0 ; since these functions do not depend at all on γ′, the quantities

∂2sδℓ, ∂
2
sb, and ∂2sc must be in X̂n−1,2

0 when considered as functions of (a, b, c, γ), and hence must be in

X̂n−1,2, as claimed.
Differentiating the equation for δℓ, we have by the same logic (not by applying the second part of

Proposition 6.3.3(i)!) that ∂2s∂xδℓ and ∂
2
s∂vδℓ are admissible nonlinearities of degree n− 1 and exponent 2.

Differentiating the equation for b with respect to x, we see that ∂2s∂xb will also be an admissible

nonlinearity of degree n − 1 and exponent 2 if ∂2xγ = ∂2ξγ ∈ X̂n−1,1. To show this, consider the wave
equation:

0 =
(
−2∂s∂vγ + ∂2xγ

)
+

1

k

(
δ̃−1a∂2xγ − c̃∂2sγ + 2

b̃

ã
∂s∂xγ − 1

2

(
2∂sc̃−

2

ã
∂xb̃+

∂v δ̃a

ã

)
∂sγ +

1

ã
∂sb̃∂xγ − 1

2

∂xδ̃a

ã
2 ∂xγ − ∂sδ̃a

ã
∂vγ

)

+ k−2

 b̃2
ã
∂2sγ − 1

2

(
c̃
∂sδ̃a

ã
− 4

b̃∂sb̃

ã
+
b̃∂xδ̃a

ã
2

)
∂sγ − 1

2

b̃

ã
2 ∂sδ̃a∂xγ

− k−3

1

2

b̃
2

ã
2 ∂sδ̃a∂sγ

 .

This can be solved for ∂2xγ to obtain (recall that 1 + k−1δ̃−1a = ã
−1

)

∂2xγ = ã

[
2∂s∂vγ

− 1

k

(
−c̃∂2sγ + 2

b̃

ã
∂s∂xγ − 1

2

(
2∂sc̃−

2

ã
∂xb̃+

∂v δ̃a

ã

)
∂sγ +

1

ã
∂sb̃∂xγ − 1

2

∂xδ̃a

ã
2 ∂xγ − ∂sδ̃a

ã
∂vγ

)

− k−2

 b̃2
ã
∂2sγ − 1

2

(
c̃
∂sδ̃a

ã
− 4

b̃∂sb̃

ã
+
b̃∂xδ̃a

ã
2

)
∂sγ − 1

2

b̃

ã
2 ∂sδ̃a∂xγ

+ k−3

1

2

b̃
2

ã
2 ∂sδ̃a∂sγ

].
Now since ∂s =

1√
2
(∂τ + ∂ζ), we see that ∂2sγ = 1√

2
(∂s∂τγ + ∂s∂ζγ) ∈ X̂n−1,1. By the above equation, then,

∂2xγ ∈ X̂n−1,1 as well. (In fact, ∂2xγ has exponent 2 because of the overall factor of ã.)

To deal with ∂3sγ, we write ∂v = −
√
2∂ζ + ∂s in the wave equation and gather all terms involving ∂2sγ

together to obtain2 + 1

k
c̃− 1

k2
b̃
2

ã

 ∂2sγ = 2
√
2∂s∂ζγ + ∂2xγ

+
1

k

(
−δ̃−1a∂2xγ + 2

b̃

ã
∂s∂xγ − 1

2

(
2∂sc̃−

2

ã
∂xb̃+

∂v δ̃a

ã

)
∂sγ +

1

ã
∂sb̃∂xγ − 1

2

∂xδ̃a

ã
2 ∂xγ − ∂sδ̃a

ã
∂vγ

)

+ k−2

(
−1

2

(
c̃
∂sδ̃a

ã
− 4

b̃∂sb̃

ã
+
b̃∂xδ̃a

ã
2

)
∂sγ − 1

2

b̃

ã
2 ∂sδ̃a∂xγ

)
+ k−3

1

2

b̃
2

ã
2 ∂sδ̃a∂sγ

 . (6.3.8)

By Proposition 6.3.1 we have

2 +
1

k
c̃− 1

k2
b̃
2

ã
≥ 2− 1

3
− 4

3

(
1

3

)2

≥ 3

2
> 0,
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so dividing through and using this bound we have that ∂2sγ is also an admissible nonlinearity. Differentiating
by ζ we see that ∂ζ∂

2
sγ is also an admissible nonlinearity of degree n−2 and exponent 1; thus differentiating

by s shows that ∂3sγ is an admissible nonlinearity of degree n− 2 and exponent 1, as claimed. QED.

We shall denote the maximum of the X̂ norms of the above quantities by CBL; thus if χ̌ is any of the
quantities in the foregoing except ∂3sγ, we have

∥χ̌∥Hn−1(Aσ) ≤ CBLν
p, I1n−1[χ̌](σ) ≤ C2

BLν
2p,

where p is the appropriate exponent.
We recognise in the above proof the use of the special algebraic structure of the equations which was

described in Section 0.4 above (see item 2).

6.4. Energy inequalities
We now derive integral inequalities satisfied by the energies defined in Section 6.2. We begin by showing

how to use the divergence theorem to derive integral inequalities which will be used in the next section to
give bounds on En[γ]. We work with the metric h̃ (see (6.2.9)); in particular, we let = h̃ denote the

wave operator for h̃.
On Aσ we have the induced metric

̂̃
h =

(
1 0
0 1

)
+

1

k

 δ̃a − 1√
2
b̃

− 1√
2
b̃ c̃

2

 ,

which has determinant

|̂̃h| = 1 +
1

k
(δ̃a+

c̃

2
) +

1

2k2
(̃cδ̃a− b̃

2

).

Similarly, it can be shown that the determinant of the full metric is |h̃| = −ã. On lines s = const, v = const

we have the induced metric ã = 1+ k−1δ̃a with volume form
√
ã = 1+ k−1δ̃ℓ; thus the surface elements on

Σ0 and Σ1 will be (1+k
−1δ̃ℓ)dx dv, and the normal vectors will be ∂v and −∂v, respectively, while the surface

element on U0 will be
√
ãdx ds and the normal vector will be ∂s. We let −ta denote the (past-directed) unit

normal vector to surfaces τ = constant and note that in terms of ∂τ we have

t =
1√

1− c̃
2k

∂τ .

Now suppose that f is some function defined on the bulk. Then we define its stress-energy tensor

Q[f ]ab = ∇af∇bf − 1

2
h̃abh̃−1

cd
∇cf∇df

= ∇af∇bf − 1

2
ηabη

cd∇cf∇df − 1

2k
δ̃hab

(
ηcd +

1

k
δ̃h−1

cd
)
∇cf∇df

= Q0[f ]ab +
1

k
δQ[f ]ab,

where

Q0[f ]ab = ∇af∇bf − 1

2
ηabη

cd∇cf∇df,

δQ[f ]ab = −1

2
δ̃hab

(
ηcd +

1

k
δ̃h−1

cd
)
∇cf∇df.

The divergence theorem on Γ applied to Q[f ]ab∂
b
τ gives (here, quantities like ∂bτ , etc., denote tangent

vectors and not differential operators)∫
Aσ

Q[f ]ab∂
b
τ t

a

√
|̂̃h| dξ dζ + ∫

Σ1

Q[f ]ab∂
b
τ∂

a
v

√
ã dx dv −

∫
Σ0

Q[f ]ab∂
b
τ∂

a
v

√
ã dx dv −

∫
U0

Q[f ]ab∂
b
τ∂

a
s

√
ã dx ds

= −
∫
Γ∩{τ≤σ}

(
Q[f ]ab∂

b
τ

)
;a

√
−|h̃| dξ dζ dτ. (6.4.1)
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A standard computation gives

(
Q[f ]ab∂

b
τ

)
;a
= h̃f∂τf +Q[f ]abL∂τ

h̃ab = h̃f∂τf +Q[f ]ab∂τ h̃−1
ab
.

Now, noting that ∂τ h̃−1
ab

= k−1∂τ δ̃h−1
ab
, we have

Q[f ]ab∂τ h̃−1
ab

=
1

k

(
Q[f ]0ab +

1

k
δQ[f ]ab

)
∂τ δ̃h−1

ab
.

To compute the integrals on the boundary surfaces in (6.4.1), we note the following results:

On Aσ:

Q[f ]ab∂
b
τ t

a

√
|̂̃h| =

√
|̂̃h|(

1− c
2k

)1/2
[
(∂τf)

2 +
1

2

(
1− c̃

2k

)
h̃−1

cd
∂cf∂df

]

=

√
|̂̃h|(

1− c
2k

)1/2
{
(∂τf)

2 +
1

2

(
1− c̃

2k

)[
−(∂τf)

2 + (∂ξf)
2 + (∂ζf)

2 +
1

k
δ̃h−1

cd
∂cf∂df

]}

=

√
|̂̃h|(

1− c
2k

)1/2{1

2

[
(∂τf)

2 + (∂ξf)
2 + (∂ζf)

2
]

− c̃

4k

[
(∂τf)

2 + (∂ξf)
2 + (∂ζf)

2
]
+

1

2k

(
1− c̃

2k

)
δ̃h−1

cd
∂cf∂df

}
=

1

2

[
(∂τf)

2 + (∂ξf)
2 + (∂ζf)

2
]
+ k−1∆cd

A ∂cf∂df,

On Σ0 and Σ1:

Q[f ]ab∂
b
τ∂

a
v

√
ã =

1√
2

[
(∂vf)

2 +
1

2ã
(∂xf)

2

]
(1 + k−1δ̃ℓ)

=
1√
2

[
1

2
(∂xf)

2 + (∂vf)
2

]
+ k−1∆cd

Σ ∂cf∂df,

On U0:

Q[f ]ab∂
b
τ∂

a
s

√
ã =

[
∂τf∂ζf +

1

2
√
2

(
ηcd∂cf∂df +

1

k
δ̃h−1

cd
∂cf∂df

)]√
ã

=

[
1√
2

(
(∂sf)

2 +
1

2
(∂xf)

2

)
+

1

k

1

2
√
2
δ̃h−1

cd
∂cf∂df

]√
ã

=
1√
2

[
(∂sf)

2 +
1

2
(∂xf)

2

]
+ k−1∆cd

U ∂cf∂df.

We note that δ̃h−1
cd
∂cf∂df only involves derivatives (∂sf)

2, ∂s∂xf , and (∂xf)
2. In deriving the formula on

Σ0 and Σ1 we use b̃ = c̃ = 0 on those surfaces (these hold on Σ0 by the initial conditions, and on Σ1 by the
cutoff).

