Department of Mathematics
 University of Toronto
 Topology Comprehensive Exam

September 8, 2017

Topology I

Problem 1. Let K and L be embedded (i.e. regular) submanifolds of a smooth manifold M.
a) What does it mean for K and L to intersect transversally? State a precise definition.
b) Prove that if K and L intersect transversally, then $K \cap L$ is an embedded submanifold, and compute its dimension in terms of $\operatorname{dim} K, \operatorname{dim} L, \operatorname{dim} M$.
c) Let $S^{2} \subset \mathbb{R}^{3}$ be given by $\left\{\left(x_{1}, x_{2}, x_{3}\right)\right.$: $\left.x_{1}^{2}+x_{2}^{2}+x_{3}^{2}=1\right\}$. Write the tangent bundle of S^{2} as a subset of $T \mathbb{R}^{3}=\mathbb{R}^{3} \times \mathbb{R}^{3}$ and prove that it is an embedded submanifold.

Problem 2. Let M be a smooth, connected manifold and fix any pair of points $p, q \in M$. Prove that there exists a diffeomorphism $\varphi: M \rightarrow M$ taking p to q, i.e. $\varphi(p)=q$.

Problem 3. A 2-form $\omega \in \Omega^{2}(M)$ on the smooth $2 n$-dimensional manifold M is called symplectic when it is closed, i.e. $d \omega=0$, and its $n^{t h}$ exterior power $\omega^{n}=\omega \wedge \cdots \wedge \omega$ does not vanish at any point. Prove the following:
a) The 2 -sphere S^{2} has a symplectic form.
b) For all n, the torus $T^{2 n}$ has a symplectic form.
c) For $n \geq 2$, the sphere $S^{2 n}$ does not have any symplectic forms.

Topology II

Problem 4. Give an example of closed manifold M such that its fundamental group is isomorphic to the cyclic group of order 3 (that is, to \mathbb{Z}_{3}). Prove your answer.

Problem 5. Find all homology groups of the complement $S^{2} \times S^{2} \backslash \Delta\left(S^{2}\right)$, where $\Delta\left(S^{2}\right)$ denotes the diagonal $\left\{(x, x), x \in S^{2}\right\} \subset\left\{(x, y), x \in S^{2}, y \in S^{2}\right\}=S^{2} \times S^{2}$.

Problem 6. Show that if a closed orientable manifold M of dimenion $2 k$ has $H_{k-1}(M ; \mathbb{Z})$ torsion-free, then $H_{k}(M ; \mathbb{Z})$ is also torsion-free.

