DEPARTMENT OF MATHEMATICS University of Toronto

Algebra Exam (3 hours)

Thursday, September 8, 2016, 1–4 PM

The 6 questions on the other side of this page have equal value, but different parts of a question may have different weights.

Good Luck!

Problem 1. Let G be a finite group.

- (a) Show that if $H \lneq G$ is a proper subgroup, then there exists an $x \in G$ that is not contained in any subgroup conjugate to H.
- (b) A maximal subgroup is a proper subgroup $M \lneq G$ that is maximal for this property, i.e., if $M' \lneq G$ is a proper subgroup of G that contains M, then M' = M. Show that if all maximal subgroups of G are conjugate, then G is cyclic.

Problem 2. A chain of prime ideals of length n in a commutative ring R is an increasing sequence $P_0 \subsetneq P_1 \subsetneq \cdots \subsetneq P_n$, where each P_i is a prime ideal in R.

- (a) Show that if R is a PID, every chain of prime ideals has length 0 or 1.
- (b) Exhibit a chain of prime ideals of length 2 in $\mathbb{Z}[x]$.
- (c) Find a ring R with a chain of prime ideals of length 2016.

Problem 3.

- (a) State the structure theorem for modules over a PID.
- (b) Suppose that K is a field and V a K-vector space of dimension 3. How many similarity classes of linear transformations $T: V \to V$ are there that satisfy $T^2(T-1) = 0$? Among them, how many have dim ker(T) = 1? (Explain how you use part (a)! Also, recall that linear transformations S, T are called *similar* if there is a linear isomorphism $U: V \to V$ such that $S = UTU^{-1}$.)

Problem 4.

- (a) Prove or disprove that $f(x) = x^4 + 6x 3$ is irreducible over the field $\mathbb{Q}(\sqrt[3]{5})$.
- (b) Let L be a finite Galois extension of a field K with Galois group $\operatorname{Gal}(L/K)$. Suppose that F is a proper subfield of L that contains K. Prove that $\bigcap_{\sigma \in \operatorname{Gal}(L/K)} \sigma(F)$ is a Galois extension of K. Give complete statements of all results from Galois theory which are used in your solution.

Problem 5. Let χ_1, \ldots, χ_r be the irreducible characters of a finite group G. For $1 \le j \le r$, let ρ_j be an irreducible representation of G whose character equals χ_j .

- (a) Prove that if $x \in G$ and $x \neq e$, then there exists j such that $\chi_j(x) \neq \chi_j(e)$.
- (b) Let $y \in G$. Prove that if $\rho_j(y)$ is a scalar multiple of the identity operator for all $1 \leq j \leq r$, then y belongs to the centre of G.

Problem 6. Let R be a ring with 1 and let M be a left R-module such that $M = S_1 \oplus S_2 \oplus \cdots \oplus S_n$, where each S_i is a nonzero simple left R-submodule of M.

- (a) Prove that any nonzero simple left R-submodule of M is isomorphic to S_i for some i.
- (b) What additional conditions on the submodules S_i guarantee that any nonzero simple left *R*-submodule of *M* is equal to S_i for some *i*? (Justify your answer.)