Substituting all of this in to equation (6.4.1), and noting that ã = 1 on Σ1 by the cutoff, we have thus∫
Aσ

1

2

[
(∂τf)

2 + (∂ξf)
2 + (∂ζf)

2
]
+ k−1∆cd

A ∂cf∂df dξ dζ

+

∫
Σ1

1√
2

[
(∂xf)

2 + (∂vf)
2
]
+ k−1∆cd

Σ ∂cf∂df dv dx

−
∫
Σ0

1√
2

[
(∂xf)

2 + (∂vf)
2
]
+ k−1∆cd

Σ ∂cf∂df dv dx
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−
∫
U0

1√
2

[
(∂sf)

2 +
1

2
(∂xf)

2

]
+ k−1∆cd

U ∂cf∂df ds dx

= −
∫
Γ∩{τ≤σ}

{
f∂τf +

1

k

(
Q[f ]0ab +

1

k
δQ[f ]ab

)
∂τ δ̃h−1

ab

}√
ã dξ dζ dτ. (6.4.2)

Note that the integral over Aσ is just ϵ[f ](σ) as defined in Section 6.2 above. Note also that the second
integral on the left-hand side above is a positive contribution (since ∆cd

Σ = 0 on Σ1) and can be dropped.
Pulling everything together, we have the inequality∫

Aσ

1

2

[
(∂τf)

2 + (∂ξf)
2 + (∂ζf)

2
]
+ k−1∆cd

A ∂cf∂df dξ dζ

≤
∫
Σ0

1√
2

[
(∂xf)

2 + (∂vf)
2
]
+ k−1∆cd

Σ ∂cf∂df dv dx+

∫
U0

1√
2

[
(∂sf)

2 +
1

2
(∂xf)

2

]
+ k−1∆cd

U ∂cf∂df ds dx

−
∫
Γ∩{τ≤σ}

{
f∂τf +

1

k

(
Q[f ]0ab +

1

k
δQ[f ]ab

)
∂τ δ̃h−1

ab

}√
ã dξ dζ dτ,

(6.4.3)

from which we obtain finally, noting that on the bulk
√
ã ≤

√
a = |1 + k−1δℓ| ≤ 4/3,

ϵ[f ](σ) ≤ 4

3

∫
Γ∩{τ≤σ}

{
| f∂τf |+

∣∣∣∣1k
(
Q[f ]0ab +

1

k
δQ[f ]ab

)
∂τ δ̃h−1

ab
∣∣∣∣
}
dξ dζ dτ + IΣ0

[f ] + IU0
[f ]. (6.4.4)

The second term in the bulk integral can be bounded as follows:

6.4.1. LEMMA. If Ω satisfies (6.2.27) and (6.2.29), then on Γ∣∣∣∣(Q[f ]0ab +
1

k
δQ[f ]ab

)
∂τ δ̃h−1

ab
∣∣∣∣ ≤ 1586C0ν ·

Cχ

2T ′
√
2

[
(∂τf)

2 + (∂ξf)
2 + (∂ζf)

2
]
.

Proof. Recall from Corollary 6.3.1 that

∥∥∥∥δ̃h−1
cd
∥∥∥∥
HS

≤ 47C0ν. Further, if ω ∈ Ω, and ω̃ is the

corresponding cutoff quantity, then we have

|ω̃| ≤ |ω|, |∂τ ω̃| ≤
Cχ

2T ′
√
2
|∂τω|.

It thus suffices to work out our bounds without the cutoff, and multiply the whole result by Cχ/(2T
′√2).

Since the transformation from the {∂τ , ∂ξ, ∂ζ} basis to the {∂s, ∂x, ∂v} basis is constant, we may work in this
latter basis. Now in this basis we have

δh−1
ij
=

 k−1 b
2

a − c b
a 0

b
a δ−1a 0
0 0 0

 ,

so

∂τδh−1
ij
=

 k−1
[
2 b∂τ b

a − b
2
∂τa
a2

]
− ∂τ c

∂τ b
a − b

a2 ∂τa 0

∂τ b
a − b

a2 ∂τa ∂τδ−1a 0
0 0 0

 .

Now we note the following bounds:

∂τa =
2

k
(1 + k−1δℓ)∂τδℓ, |∂τa| ≤ k−1 32

3
C0ν ≤ 1

δ−1a = k
(
a−1 − 1

)
, ∂τδ−1a = −k∂τa

a2
, |∂τδ−1a| ≤ 16

9

32

3
C0ν ≤ 20C0ν,

|∂τ b|
a

≤ 16

3
C0ν,

∣∣∣∣ ba2 ∂τa
∣∣∣∣ ≤ ∣∣∣∣ ba2

∣∣∣∣ ≤ 64

9
C0ν,

∣∣∣∣b∂τ ba
∣∣∣∣ ≤ 64

3
C0ν,

∣∣∣∣∣b
2
∂τa

a2

∣∣∣∣∣ ≤ 256

9
C0ν,
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from which we may bound the Hilbert-Schmidt norm of ∂τδh−1:

∥∂τδh−1∥HS ≤
[(

128

3
C0ν +

256

9
C0ν

)
k−1 + 4C0ν + 2

(
16

3
C0ν +

64

9
C0ν

)
+ 20C0ν

]
≤
[
224

9
C0ν + 24C0ν + 73C0νk

−1

]
≤ 122C0ν, (6.4.5)

where we have used k ≥ 1. Now since

δhij =

 0 0 0
0 a b
0 b c

 ,

we have clearly ∥δh∥HS ≤ 16C0ν. Now we see by Lemma 4.2.2 that

∥δhabδh−1
ab
∥ ≤ 16C0ν · 122C0ν. (6.4.6)

Further, ∥∥∥η + k−1δh−1
∥∥∥
HS

≤ 3 + k−1 · 122C0ν ≤ 14. (6.4.7)

Using Lemma 4.2.2 again, and combining equations (6.4.5 – 6.4.7), we see that∣∣∣δQ[f ]ab∂τδh−1
ab
∣∣∣ ≤ 1

2
· 16C0ν · 122C0ν · 14 ·

[
(∂τf)

2 + (∂ξf)
2 + (∂ζf)

2
]
· Cχ

2T ′
√
2
,

and that∥∥Q[f ]0
∥∥
HS

≤
[
(∂τf)

2 + (∂ξf)
2 + (∂ζf)

2
]
·
(
1 +

3

2

)
· Cχ

2T ′
√
2
=

5

2

[
(∂τf)

2 + (∂ξf)
2 + (∂ζf)

2
]
· Cχ

2T ′
√
2
,

so ∣∣∣Q[f ]0ab∂τδh
−1

ab
∣∣∣ ≤ 122C0ν ·

5

2
·
[
(∂τf)

2 + (∂ξf)
2 + (∂ζf)

2
]
· Cχ

2T ′
√
2
,

and pulling everything together, we have finally∣∣∣(Q[f ]0ab + k−1δQ[f ]ab
)
∂τδh−1

ab
∣∣∣ ≤ 122C0ν

(
5

2
+ 10

)[
(∂τf)

2 + (∂ξf)
2 + (∂ζf)

2
]
· Cχ

2T ′
√
2

≤ 1586C0ν ·
Cχ

2T ′
√
2

[
(∂τf)

2 + (∂ξf)
2 + (∂ζf)

2
]
,

as claimed. QED.

The particular number here is obviously not particularly important; the point is that it is possible to find a
fixed number.

Combining this with Proposition 6.3.2 and Corollary 6.3.2, we have finally the following result.

6.4.2. LEMMA. Let f be any C∞ function on Γ∩ {τ ≤ σ}, σ ∈ [0, ς]. Suppose that Ω satisfies the conditions
in (6.2.27) and (6.2.29), and that k satisfies (6.3.1). Then we have

ϵ[f ](σ) ≤
∫ σ

0

{
4

3

∫
Aτ

| f∂τf | dξ dζ + k−1 · 6344C0ν
Cχ

2T ′
√
2
ϵ[f ](τ)

}
dτ + ∥f∥2H1

◦(Σ0)
+ ∥f∥2H1

◦(U0)
.

Proof. This follows from equation (6.4.4) and Lemma 6.4.1 by noting that Proposition 6.3.2 shows that∫
Aσ

(∂τf)
2 + (∂ξf)

2 + (∂ζf)
2 dξ dζ ≤ 3ϵ[f ](σ).

QED.



6.4] Continuation of the bootstrap 89

We note in passing that for f = ∂Iγ for some multiindex I with |I| ≤ n, by Corollary 6.3.2 the initial
data norms IΣ0 [f ] and IU0 [f ] will have bounds independent of k since the supports of ∂Iγ|Σ0 and ∂Iγ|U0

are compact and independent of k and the function γ itself is independent of k on Σ0 and U0.
For the metric components δℓ, b, c, the role of the above result is played by the following much simpler

one. Here and below we define υ = υ(σ) = σ − T ′√2.

6.4.3. LEMMA. Let f be any nonnegative C∞ function on Γ. Then for any σ ∈ [0, ς] we have∫
Aσ

f dξ dζ ≤
√
2

∫
Σ′

σ

f |s=0 dx dv +
√
2

∫ σ

υ

dυ

∫
Aυ

|∂sf | dξ dζ.

Proof. Consider the region Dσ in the (τ, ζ) plane which is an equilateral right triangle with hypotenuse
Aσ ∩ {ξ = 0}, recall the sets (equation (6.2.4), see Figure 4.6.2.1)

Γσ = Γ ∩ {(τ, ξ, ζ) ∈ Γ | (τ, ζ) ∈ Dσ},
Σ′

σ = {(υ, ξ,−υ) ∈ Σ0 | υ ∈ [υ, σ]},
Bυ = Γσ ∩Aυ,

where υ ∈ [υ, σ], and set

F (σ) =

∫
Aσ

f dξ dζ.

Σ′
σ is one of the boundaries of Γσ. The other two are the sets τ = σ and v = υ

√
2; noting that τ = σ is

equivalent to s = σ
√
2− v, we may write∫

Γσ

∂sf dτ dξ dζ =

∫ +∞

−∞
dx

∫ σ
√
2

υ
√
2

dv

∫ σ
√
2−v

0

ds∂sf

=

∫ +∞

−∞
dx

∫ σ
√
2

υ
√
2

dv
[
f |s=σ

√
2−v − f |s=0

]
=

1√
2
F (σ)−

∫
Σ′

σ

f |s=0 dx dv;

since for any nonnegative function g we have moreover∫
Γσ

g dτ dξ dζ =

∫ σ

υ

dτ

∫
Bυ

g dξ dζ ≤
∫ σ

υ

dυ

∫
Aυ

g dξ dζ,

this gives the estimate

F (σ) ≤
√
2

∫
Σ′

σ

f |s=0 dx dv +
√
2

∫ σ

υ

dυ

∫
Aυ

|∂sf | dξ dζ,

as desired. QED.

Note that when f ∈ Ω, the integral along Σ′
σ is entirely determined by the initial data.

Finally, we have the following lemma.

6.4.4. LEMMA.. Let f be any C∞ function on Γ, and let σ ∈ [0, ς]. Then

|f |2L2(Aσ)
≤ 2T ′

∫ σ

υ

∫
Aσ′

|∂sf |2 dξ dζ dσ′ +
3√
2

∫
Σ′

σ

|f |s=0|2 dx dv.

