DEPARTMENT OF MATHEMATICS
 University of Toronto

Algebra Exam (3 hours)

Thursday, September 8, 2016, 1-4 PM
The 6 questions on the other side of this page have equal value, but different parts of a question may have different weights.

Good Luck!

Problem 1. Let G be a finite group.
(a) Show that if $H \supsetneqq G$ is a proper subgroup, then there exists an $x \in G$ that is not contained in any subgroup conjugate to H.
(b) A maximal subgroup is a proper subgroup $M \nsupseteq G$ that is maximal for this property, i.e., if $M^{\prime} \supsetneqq G$ is a proper subgroup of G that contains M, then $M^{\prime}=M$. Show that if all maximal subgroups of G are conjugate, then G is cyclic.
Problem 2. A chain of prime ideals of length n in a commutative ring R is an increasing sequence $P_{0} \subsetneq P_{1} \subsetneq \cdots \subsetneq P_{n}$, where each P_{i} is a prime ideal in R.
(a) Show that if R is a PID, every chain of prime ideals has length 0 or 1 .
(b) Exhibit a chain of prime ideals of length 2 in $\mathbb{Z}[x]$.
(c) Find a ring R with a chain of prime ideals of length 2016.

Problem 3.

(a) State the structure theorem for modules over a PID.
(b) Suppose that K is a field and V a K-vector space of dimension 3. How many similarity classes of linear transformations $T: V \rightarrow V$ are there that satisfy $T^{2}(T-1)=0$? Among them, how many have $\operatorname{dim} \operatorname{ker}(T)=1$? (Explain how you use part (a)! Also, recall that linear transformations S, T are called similar if there is a linear isomorphism $U: V \rightarrow V$ such that $S=U T U^{-1}$.)

Problem 4.

(a) Prove or disprove that $f(x)=x^{4}+6 x-3$ is irreducible over the field $\mathbb{Q}(\sqrt[3]{5})$.
(b) Let L be a finite Galois extension of a field K with Galois group $\operatorname{Gal}(L / K)$. Suppose that F is a proper subfield of L that contains K. Prove that $\cap_{\sigma \in \operatorname{Gal}(L / K)} \sigma(F)$ is a Galois extension of K. Give complete statements of all results from Galois theory which are used in your solution.

Problem 5. Let $\chi_{1}, \ldots, \chi_{r}$ be the irreducible characters of a finite group G. For $1 \leq j \leq r$, let ρ_{j} be an irreducible representation of G whose character equals χ_{j}.
(a) Prove that if $x \in G$ and $x \neq e$, then there exists j such that $\chi_{j}(x) \neq \chi_{j}(e)$.
(b) Let $y \in G$. Prove that if $\rho_{j}(y)$ is a scalar multiple of the identity operator for all $1 \leq j \leq r$, then y belongs to the centre of G.
Problem 6. Let R be a ring with 1 and let M be a left R-module such that $M=$ $S_{1} \oplus S_{2} \oplus \cdots \oplus S_{n}$, where each S_{i} is a nonzero simple left R-submodule of M.
(a) Prove that any nonzero simple left R-submodule of M is isomorphic to S_{i} for some i.
(b) What additional conditions on the submodules S_{i} guarantee that any nonzero simple left R-submodule of M is equal to S_{i} for some i ? (Justify your answer.)