Proof. This follows by a straightforward calculation:

|f |2L2(Aσ)
=

∫
Aσ

|f(σ, ξ, ζ)|2 dξ dζ =

∫
Aσ

∣∣∣∣∣
∫ 1√

2
(σ+ζ)

0

∂sf ds+ f |s=0

∣∣∣∣∣
2

dξ dζ

≤
∫
Aσ

3

2
√
2
(σ + ζ)

∫ 1√
2
(σ+ζ)

0

|∂sf |2 ds dξ dζ +
3√
2

∫
Σ′

σ

|f |s=0|2 dx dv

≤ 2T ′
∫
Aσ

∫ 1√
2
(σ+ζ)

0

|∂sf |2 ds dξ dζ +
3√
2

∫
Σ′

σ

|f |s=0|2 dx dv

≤ 2T ′
∫ σ

υ

∫
Aσ′

|∂sf |2 dξ dζ dσ′ +
3√
2

∫
Σ′

σ

|f |s=0|2 dx dv,
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where we note that by definition Aσ′ = 0 for σ′ < 0. QED.

6.5. Continuation of the bootstrap
We now show how our results from Sections 6.3 and 6.4 can be applied to derive bounds on En[γ] and

En[h]. We have the following lemmata. Recall that the space X was defined in Definition 6.3.1 above.

6.5.1. LEMMA. Let (a, b, c, γ) ∈ X, and suppose that the bootstrap assumption (6.2.27) and the bounds
(6.2.28) hold on an interval [0, ς]. Then there is a constant C1 and a positive integer N such that for all
σ ∈ [0, ς] we have

En[γ](σ) ≤ C1T
′ −Nν3k−1σ + 6 [ιΣ0,n[γ] + ιU0,n[γ]] .

Proof. First, recall the following inequality from Lemma 6.4.2:

ϵ[f ](σ) ≤
∫ σ

0

{
4

3

∫
Aτ

| f∂τf | dξ dζ + k−1 · 6344C0ν
Cχ

2T ′
√
2
ϵ[f ](τ)

}
dτ + ∥f∥H1

◦(Σ0) + ∥f∥H1
◦(U0). (6.5.1)

Now let f = ∂I∂ℓsγ, where |I| ≤ n− 1. By Lemma 6.3.4, ∂ℓsγ, ∂
ℓ
s∂τγ ∈ X̂n−1, so by Proposition 6.3.2(a) we

have for σ ∈ [0, ς]

∥∂τf∥L2(Aσ) = ∥∂I∂ℓs∂τγ∥L2(Aσ) ≤ ∥∂ℓs∂τγ∥Hn−1(Aσ) ≤ 3En[γ](σ).

Thus, using the bootstrap (6.2.27), we obtain from (6.5.1) in this case

ϵ[∂I∂ℓsγ](σ) ≤
∫ σ

0

4

3
∥ f∥L2(Aυ)

∥∂τf∥L2(Aυ)
+ 6344C0k

−1ν
Cχ

2T ′
√
2
ϵ[∂I∂ℓsγ](υ) dυ

+ ∥∂I∂ℓsγ∥H1
◦(Σ0) + ∥∂I∂ℓsγ∥H1

◦(U0)

≤
∫ σ

0

4ν
∥∥ ∂I∂ℓsγ

∥∥
L2(Aυ)

+ 6344C0k
−1ν

Cχ

2T ′
√
2
ϵ[∂I∂ℓsγ](υ) dυ

+ ∥∂I∂ℓsγ∥H1
◦(Σ0) + ∥∂I∂ℓsγ∥H1

◦(U0) (6.5.2).

The last two terms can be bounded in terms of the initial data, and the ϵ[∂I∂ℓsγ](υ) in the integral can
be bounded by the bootstrap; thus we only need to bound

∥∥ ∂I∂ℓsγ
∥∥
L2(Aυ)

. Since γ = 0, we may write

∂I∂ℓsγ = [ , ∂I∂ℓs]γ. The wave operator is as given in (6.2.10):

=
(
−2∂s∂v + ∂2x

)
+

1

k

(
−δ̃−1a∂2x − c̃∂2s + 2

b̃

ã
∂s∂x − 1

2

(
2∂sc̃−

2

ã
∂xb̃+

∂v δ̃a

ã

)
∂s +

1

ã
∂sb̃∂x − 1

2

∂xδ̃a

ã
2 ∂x − ∂sδ̃a

ã
∂v

)

+ k−2

 b̃2
ã
∂2s − 1

2

(
c̃
∂sδ̃a

ã
− 4

b̃∂sb̃

ã
+
b̃∂xδ̃a

ã
2

)
∂s −

1

2

b̃

ã
2 ∂sδ̃a∂x

− k−3

1

2

b̃
2

ã
2 ∂sδ̃a∂s

 .

Note that the leading-order terms −2∂s∂v + ∂2x have constant coefficients, and will therefore drop out of the
commutator [ , ∂I∂ℓs]. The remaining terms do not contain the derivative ∂s∂vb, but only the derivatives in
the set

D = {∂2s , ∂s∂x, ∂2x, ∂s, ∂x, ∂v}.

Recalling that
1

ã
= 1 + k−1δ̃−1a,

we see that for every ∂ ∈ D there is a polynomial P∂ in the quantities in Ω̃∪∂sΩ̃0∪{δ̃−1a}, with no constant
term and coefficients which are constant multiples of powers of 1/k, and such that

−
[
−2∂s∂v + ∂2x

]
=

1

k

∑
∂∈D

P∂∂.
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By Proposition 6.3.3, P∂ will be an admissible nonlinearity of order n− 1, as will its first s derivative. Now
by the foregoing

[ , ∂I∂ℓs] =
1

k

∑
∂∈D

[P∂∂, ∂
I∂ℓs]. (6.5.3)

Further,

[P∂∂, ∂
I∂ℓs]γ =

∑
|I1|+ℓ1>0

I1+I2=I, ℓ1+ℓ2=ℓ

CI1,I2,ℓ1,ℓ2∂
I1∂ℓ1s P∂∂

I2∂ℓ2s ∂γ,

where the quantities CI1,I2,ℓ1,ℓ2 are combinatorial constants. We may split the terms in the sum up into two

sets according as ℓ1 = 0 or ℓ1 = 1. If ℓ1 = 0, then |I1| > 0, so we may write ∂I1 = ∂I
′
1∂i for some index

i ∈ {1, 2}. Furthermore, |I2| ≤ n− 2. If ℓ2 = 1 (as it will if ℓ = 1), then we see that

∂ℓ2s ∂γ ∈ {∂3sγ, ∂2s∂xγ, ∂s∂2xγ, ∂2sγ, ∂s∂xγ, ∂s∂vγ} ⊂ X̂n−2;

since P∂ ∈ X̂n−1, we must have ∂iP∂ ∈ X̂n−2, and since |I1 + I2| ≤ n− 2, we have by Lemma 6.3.2 and the

definition of X̂n−2 that
∥∂I1∂ℓ1s P∂∂

I2∂ℓ2s ∂γ∥L2(Aυ) ≤ C1ν
2

for some constant C1 which is independent of k.
Now suppose that ℓ1 = 1. In this case we have ℓ2 = 0, so that

∂γ ∈ {∂2sγ, ∂s∂xγ, ∂2xγ, ∂sγ, ∂xγ, ∂vγ} ⊂ X̂n−1

by Lemma 6.3.4. Since also P∂ ∈ X̂n−1, we have again by Lemma 6.3.2 that

∥∂I1∂ℓ1s P∂∂
I2∂ℓ2s ∂γ∥L2(Aυ) ≤ C2ν

2

for some constant C2 which is independent of k. Pulling everything together, then, we have that there is a
constant C ′ such that for all I with |I| ≤ n− 1, all ℓ ∈ {0, 1}, and all ∂ ∈ D, we have∥∥[P∂∂, ∂

I∂ℓs]γ
∥∥
L2(Aυ)

≤ C ′ν2,

whence by (6.5.3) we have that there is a constant C ′′ such that for all such I, ℓ, and ∂,∥∥[ , ∂I∂ℓs]γ
∥∥
L2(Aυ)

≤ k−1C ′′ν2,

whence finally there is a constant Cγ such that

∑
|I|≤n−1

1∑
ℓ=0

∥∥ ∂I∂ℓsγ
∥∥
L2(Aυ)

≤ k−1Cγν
2.

Noting that by the bootstrap (6.2.27)

∑
|I|≤n−1

1∑
ℓ=0

ϵ[∂I∂ℓsγ](σ) = En[γ](σ) ≤ ν2,

equation (6.5.2) and Corollary 6.3.2 then gives

En[γ](σ) =
∑

|I|≤n−1

1∑
ℓ=0

ϵ[∂I∂ℓsγ](σ)

≤ 4ν

∫ σ

0

∑
|I|≤n−1

1∑
ℓ=0

∥∥ ∂I∂ℓsγ
∥∥
L2(Aυ)

dυ + 6344C0k
−1σν2

Cχ

2T ′
√
2
+ 6 [ιΣ0,n[γ] + ιU0,n[γ]] ;
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thus

En[γ](σ) ≤ 4ν3k−1σCγ + 6344C0k
−1σν3

Cχ

2T ′
√
2
+ 6 [ιΣ0,n[γ] + ιU0,n[γ]] .

Now the constant Cγ may depend on T ′, but it can at any event be bounded by a multiple of T ′ −N for some
N > 0. There is thus a constant C1 and a positive integer N such that

En[γ](σ) ≤ C1T
′ −Nν3k−1σ + 6 [ιΣ0,n[γ] + ιU0,n[γ]] ,

as desired. QED.

We have a similar result for the energies En,0[h](σ) and En,1[h](σ). Again, recall that the set X was
defined in Definition 6.3.1 above.

6.5.2. LEMMA. Let (a′, b
′
, c′, γ′, a, b, c, γ) ∈ X. Then for σ ∈ [0, ς] we have

En,1[h](σ) ≤ ιn,1[h](σ) + 2
√
2

∫ σ

υ(σ)

CBLν
3 dυ = 4CBLν

3T ′ + ιn,1[h](σ),

En,0[h](σ) ≤ 8
√
2T ′ 2CBLν

2 +
3

2
ιn,0[h](σ) + ιn,1[h](σ).

Proof. These are both very straightforward. The inequality in Lemma 6.4.3 allows us to write (recalling
that υ(σ) = σ − T ′√2)

En,1[h](σ) =
∑

|I|≤n−1

∑
ω∈Ω

∥∥∂I∂sω∥∥2L2(Aσ)
=

∑
|I|≤n−1

∑
ω∈Ω

∫
Aσ

∣∣∂I∂sω∣∣2 dξ dζ
≤

√
2
∑

|I|≤n−1

∑
ω∈Ω

[∫
Σ′

σ

∣∣∂I∂sω∣∣2 dx dv + ∫ σ

υ(σ)

∫
Aυ

2
∣∣∂I∂sω∣∣ ∣∣∂I∂2sω∣∣ dξ dζ dυ

]

≤ ιn,1[h](σ) + 2
√
2
∑

|I|≤n−1

∑
ω∈Ω

∫ σ

υ(σ)

∥∥∂I∂sω∥∥L2(Aυ)

∥∥∂I∂2sω∥∥L2(Aυ)
dυ

≤ ιn,1[h](σ) + 2
√
2

∫ σ

υ(σ)

En,1[h](υ)
1/2
∥∥∂2sω∥∥Hn−1(Aυ)

dυ

≤ ιn,1[h](σ) + 2
√
2

∫ σ

υ(σ)

CBLν
3 dυ = 4CBLν

3T ′ + ιn,1[h](σ),

which is the first inequality; and this together with Lemma 6.4.4 allows us to write

En,0[h](σ) =
∑

|I|≤n−1

∑
ω∈Ω

∥∥∂Iω∥∥2
L2(Aσ)

≤
∑

|I|≤n−1

∑
ω∈Ω

2T ′
∫ σ

υ(σ)

∫
Aυ

∣∣∂I∂sω∣∣2 dξ dζ dυ +
3√
2

∫
Σ′

σ

∣∣∂Iω∣∣2 dx dv
≤ 2T ′

∫ σ

υ(σ)

En,1[h](υ) dυ +
3

2
ιn,0[h](σ) ≤ 8

√
2T ′ 2CBLν

3 +
3

2
ιn,0[h](σ) + ιn,1[h](σ),

the second inequality. QED.

We now have the following theorem.

6.5.1. THEOREM. Let T, T ′ > 0. Let p ∈ (0, 1), assume that ν ∈ (0, 1) satisfies

ν ≤ min

{
1

128T ′(1 + 2
√
2T ′)CBL

,
1− p

C1T
T ′N

}
,

where C1 and N are as in in Lemma 6.5.1, and assume that the initial data satisfy

2 sup
σ∈[0,ς]

ιn[h] ≤
p

8
ν2, 6 [ιΣ0,n[γ] + ιU0,n[γ]] ≤ pν2.
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If (a, b, c, γ) ∈ X, then for σ ∈ [0, kT ] we have

En[h](σ) ≤ ν2, En[γ](σ) ≤ ν2. (6.5.4)

Proof. Set
ϵ = inf{σ |En[h](σ) ≥ ν2, orEn[γ](σ) ≥ ν2}.

Then (6.5.4) must hold for σ ∈ [0, ϵ], and moreover we must have En[h](ϵ) = ν2 or En[γ](ϵ) = ν2. In the
first case, Lemma 6.5.2 would give

ν2 = En[h](ϵ) ≤ 4CBLT
′ν3(1 + 2

√
2T ′) + 2ιn[h](σ) ≤ ν2

[
4CBLT

′(1 + 2T ′√2)ν +
p

8

]
≤ ν2

[
1

8
+

1

8

]
=

1

4
ν2,

a contradiction. Thus we must have En[γ](ϵ) = ν2; then Lemma 6.5.1 gives

ν2 ≤ C1T
′ −Nν3k−1ϵ+ pν2 ≤ ν2

[
p+ k−1ϵ

1− p

T

]
,

whence we obtain ϵ ≥ kT , so that equation (6.5.4) must indeed hold on [0, kT ], as desired. QED.

6.6. Existence
In this penultimate section we shall show to apply the foregoing results to prove existence of solutions to

the system (6.2.10 – 6.2.13) by showing convergence of an iterative approximation in Hn−1. Suppose given
some suitable (i.e., satisfying the conditions in Section 5.1) set of initial data, which we shall denote δℓ0,
∂sδℓ0, b0 = 0, ∂sb0, c0 = 0, ∂sc0 = 0, and γ0 (by abuse of notation, we let γ0 now indicate also the initial
data on U0), and which we assume to satisfy the bounds (6.2.26), (6.2.28). The initial data shall be fixed
throughout the rest of the argument. The only real difficulty is in starting the iteration. We begin with the

metric components. We define δℓ1, b1, c1 as follows. First we define δℓ
′
1, b

′
1, c

′
1 on Σ0 by setting

∂ℓsδℓ
′
1 = ∂ℓsδℓ0, ∂ℓsb

′
1 = ∂ℓsb0, ∂ℓsc

′
1 = ∂ℓsc0, ℓ ∈ {0, 1};

we then extend to Γ0 by requiring ∂sδℓ
′
1, ∂sb

′
1, ∂sc

′
1 to be constant in s on Γ0, and finally define

δℓ1 = χ(s)δℓ
′
1, b1 = χ(s)b

′
1, c1 = χ(s)c′1.

By the definition of Cχ (see (6.2.7), (6.2.8)), as well as the conditions (6.2.28), (δℓ1, b1, c1) will satisfy the
bootstrap condition (see (6.2.27))

En[h](σ) ≤ ν2

for σ ∈ [0, ς]. Note that actually this holds with the L2 norms in En replaced by L∞ norms.
Now let γ1 be the solution to (6.2.10) with δℓ = δℓ1, b = b1, and c = c1, with γ1 = γ0 on Σ0 ∪U0. Then

we have the following result.

6.6.1. PROPOSITION. There is a constant C ′
1 and a positive integer N ′

1, independent of T
′, T , ν, and k, such

that if ν ≤ T ′N log 2
C′

1T
, then for σ ∈ [0, kT ] the function γ1 satisfies the bootstrap condition

En[γ1](σ) ≤ ν2.

Proof. This is very similar to, but much simpler than, the proof of Lemma 6.5.1. First, summing
the inequality in Lemma 6.4.2 over all expressions of the form ∂I∂ℓsγ1, |I| ≤ n − 1, ℓ = 0, 1, and applying
Corollary 6.3.2, we may write

En[γ](σ) ≤
∑

|I|≤n−1
ℓ=0,1

∫ σ

0

{
4

3

∥∥ ∂I∂ℓsγ1
∥∥
L2(Aυ)

∥∥∂τ∂I∂ℓsγ1∥∥L2(Aυ)
+ k−1 · 6344C0ν

Cχ

2T ′
√
2
ϵ[∂I∂ℓsγ1](υ)

}
dυ

+ 6 [ιΣ0,n[γ] + ιU0,n[γ]] ,
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where here = h1 . Now as in the proof of Lemma 6.5.1 we may write

∂I∂ℓsγ1 = [ , ∂I∂ℓs]γ1 =
1

k

∑
∂

[P∂∂, ∂
I∂ℓs]γ1, (6.6.1)

where P∂ , etc., are as there. Now in the present case, all derivatives ∂I∂ℓsP∂ are bounded in L∞ by ν2, and
the only question is how to bound the derivatives of γ1. This may be dealt with exactly as there: briefly,
any derivative of γ1 appearing in the sum in (6.6.1) will be of the form

∂J∂ℓsγ1,

where |J | ≤ n, ℓ ≤ 3, and |J |+ ℓ ≤ n+ 1. If |J | = n, then ℓ ≤ 1, and such a derivative can be bounded by
En[γ]. If ℓ = 2, then |J | ≤ n − 1, so writing ∂s = 1√

2
(∂τ + ∂ζ), we see again that such a derivative can be

bounded by En[γ], as before. Finally, if ℓ = 3, then solving the wave equation γ1 = 0 for ∂2sγ1 as in (6.3.8),
differentiating with respect to s, and using the L∞ bounds on the metric components, we may reduce to the
case ℓ = 2. Thus there must be a constant C and a positive integer N ′ such that

En[γ](σ) ≤
∫ σ

0

1

k
νC(n+ 2)CχT

′ −N ′
En[γ](υ) +

1

k
ν · 6344C0

Cχ

2T ′
√
2
En[γ](υ) dυ + 6 [ιΣ0,n[γ] + ιU0,n[γ]] ,

or combining terms, that there must be a constant C ′
1 such that

En[γ](σ) ≤ CνT ′ −N ′ 1

k

∫ σ

0

En[γ](υ) dυ + 6 [ιΣ0,n[γ] + ιU0,n[γ]] ,

from which a routine application of Grönwall’s Lemma (see, e.g., [2], Theorem 1.1) and the bound (6.2.26)
gives the desired result. QED.

We now proceed by induction. Assume that ν satisfies the conditions in Proposition 6.6.1 (for say
p = 1/2) and Theorem 6.5.1. Suppose that for some m ≥ 1 we have constructed δℓm, bm, cm, γm, such
that γm satisfies (6.2.10) with δℓ = δℓm, b = bm, c = cm, and such that δℓm, bm, cm, γm satisfy the
bootstrap assumptions (6.2.27) on the interval [0, kT ], where T is as in Proposition 6.6.1. Then we construct
δℓm+1, bm+1, cm+1 by solving the Riccati equations (6.2.11 – 6.2.13) with the given initial data and γ = γm,
and γm+1 by solving the wave equation (6.2.10) with the given initial data and δℓ = δℓm+1, b = bm+1,

c = cm+1. Then by Theorem 6.5.1, δℓm+1, bm+1, cm+1, γm+1 will also satisfy the bootstrap assumptions
(6.2.27) on the interval [0, kT ].

We claim that, after potentially shrinking T and T ′ slightly, this sequence converges in Hn−1. This
follows from a very standard argument using Lipschitz estimates and the Grönwall inequality. Specifically,
we have the following theorem.

6.6.1. THEOREM. Let T > 0, T ′ ≥ 1. Then there exist constants C1, C2 > 0 and a positive integer N ,
independent of T and T ′, such that the following holds. Let k ≥ C1,

ν ≤ C2 min{T ′ −N ,
T ′N

T
}, (6.6.2)

and suppose that the initial data satisfy (6.2.26), (6.2.28). Then there is a unique solution to (6.2.10 –
6.2.13) on the set

Γ = {(s, x, v) ∈ R3 | s ∈ [0, T ′], v ∈ [0, kT ], τ ≤ kT/
√
2},

and for σ ∈ [0, kT ] the bounds

En[h](σ) ≤ ν2

En[γ](σ) ≤ ν2

hold.
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Proof. By choosing C2 appropriately we may assume that (6.6.2) implies the bounds on ν in Proposition
6.6.1 and Theorem 6.5.1. Let m > 1, and consider two consecutive elements of the above approximation
sequence, (δℓm, bm, cm, γm) and (δℓm+1, bm+1, cm+1, γm+1). Note that since m > 1 both of these sequence
elements will be in X. Let

D = {∂2s , ∂s∂x, ∂2x, ∂s, ∂x, ∂v}

and Pm
∂ , ∂ ∈ D be as in the proof of Lemma 6.5.1, where Pm

∂ is constructed with the metric components
δℓm, bm, and cm. Let also m = h̃m

, and let En,m[γ] denote the energy En constructed using δℓm, bm,
and cm. Then

m+1(γm+1 − γm) =
1

k

∑
∂∈D

(
Pm+1
∂ − Pm

∂

)
∂γm.

We proceed as in the proof of Proposition 6.6.1. Since we now have, for I a multiindex and ℓ ∈ {0, 1},

m+1∂
I∂ℓs(γm+1 − γm) =

[
m+1, ∂

I∂ℓs
]
(γm+1 − γm) +

1

k
∂I∂ℓs

∑
∂∈D

(
Pm+1
∂ − Pm

∂

)
∂γm

=
1

k

[∑
∂∈D

(
Pm+1
∂ − Pm

∂

)
∂, ∂I∂ℓs

]
(γm+1 − γm) +

1

k
∂I∂ℓs

∑
∂∈D

(
Pm+1
∂ − Pm

∂

)
∂γm,

and since γm+1 = γm on Σ0 ∪ U0, we have

En−1,m+1[γm+1 − γm](σ) ≤
∑

|I|≤n−2
ℓ=0,1

∫ σ

0

4
1

k

∥∥∥∥∥
[∑
∂∈D

(
Pm+1
∂ − Pm

∂

)
∂, ∂I∂ℓs

]
(γm+1 − γm)

∥∥∥∥∥
L2(Aυ)

·
∥∥∂τ∂I∂ℓs(γm+1 − γm)

∥∥
L2(Aυ)

+ 6344C0ν
Cχ

2T ′
√
2
k−1ϵ[∂I∂ℓs(γm+1 − γm)] dυ

+ 4
1

k

∫ σ

0

∑
|I|≤n−2
ℓ=0,1

∑
∂∈D

∥∥∂I∂ℓs [(Pm+1
∂ − Pm

∂

)
∂γm

]∥∥
L2(Aσ)

·
∥∥∂τ∂I∂ℓs(γm+1 − γm)

∥∥
L2(Aυ)

dυ.

Since in this case we have |I| ≤ n − 2, applying Lemma 6.3.2 and the bounds (6.2.27), and taking the
supremum over σ in [0, kT ], we see that there are constants C1 and C2, and a positive integer N , such that

∥En−1,m+1[γm+1 − γm]∥L∞([0,kT ]) ≤ C1T
′ −NνT∥En−1,m+1[γm+1 − γm](υ)∥L∞([0,kT ])

+ C2νT
′ −NT∥En−1[hm+1 − hm + η]∥1/2L∞([0,kT ])∥En−1,m+1[γm+1 − γm]∥1/2L∞([0,kT ])

(here En−1[hm+1 − hm + η] gives simply the norms of the differences δℓm+1 − δℓm, bm+1 − bm, cm+1 − cm);

cancelling a factor of ∥En−1,m+1[γm+1 − γm]∥1/2L∞([0,kT ]) then allows us to conclude that there is a constant

C such that for

ν < C
T ′N

T

we will have

En−1,m+1[γm+1 − γm](σ) ≤ 1

4
∥En−1[hm+1 − hm + η]∥L∞([0,kT ])

for σ ∈ [0, kT ].
We may do something similar to estimate the metric coefficients. Let us define

Ωm = (δℓm, bm, cm, ∂xδℓm, ∂vδℓm, ∂xbm), Γm = (∂sγm, ∂xγm, ∂vγm).
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Then there are functions F and G, G quadratic, which themselves do not depend on m, such that the
differentiated Riccati equations (6.2.11 – 6.2.13) can be written as (assuming ι ≥ 1/2, as usual)

∂2sΩm =
1

k
F (Ωm,Γm−1) +G(Γm−1).

Since each component of Ωm and Γm is bounded in L∞ by ν, we may apply Lemma 4.2.3 and Corollary
6.3.4 to see that there are constants C ′

1 and C ′
2 and a positive integer N ′ such that

∥∂2s
(
Ωm+1 − Ωm

)
∥Hn−2(Aσ) ≤ C ′

1ν
1

k
En−1[hm+1 − hm + η](σ)1/2 + C ′

2νT
′ −N ′

En−1,m[γm − γm−1](σ)
1/2,

where we use an L1 norm on vectors like Ωm, and we have used the wave equation to solve for ∂2xγm and

∂2xγm−1 as in the proof of Lemma 6.3.4 (this accounts for the presence of the T ′ −N ′
). Applying Lemma

6.4.4 in the same way we did in the proof of Lemma 6.5.2, we obtain from this

En−1,1[hm+1 − hm + η](σ)

=
∑

|I|≤n−2

∑
ω∈Ω

∥∥∂I∂s(ωm+1 − ωm)
∥∥2
L2(Aσ)

=
∑

|I|≤n−2

∑
ω≤Ω

∫
Aσ

∣∣∂I∂s(ωm+1 − ωm)
∣∣2 dξ dζ

≤
√
2
∑

|I|≤n−2

∑
ω∈Ω

[∫
Σ′

σ

∣∣∂I∂s(ωm+1 − ωm)
∣∣2 dx dv

+

∫ σ

υ(σ)

∫
Aυ

2
∣∣∂I∂s(ωm+1 − ωm)

∣∣ ∣∣∂I∂2s (ωm+1 − ωm)
∣∣ dξ dζ dυ]

≤ 2
√
2
∑

|I|≤n−2

∑
ω∈Ω

∫ σ

υ(σ)

∥∥∂I∂s(ωm+1 − ωm)
∥∥
L2(Aυ)

∥∥∂I∂2s (ωm+1 − ωm)
∥∥
L2(Aυ)

dυ

≤ 2
√
2

∫ σ

υ(σ)

En−1,1[hm+1 − hm + η](υ)1/2
∥∥∂2s (Ωm+1 − Ωm)

∥∥
Hn−2(Aυ)

dυ

≤ 2
√
2

∫ σ

υ(σ)

C ′
1ν

1

k
En−1[hm+1 − hm + η](υ)

+ 2C ′
2νT

′ −N ′
En−1,m[γm − γm−1](υ)

1/2En−1,1[hm+1 − hm + η](υ)1/2 dυ,

En−1,0[hm+1 − hm + η](σ)

=
∑

|I|≤n−2

∑
ω∈Ω

∥∥∂I(ωm+1 − ωm)
∥∥2
L2(Aσ)

≤
∑

|I|≤n−2

∑
ω∈Ω

2T ′
∫ σ

υ(σ)

∫
Aυ

∣∣∂I∂s(ωm+1 − ωm)
∣∣2 dξ dζ dυ

≤ 2T ′
∫ σ

υ(σ)

En−1,1[hm+1 − hm + η](υ) dυ ≤ 2T ′
∫ σ

υ(σ)

En−1[hm+1 − hm + η](υ) dυ,

so taking L∞([υ(σ), σ]) norms, we find that

∥En−1,0[hm+1 − hm + η]∥L∞([υ(σ),σ])

≤ 2
√
2T ′ 2∥En−1,1[hm+1 − hm + η]∥L∞([υ(σ),σ])

∥En−1,1[hm+1 − hm + η]∥L∞([υ(σ),σ])

≤ 4T ′C ′
1ν

1

k
∥En−1[hm+1 − hm + η]∥L∞([υ(σ),σ])

+ 2
√
2C ′

2νT
′ −N ′+1∥En−1,m[γm − γm−1]∥

1/2
L∞([υ(σ),σ])∥En−1,1[hm+1 − hm + η]∥1/2L∞([υ(σ),σ])

≤ 8
√
2T ′(1 + T ′ 2)C ′

1ν
1

k
∥En−1,1[hm+1 − hm + η]∥L∞([υ(σ),σ])

+ 2
√
2C ′

2νT
′ −N ′+1∥En−1,m[γm − γm−1]∥

1/2
L∞([υ(σ),σ])∥En−1,1[hm+1 − hm + η]∥1/2L∞([υ(σ),σ]),
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whence dividing by ∥En−1,1[hm+1−hm+η]∥1/2L∞([υ(σ),σ]) as before, and using for the first time the assumption

T ′ ≥ 1, we find that there is a constant C and a positive integer M such that if

ν ≤ 1

C
T ′ −M

then we will have

∥En−1[hm+1 − hm + η]∥L∞([0,kT ]) ≤
1

4
∥En−1,m[γm − γm−1]∥L∞([0,kT ]).

Since the energy norms here are equivalent to Sobolev norms, with constants no greater than 3, this shows
that there is a constant C > 0 and a positive integer N ′, independent of T and T ′, such that if T ′ ≥ 1 and

ν ≤ Cmin{T ′ −N ′
,
T ′N ′

T
},

then the sequence (δℓm, bm, cm, γm) must be Cauchy in Hn−1, and hence must converge, on the set

Γ = {(s, x, v) ∈ R3 | s ∈ [0, T ′], v ∈ [0, kT ]},

as claimed. QED.

6.7. Norms of initial data
In this short section we produce a few results concerning norms of initial data corresponding to the

solutions constructed in Theorem 6.6.1, in particular for comparing our results to those in the literature, see
Proposition 0.4.1. Let (a, b, c, γ) be a solution constructed as per Theorem 6.6.1. Then we recall (see (0.2.1),
(0.2.8)) that the metric given in the sxvy coordinate system by

gij =


0 0 −e−2k−1/2γ 0
0 (1 + k−1δℓ)2e−2k−1/2γ k−1/2be−2k−1/2γ 0

−e−2k−1/2γ k−1/2be−2k−1/2γ ce−2k−1/2γ 0
0 0 0 e2k

−1/2γ

 (6.7.1)

will satisfy the Einstein vacuum equations. Now the function γ on the hypersurface Σ0 is supported either
on the square [0, 1]× [0, 1] or the square [0, 1]× [kT

√
2− 1, kT

√
2], which in terms of the coordinates sxvy

is the set

{(0, x, v, y) |x ∈ [0, k−1/2], v ∈ [0, k−1], y ∈ R}

or

{(0, x, v, y) |x ∈ [0, k−1/2], v ∈ [T
√
2− k−1, T

√
2], y ∈ R},

respectively.
We first compute the second fundamental form of the hypersurface s = 0 for the metric g. In coordinates,

this is

χij = ∇i(∂v)j = gjk∇i(∂v)
k = Γk

i2gjk =
1

2
(gij,2 + g2j,i − gi2,j) .

We want the projection of this on the xy plane, and thus take i, j ∈ {1, 3}. Now gij,k = 0 if any of i, j, or k
equals 3, unless i = j = 3, k ̸= 3; thus

χ11 =
1

2
(g11,2 + g21,1 − g12,1) =

1

2
∂v

(
e−2γ(s,x,v)a(s, x, v)

)
= e−2γ

(
1

2
∂va− a∂vγ

)
χ13 = χ31 = 0

χ33 =
1

2
∂vg33 = ∂vγe

2γ .
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With respect to the orthonormal frame X = eγa−1/2∂x, Y = e−γ∂y, χ has the matrix representation

χ =

(
1
a

(
1
2∂va− a∂vγ

)
0

0 ∂vγ

)
,

which has trace

trχ =
∂va

2a
.

Thus, letting 1 denote the 2× 2 identity matrix, the traceless part of χ is

χ̂ = χ− 1

2
trχ1 =

(
−∂vγ + ∂va

4a 0

0 ∂vγ − ∂va
4a

)
. (6.7.2)

We note that since ∂vγ = 0 and a = 1 outside the support of γ, we have also χ̂ = 0 there. In terms of k,
(∂va)/(4a) is of order 1 on its support, while ∂vγ is of order k1−ι on its support; for us, ι = 1/2, and thus χ̂
is of order k1/2 in L∞. Off the support of γ|{s=0}, χ̂ = 0.

We have also the following result on γ. Recall (see (0.2.22)) that 0Σ0 is the surface corresponding to Σ0

in the unscaled picture.

6.7.1. PROPOSITION. Suppose that γ|0Σ0
is specified as in (5.4.2). Then there are constants C1, C2, depending

on ℓ, m, and ϖ0 but not on k, such that

∥∂ℓv∂mx γ∥L∞(0Σ0) = C1k
ℓ+m/2−ι, ∥∂ℓv∂mx γ∥L2(0Σ0) = C2k

ℓ+m/2−ι−3/4.

Proof. By (5.4.2) and (3.3.3), it clearly suffices to show these results for k−ιϖ0(k
1/2x, kv), which is easy:

since (using ∂1 and ∂2 to denote differentiation with respect to the first and second variables, respectively,
of ϖ0) ∂

ℓ
v∂

m
x ϖ0(k

1/2x, kv) = kℓ+m/2(∂2ϖ0)(k
1/2x, kv), we have

∥∂ℓv∂mx ϖ0(k
1/2x, kv)∥L∞(0Σ0) = kℓ+m/2∥∂ℓ2∂m1 ϖ0∥L∞(Σ0) = C1k

ℓ+m/2,

taking C1 = ∥∂ℓ2∂m1 ϖ0∥L∞(Σ0). This is of the desired form. Similarly,

∥∂ℓv∂mx ϖ0(k
1/2x, kv)∥2L2(0Σ0)

= k2ℓ+m

∫ +∞

−∞

∫ T
√
2

0

∣∣∣(∂ℓ2∂m1 ϖ0)(k
1/2x, kv)

∣∣∣2 dv dx
= k2ℓ+m−3/2

∫
Σ0

∣∣(∂ℓ2∂m1 ϖ0)(x, v)
∣∣2 dx dv = C2

2k
2ℓ+m−3/2,

taking C2 =
∥∥∂ℓ2∂m1 ϖ0

∥∥
L2(Σ0)

. Again, this is of the desired form, establishing the result. QED.

In particular, this shows that the L2 norm of ∂2vγ on 0Σ0 is of size k3/4, as previously claimed.
As noted in Section 0.4, because the L2 norm used here is in 2 + 1 dimensions, the L∞ norm is the

more appropriate one to use for comparisons with the results in 3 + 1 dimensions such as Christodoulou [3],
Klainerman and Rodnianski [6], and Luk and Rodnianski [9].



7. GAUSSIAN BEAM SOLUTIONS

7.1. Introduction
In this, final, chapter, we apply the results of Chapters 5 and 6 to give a solution (a, b, c, γ) to (1.2.9 –

1.2.11), (1.3.1), depending, in addition to k, on a parameter r, and satisfying the following property: there
is a function γGB (the formal Gaussian beam) which is supported on a neighbourhood of size 1/4 around a
null geodesic x = x0, v = v0, and a constant Cg > 0, independent of r, such that for all r sufficiently large,

∥γ − γGB∥H1(Γ)

∥γGB∥H1(Γ)
≤ Cgr

−1/2.

We shall do this by applying Gaussian beam techniques. It is not our intention to provide an introduction
to or general treatment of Gaussian beams, for which we refer the reader elsewhere, e.g., [13]. We only note
one peculiarity in our current situation. A Gaussian beam depends on the wave operator for which it is
derived. In our case, we wish the Gaussian beam to be part of the solution to (1.2.9 – 1.2.11), (1.3.1),
which determines the metric and hence the wave operator; in other words, the wave operator depends on the
Gaussian beam, so we cannot, as in the usual treatment, simply determine the Gaussian beam for a given,
fixed metric. We shall see, however, that we can specify Gaussian-beam initial data for (1.2.9 – 1.2.11),
(1.3.1); and assuming that it can be made to satisfy the conditions in Theorem 6.6.1 – which is the case –
the resulting function γ will, a posteriori, be a Gaussian beam for the resulting metric. Since any solution
with initial data satisfying the conditions in Theorem 6.6.1 will satisfy the bounds (6.2.27), we may assume
that those bounds (and, hence, all of the bounds derived in Section 6.3) hold for the metric components a,
b, c with respect to which we derive the Gaussian beam.

We anticipate that the results obtained here can be refined in various directions.

7.2. Construction of the formal Gaussian beam
Let r > 0; in the following, we assume all quantities to be independent of r unless otherwise stated. We

shall work with initial data supported near v = kT
√
2, i.e., at the upper boundary of Σ0 rather than the

lower one. Thus, let x0 ∈ (1/4, 3/4), v0 ∈ (kT
√
2−3/4, kT

√
2−1/4). Let ϕ be any C∞ function on R2 which

is supported on the disk B1/4 of radius 1/4 centred at the origin, and satisfies ϕ(x, y) = 1 if x2 + y2 ≤ 1/64.
For convenience, define the function ρ : Γ → R by

ρ(s, x, v) =

√
(x− x0)

2
+ (v − v0)

2
.

For s ∈ [0, T ′], define
Σs = ({s} ×R2) ∩ Γ,

i.e., Σs are the planes in Γ of constant s. Since ρ does not depend on s, we occasionally drop the s variable
and simply write ρ(x, v) for notational simplicity.

When taking square roots of complex numbers, we use the branch with a cut along the negative imaginary
axis and argument in (−π, π).

We have the following results.

7.2.1. LEMMA. Let f : B1/4 → C satisfy |f(x, v)| ≤ Cρq for some constant C and some q > 0. Then for any
r > 0 ∥∥∥e−rρ2

f(x, v)
∥∥∥
L2(B1/4)

≤
[
πΓ(q)

22q+1

]1/2
Cr−

1
2 (q+1),

where

Γ(q) =

∫ ∞

0

uqe−u du

is the gamma function.
Proof. This is entirely straightforward:∫

B1/4

∣∣∣e−rρ2

f(x, v)
∣∣∣2 dx dv ≤ 2πC2

∫ ∞

0

ρ2qe−2rρ2

ρ dρ =
2πC2

4q+1
r−(q+1)

∫ ∞

0

uqe−u du

=
[ π

22q+1
Γ(q)

]
C2r−(q+1),

99
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from which the result follows immediately. QED.

7.2.2. LEMMA. Let θ0, B1, B2, D, r ∈ R, B2, D, r > 0. Then∥∥∥∥sin (rθ0v + 1

2
rB1x

2

)
e−

1
2 r(B2x

2+Dv2)

∥∥∥∥2
L2(R2)

=
π

2(B2D)1/2r

{
1− 21/2

[(
1 + i

B1

B2

)−1/2

+

(
1− i

B1

B2

)−1/2
]
e−rθ2

0/2D

}
,∥∥∥∥cos(rθ0v + 1

2
rB1x

2

)
e−

1
2 r(B2x

2+Dv2)

∥∥∥∥2
L2(R2)

=
π

2(B2D)1/2r

{
1 + 21/2

[(
1 + i

B1

B2

)−1/2

+

(
1− i

B1

B2

)−1/2
]
e−rθ2

0/2D

}
.

Proof. We recall the Gaussian integral∫ +∞

−∞
e−au2

du =
(π
a

)1/2
.

This is true for all a > 0, and we see that by analytic continuation it can be continued to all complex a with
ℜa > 0. Similarly, for A1, A2 ∈ R, A2 > 0,∫ +∞

−∞
eiA1u− 1

2A2u
2

du =

∫ +∞

−∞
e
− 1

2A2

(
u−i

A1
A2

)2
−

A2
1

2A2 du = e−A2
1/(2A2)

(
2π

A2

)1/2

.

Thus we may write∥∥∥∥sin (rθ0v + 1

2
rB1x

2

)
e−

1
2 r(B2x

2+Dv2)

∥∥∥∥
L2(R2)

=
1

2

∫
R2

[
1− cos(2rθ0v + rB1x

2)
]
e−r(B2x

2+Dv2) dx dv

=
1

2

{
π

(B2D)1/2r
−
∫
R2

[
cos 2rθ0v cos rB1x

2 − sin 2rθ0v sin rB1x
2
]
e−r(B2x

2+Dv2) dx dv

}
=

π

2(B2D)1/2r
−
( π

2rD

)1/2
e−rθ2

0/(2D)
(π
r

)1/2
· 1
2

[
(B2 + iB1)

−1/2 + (B2 − iB1)
−1/2

]
=

π

2(B2D)1/2r

{
1− 21/2

[(
1 + i

B1

B2

)−1/2

+

(
1− i

B1

B2

)−1/2
]
e−rθ2

0/2D

}
,

as claimed. The other integral follows in exactly the same way but using the formula cos2 u = 1
2 (1 + cos 2u).

QED.

7.2.1. COROLLARY. Let L ∈ R, L > 0. Under the conditions of Lemma 7.2.2, we have (letting B2 ∧ D
denote the minimum of B2 and D)∥∥∥∥sin (rθ0v + 1

2
rB1x

2

)
e−

1
2 r(B2x

2+Dv2)

∥∥∥∥2
L2(BL(0))

≥ π

2(B2D)1/2r

{
1− 21/2

[(
1 + i

B1

B2

)−1/2

+

(
1− i

B1

B2

)−1/2
]
e−rθ2

0/2D

}
− π

r(B2 ∧D)
e−r(B2∧D)L2

,∥∥∥∥cos(rθ0v + 1

2
rB1x

2

)
e−

1
2 r(B2x

2+Dv2)

∥∥∥∥2
L2(BL(0))

≥ π

2(B2D)1/2r

{
1 + 21/2

[(
1 + i

B1

B2

)−1/2

+

(
1− i

B1

B2

)−1/2
]
e−rθ2

0/2D

}
− π

r(B2 ∧D)
e−r(B2∧D)L2

,
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where as usual BL(0) denotes the disk of radius L centred at the origin in the x v plane.
Proof. We note that, transforming to polar coordinates and using P as the radial coordinate,∫

R2\BL(0)

∣∣∣∣sin (rθ0v + 1

2
rB1x

2

)
e−

1
2 r(B2x

2+Dv2)

∣∣∣∣2 dx dv ≤
∫
R2\BL(0)

e−r(B2∧D)(x2+v2) dx dv

= 2π

∫ ∞

L

Pe−r(B2∧D)P 2

dP =
π

r(B2 ∧D)
e−r(B2∧D)L2

,

from which the result readily follows. QED.

7.2.2. COROLLARY. Under the conditions of Corollary 7.2.1, for every ϵ > 0 there is an R0 > 0, depending
on ϵ and the parameters of the problem, such that for r > R0 we have∥∥∥∥sin (rθ0v + 1

2
rB1x

2

)
e−

1
2 r(B2x

2+Dv2)

∥∥∥∥2
L2(BL(0))

≥ 2π

(B2D)1/2r
(1− ϵ)∥∥∥∥cos(rθ0v + 1

2
rB1x

2

)
e−

1
2 r(B2x

2+Dv2)

∥∥∥∥2
L2(BL(0))

≥ 2π

(B2D)1/2r
(1 + ϵ).

Proof. This is clear because of the exponential decay of the error terms in Corollary 7.2.1. QED.

7.2.1. PROPOSITION. Under the conditions of Corollary 7.2.1, we have∥∥∥∥sin (rθ0v + 1

2
rB1x

2

)
e−

1
2 r(B2x

2+Dv2)

∥∥∥∥2
L2(BL(0))

≤ 2π

(B2D)1/2r∥∥∥∥cos(rθ0v + 1

2
rB1x

2

)
e−

1
2 r(B2x

2+Dv2)

∥∥∥∥2
L2(BL(0)

≤ 2π

(B2D)1/2r
.

Proof. This follows from the standard Gaussian integral. QED.

From the foregoing we obtain the following result. We take the branch of the square root function
corresponding to the argument interval (−π, π), i.e., with a branch cut along the negative real axis.

7.2.3. LEMMA. Let h be any Lorentzian metric on Γ of the form (6.2.2). Let A1, B, D, θ0 ∈ R satisfy*
1/2 < D < 2, 1 < B < 2, 0 < A1 < 1, θ0 > 0. Let

θ1(s) =
iB − 1

θ0

∫ s

0
1

a(σ,x0,v0)
dσ

B2 +
[

1
θ0

∫ s

0
1

a(σ,x0,v0)
dσ
]2 , (7.2.1)

A(s) = A1θ
1/2
1

a1/4(s, x0, v0)

a1/4(0, x0, v0)
. (7.2.2)

Then there is a constant CGB,1 > 1 depending on B and T ′ and constants CGB,2, CGB,3 > 0, depending on
A1, B, D, θ0, and T

′, CGB,1, CGB,2, CGB,3 independent of r, such that if θ0 > CGB,1 the function

γGB = r−1/2ℜ
{
ϕ(x− x0, v − v0)A(s)exp

[
ir

[
θ0v +

1

2

(
θ1(s)(x− x0)

2
+ iD(v − v0)

2
)]]}

(7.2.3)

satisfies
∥γGB∥H1(Σs)

≥ CGB,2,
∥∥

hγGB

∥∥
L2(Σs

< CGB,3r
−1/2. (7.2.4)

* These bounds are, for the most part, a matter of convenience in working out the proof below, and simply
requiring the relevant values to be nonzero would often be sufficient. For our purposes it would actually
suffice to take a particular choice of the parameters, say D = 1, B = 3/2, A1 = 1/2; but we carry them
along to show that there is quite a bit of flexibility in the final answer.
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Proof. In the following, we use letters C, C ′, etc., to denote constants whose values may change from
line to line. We first note that, since (see Corollary 6.3.1) a−1 ≤ 4/3 on Γ, we have∫ s

0

1

a(σ, x0, v0)
dσ ≤ 4T ′/3;

thus if

θ0 >
4T ′

3(B −B2/2)

(note that 1 < B < 2 implies B −B2/2 > 0) then

ℑθ1 > 1/2. (7.2.5)

We take

CGB,1 = max

{
4T ′

3(B −B2/2)
, 1

}
,

so that for θ0 > CGB,1 the bound (7.2.5) holds. We may also put upper and lower bounds on the modulus
of θ1, as follows. We note first that θ1 satisfies the differential equation

∂sθ1 =
1

θ0a
θ21; (7.2.6)

thus also

∂2sθ1 =
2θ31
a2θ20

. (7.2.7)

Since a−1 ≤ 4/3 on Γ, we have

B ≤

∣∣∣∣∣−iB − 1

θ0

∫ s

0

1

a
dσ

∣∣∣∣∣ ≤
[
B2 +

16T ′ 2

9θ20

]1/2
< B

√
2,

so (recalling B > 1)
1

B
√
2
≤ |θ1| ≤ 1. (7.2.8)

In particular, θ1 is never zero. Note that (7.2.8) implies also that (applying (7.2.7))

|∂sθ1| ≤
4

3B2θ0
≤ 4

3B2
, |∂2sθ1| ≤

32

9B
. (7.2.9)

We may also derive bounds on A. It is straightforward to see that A satisfies the differential equation

∂sA = A

(
∂sθ1
2θ1

− ∂sa

4a

)
. (7.2.10)

Then, since a ≤ 2 and a ≥ 3/4 by Corollary 6.3.1 and (6.3.1), we will have for all s ∈ [0, T ′], writing
A0 = A1a

−1/4(0, x0, v0),

3

4
≤ a1/4 ≤ 2,

1

2
A1 ≤ A0 ≤ 4

3
A1,

3

8
A1 ≤ A0a

1/4(s, x0, v0) ≤
8

3
A1. (7.2.11)

Applying (7.2.8), (7.2.9), and (7.2.11), as well as Proposition 6.3.1, Proposition 6.3.2, and (again) (6.3.1),
we thus have the bounds

|A| ≤ 8

3
|A1|

1

B1/2
≤ 8

3
|A1|, |∂sA| ≤

8

3
|A1|

1

B1/2

(
2

3B
+

1

3

)
≤ 8

3
|A1|, |∂2sA| ≤

40

3
|A1|. (7.2.12)
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Define on Γ

Θ(s, x, v) = θ0v +
1

2

(
θ1(s)(x− x0)

2
+ iD(v − v0)

2
)

(note that this is the coefficient of ir in the exponential in (7.2.3)). We are now in a position to derive
the second inequality in (7.2.4). By Lemma 7.2.1, it suffices to ensure that the quantity multiplying eirΘ

in hγGB vanishes to a sufficiently high order at (s, x0, v0). This is the key observation underlying the
technique of Gaussian beams.

We first note that all derivatives of ϕ(x− x0, v − v0) vanish to arbitrarily high order at (x0, v0). More
precisely, let n, N be positive integers; then there is a constant C, depending on n and N , such that for all
multiindices I in x and v with |I| ≤ n,∥∥∂Iϕ(x− x0, v − v0)

∥∥
L∞(R2)

≤ Cρ(x, v)−N . (7.2.13)

By the product rule, this means that any terms in hγGB involving derivatives of ϕ will satisfy the bound
in (7.2.4) for any α, and hence can be disregarded. Thus it suffices to bound

∥ h

(
A(s)eirΘ(x,v)

)
∥L2({s}×B1/4). (7.2.14)

A straightforward calculation gives

h

(
A(s)eirΘ(x−x0,v−v0)

)
= eirΘ(x−x0,v−v0)

[
hA+ irA hΘ+ 2irhij∂iA∂jΘ− r2hij∂iΘ∂jΘ

]
. (7.2.15)

We take these terms in turn, starting with the last one. We have

hij∂iΘ∂jΘ = −2∂vΘ∂sΘ+
1

a
(∂xΘ)

2
+

1

k

(
k−1 b

2

a
− c

)
(∂sΘ)

2
+

2

k

b

a
∂sΘ∂xΘ

= −∂sθ1(x− x0)
2
(θ0 + θ2(v − v0)) +

1

a
θ21(x− x0)

2

+
1

k

(
k−1 b

2

a
− c

)
· 1
4
(∂sθ1)

2
(x− x0)

4 − 1

k

b

a
θ1∂sθ1(x− x0)

3
. (7.2.16)

By (7.2.6), the lowest-order (in x− x0, v − v0) term in (7.2.16) must vanish. Substituting (7.2.1) back in to
equation (7.2.16), we see that there is a constant C1 > 0 such that on the support of ϕ(x− x0, v − v0)

∣∣hij∂iΘ∂jΘ∣∣ ≤ 4D

3B
ρ3 +

1

k
C1ρ

3. (7.2.17)

By Lemma 7.2.1, then, there is a constant C, independent of s, such that∥∥∥eirΘ(x−x0,v−v0)hij∂iΘ∂jΘ
∥∥∥
L2({s}×B1/4)

≤ Cr−2.

We may similarly treat the other terms in (7.2.15). We first recall the following expression for the wave
operator h, see (3.3.5):

(
−2∂s∂v + ∂2x

)
+

1

k

(
2
b

a
∂s∂x − c∂2s − δ−1a∂2x −

(
∂sc−

1

a
∂xb+

∂vδℓ

ℓ

)
∂s +

(
1

a
∂sb−

ℓ∂xδℓ

a2

)
∂x − ∂sδℓ

ℓ
∂v

)
+

1

k2

(
b
2

a
∂2s −

(
c
∂sδℓ

ℓ
− 2

b

a
∂sb

)
∂s −

bℓ∂sδℓ

a2
∂x

)
− 1

k3
b
2
ℓ∂sδℓ

a2
∂s.
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From this, it is evident that there are constants Ci such that (letting Γk
ij denote the Christoffel symbol for

h)

∣∣
hA
∣∣ ≤ ∣∣∣∣∣1k

(
k−1 b

2

a
− c

)
∂2sA− h

ij
Γ0
ij∂sA

∣∣∣∣∣ ≤ 1

k

(
C2|∂2sA|+ C3|∂sA|

)
(7.2.18)∣∣∣2hij∂iA∂jΘ+ hΘ

∣∣∣
≤

∣∣∣∣∣−2∂sA(θ0 + θ2v) + 2
1

k
∂sA

[
2
b

a
θ1x+

1

2k

(
k−1 b

2

a
− c

)
∂sθ1x

2

]

+A

[
1

a
θ1 +

1

k

[(
k−1 b

2

a
− c

)
1

2
∂2sθ1x

2 +
b

a
∂sθ1θ1x

3

]

− h
ij
Γ0
ij

1

2
∂sθ1x

2 − h
ij
Γ1
ijθ1x− ∂sa

2a
(θ0 + θ2v)

]∣∣∣∣∣
≤
∣∣∣∣−2∂sAθ0 +A

(
1

a
θ1 −

∂sa

2a
θ0

)∣∣∣∣+ ∣∣∣∣2∂sAθ2v + ∂sa

2a
θ2v

∣∣∣∣
+

∣∣∣∣∣21k∂sA
(
2
b

a
θ1x+

1

2k

(
k−1 b

2

a
− c

)
∂sθ1x

2

)

+A

[
1

k

[(
k−1 b

2

a
− c

)
1

2
∂2sθ1x

2 +
b

a
∂sθ1θ1x

3

]
− h

ij
Γ0
ij

1

2
∂sθ1x

2 − h
ij
Γ1
ijθ1x− ∂sa

2a
θ2v

]∣∣∣∣∣
≤
∣∣∣∣−2∂sAθ0 +A

(
1

a
θ1 −

∂sa

2a
θ0

)∣∣∣∣+ ρD (2|∂sA|+ C4) +
1

k

{
|A|C1

1

B3
ρ2 + (|∂sA|+ 1)

(
C2

1

B2
ρ2 + C3

1

B
ρ

)}
.

(7.2.19)

As before, equation (7.2.10) shows that the term of lowest order in x− x0 and v − v0 must vanish. From
this and the bounds on A derived in (7.2.11) and (7.2.12) we see that there is a new set of constants Ci such
that ∣∣∣2hij∂iA∂jΘ+ hΘ

∣∣∣ ≤ ρD (C4 + C5|A1|) +
1

k

[
C1|A1|ρ2 + (1 + |A1|)

(
C2ρ

2 + C3ρ
)]
.

Recalling that 0 < A1 < 1, D < 2, we have (yet another family of) constants Ci such that

∣∣
hA
∣∣ ≤ 1

k
C1|A1|,

∣∣∣2hij∂iA∂jΘ+ hΘ
∣∣∣ ≤ ρD(C1 + C2|A1|) +

1

k
ρ (C3 + C4|A1|) .

Thus, by Lemma 7.2.1 again, there is a constant C such that∥∥∥ he
irΘ(x−x0,v−v0)A

∥∥∥
L2({s}×B1/4)

≤ C,
∥∥∥eirΘ(x−x0,v−v0)

(
2h

ij
∂iA∂jΘ+ hΘ

)∥∥∥
L2({s}×B1/4)

≤ Cr−1.

(7.2.20)
From equations (7.2.15), (7.2.17), and (7.2.20), we obtain finally that there are constants C1, C2 such that∥∥∥ h

(
A(s)eirΘ(x−x0,v−v0)

)∥∥∥
L2({s}×B1/4)

≤ C1 +
1

k
C2;

as noted above (see our discussion around (7.2.13) and (7.2.14)), there are (potentially slightly different
constants) C1 and C2 such that

∥∥
hγGB

∥∥
L2(Σs)

≤
[
C1 +

1

k
C2

]
r−1/2,

which establishes the second inequality in (7.2.4) since k ≥ 1.
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To complete the proof we must compute ∥γGB∥H1(Σs)
, or at least give a lower bound. We note first that

by construction ℜθ1 and θ0 will have opposite signs for all s ∈ (0, T ′] (when s = 0, of course, θ1(s) = i/B so
ℜθ1(0) = 0); since θ0 > 0, we have ℜθ1 < 0 and (since ℑθ1 > 0) the argument of θ1 will lie in the interval

(π/2, π). By our choice of branch, then, θ
1/2
1 will have argument in (π/4, π/2), so

0 < ℜθ1/21 < ℑθ1/21 ; (7.2.21)

since a1/4 > 0 and A1 > 0, this gives
ℜA < ℑA (7.2.22)

for all s ∈ (0, T ′], with equality holding at s = 0. (This relied on the requirements θ0 > 0, A1 > 0.) Now

ℜ
[
A(s)eirΘ(s,x−x0,v−v0)

]
= ℜAℜeirΘ −ℑAℑeirΘ

= ℜA

[
cos

rθ0(v − v0)−
1

2θ0
r(x− x0)

2

∫ s

0
1

a(σ,x0,v0)
dσ

B2 +
[

1
θ0

∫ s

0
1

a(σ,x0,v0)
dσ
]2


· exp

−1

2
r

 B

B2 +
[

1
θ0

∫ s

0
1

a(σ,x0,v0)
dσ
]2 (x− x0)

2
+D(v − v0)

2


]

−ℑA

[
sin

rθ0(v − v0)−
1

2θ0
r(x− x0)

2

∫ s

0
1

a(σ,x0,v0)
dσ

B2 +
[

1
θ0

∫ s

0
1

a(σ,x0,v0)
dσ
]2


· exp

−1

2
r

 B

B2 +
[

1
θ0

∫ s

0
1

a(σ,x0,v0)
dσ
]2 (x− x0)

2
+D(v − v0)

2


].

If we differentiate just the exponential terms and take an L2 norm, we effectively multiply both parts by
rD(v − v0), so by Lemma 7.2.1 the result will have a uniform upper bound in r. On the other hand, if we
differentiate the trigonometric functions, use the fact that ℜA < ℑA, and apply Corollary 7.2.2, we find
that for r sufficiently large the difference of the L2 norms is bounded below by C1r

1/2 for some constant C1.
Putting all of this together, we find that there is a constant C ′ > 0, depending on the parameters A1, B, D,
and θ0 (and hence, indirectly, on T ′), such that for r sufficiently large∥∥∥∂vℜ [A(s)eirΘ(s,x−x0,v−v0)

]∥∥∥
L2({s}×B1/4(x0,v0))

≥ C ′r1/2,

from which the first inequality in (7.2.4) follows. QED.

The condition ℜA < ℑA in (7.2.22) is not needed in treatments such as that in [13] since one is able to
use the full complex Gaussian beam. We are not able to do that here. There are of course other ways of
obtaining the same result, but the most straightforward one – noting that |z| > C implies that at least one
of |ℜz| and |ℑz| must be greater than C/

√
2 – does not work well for us since the phase of the number A is

a function of s. Thus we opt for the method above.

7.3. Energy-focussed solutions
From this we can finally prove the result announced in Section 1 above. We note first of all that when

s = 0 we have

θ1(0) = iB−1, A(0) = A1B
−1/2 1 + i√

2
,

both of which are independent of the metric h; thus (see (7.2.3)) γGB |Σ0
is independent of h. Let (a, b, c, γ)

be the solution given by Theorem 6.6.1 with initial data that constructed in Chapter 5 from

γ|Σ0
= o(r)γGB |Σ0

,
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where* o(r) > 0 is sufficiently small (depending on r) that the resulting initial data satisfies the assumptions
in Theorem 6.6.1. (o(r) can clearly be taken to be nonincreasing with r, and we shall do so in the following.
A careful examination of the construction in Chapter 5 suggests that o ≤ r−η for some exponent η, but
determining η is not straightforward and is also not important for what we wish to do here.) Note that,
since γGB |Σ0

is supported on {v ≥ kT
√
2 − 1}, the solution γ will be Minkowskian for v < kT

√
2 − 1. We

have the following theorem.

7.3.1. THEOREM. There is a constant Cg > 0, independent of r, such that for r sufficiently large

∥γ − o(r)γGB∥H1(Γ)

∥o(r)γGB∥H1(Γ)
≤ Cgr

−1/2.

Proof. Let γGB,o = o(r)γGB . We note first that

∥γGB,o∥H1(Γ) ≥ ∥∂vγGB,o∥L2(Γ) ≥ CGB,2T
′o(r) (7.3.1)

where the last inequality follows from Lemma 7.2.3. Again by Lemma 7.2.3,

∥ hγGB,o∥L2(Γ) ≤ CGB,3T
′r−1/2o(r).

Now applying Lemma 6.4.2, together with the bootstrap (6.2.27), we have that there are constants Ci such
that for any σ ∈ [0, kT ] (recall that the seminorm ϵ was defined in (6.2.24)),

ϵ[γ − γGB,o](σ) ≤
∫ σ

0

4

3
∥ hγGB,o∥L2(Aυ)∥∂τ (γ − γGB,o)∥L2(Aυ) + Cνk−1ϵ[γ − γGB,o] dυ. (7.3.2)

Since the support of γGB,o and (by domain of dependence arguments) γ is contained in the region {(s, x, v) ∈
Γ | v ≥ kT

√
2−1}, the integrand in (7.3.2) will vanish except for υ ∈ [kT −1/

√
2, kT ], so taking a supremum

over all σ ∈ [0, kT ] and recalling that (see Proposition 6.3.2)

∥∂τ (γ − γGB,o)∥L2(Aυ) ≤ 2ϵ[γ − γGB,o]
1/2(υ),

we find additional constants such that

sup
σ∈[0,kT ]

ϵ[γ − γGB,o](σ) ≤ C sup
σ∈[0,kT ]

ϵ[γ − γGB,o]
1/2(σ)∥ hγGB,o∥L2(Γ) +

1

k
C ′ ν

T ′ sup
σ∈[0,kT ]

ϵ[γ − γGB,o](σ).

Now integrating the second inequality in (7.2.4) in s from 0 to T ′ gives

∥ hγGB,o∥L2(Γ) < CGB,3T
′ 1/2r−1/2,

so we obtain for yet another set of constants

sup
σ∈[0,kT ]

ϵ[γ − γGB,o](σ)

≤ CT ′ 1/2r−1/2 sup
σ∈[0,kT ]

ϵ[γ − γGB,o]
1/2(σ)∥ hγGB,o∥L2(Γ) +

1

k
C ′ ν

T ′ sup
σ∈[0,kT ]

ϵ[γ − γGB,o](σ).

Taking k sufficiently large (or, alternatively, taking ν sufficiently small, and then increasing r if necessary),
we find that there is a constant C such that

sup
σ∈[0,kT ]

ϵ[γ − γGB,o]
1/2(σ) ≤ Cr−1/2o(r),

* Note that by o(r) we do not mean a function satisfying o(r)/r → 0 as r → 0!
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whence (again since the supports of γ and γGB,o are contained in {(s, x, v) ∈ Γ | v ≥ kT
√
2− 1})

∥γ − γGB,o∥H1(Γ) ≤ C ′r−1/2o(r),

and the result follows from (7.3.1). QED.

The same result is true in the unscaled coordinates. We reformulate it slightly, as follows.

7.3.1. COROLLARY. Let γGB , o(r) and γ be as above, and set

γGB,o(s, x, v) = k−1/2o(r)γGB(s, k
1/2x, kv), γ(s, x, v) = k−1/2γ(s, k1/2x, kv).

Then for r sufficiently large,
∥γ − γGB,o∥H1(0Γ)

∥γ∥H1(0Γ)
≤ 2Cgr

−1/2, (7.3.3)

where Cg is the constant in Theorem 7.3.1.
Proof. With γ in the denominator replaced by γGB,o, this follows from Theorem 7.3.1 by noting the

inequalities
∥f(s, k1/2x, kv)∥H1(0Γ) ≤ k1/4∥f(s, x, v)∥H1(Γ)

∥k1/2γGB,o∥H1(0Γ) ≥ k1/2∥∂vγGB,o∥L2(0Γ) = k1/4∥∂vγGB,o∥L2(Γ).

Now if we let r ≥ 4C2
g , then (7.3.3) follows from the observation that

∥γ∥H1(0Γ) ≥ ∥γGB,o∥H1(0Γ) − ∥γ − γGB,o∥H1(0Γ) ≥ ∥γGB,o∥H1(0Γ)

[
1− Cgr

−1/2
]
≥ 1

2
∥γGB,o∥H1(0Γ).

QED.

Taking r = ϵ−1/2 gives the result in Theorem 0.3.1. In other words, noting that, because of the cutoff
function ϕ, the support of γGB,o in all of Γ is contained in the set

N = {(s, x, v) ∈ Γ |x ∈ [0, 1], v ∈ [kT
√
2− 1, kT

√
2]}

(this is the neighbourhood around a null geodesic mentioned in Section 7.1), the result in Corollary 7.3.1
can be stated in words as follows. For every ϵ > 0 and every k sufficiently large, there is a solution to the
Einstein vacuum equations of the form (0.2.1), such that the fraction 1 − ϵ of the H1 norm of γ(s, x, v) is
contained in the set

{(s, x, v) ∈ R3 | s ∈ [0, T ′], x ∈ [0, k−1/2], v ∈ [T
√
2− k−1, T

√
2]}.

The time T , as well as the time T ′ implicit in the solution, are independent of k, though they may depend
on ϵ.

Finally, we note that the proof of Theorem 7.3.1 almost works for initial data supported near v = 0,
i.e., with v0 ∈ (1/4, 3/4) instead of v0 ∈ (kT

√
2 − 3/4, kT

√
2 − 1/4). There are two added complications

that come into play here: the initial data for the solution γ will not vanish on v = 0, unlike the initial data
for the Gaussian beam; and we have no a priori control on the size of the support of γ, hence of γ − γGB .
Preliminary investigations of these issues suggest that the first issue is not really a problem as the initial
data for γ along v = 0 can apparently be chosen to be exponentially small in r. There does not appear to
be any ready way of overcoming the second issue without going beyond our current framework (for example,
defining energies over hypersurfaces other than Aσ). On the other hand, since as shown above ϵ[γ−γGB ](σ)
is small relative to ∥γGB∥H1(Γ) for all σ ∈ [0, kT ], one suspects that it represents only some kind of ‘tail’
which does not really detract from the focussed nature of the solution; for example, that perhaps the result
in Lemma 7.2.3 might hold in W 1,∞.

Note that were we able to produce suitably bounded initial data supported on a set in the middle of
Σ0 (see our discussion at the end of Section 0.2 above), the above techniques would presumably allow us
to show the existence of a solution with energy concentrated along a geodesic through the point x = 1/2,
v = T/2.
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