Department of Mathematics
 University of Toronto
 Topology Comprehensive Exam

September 11, 2015, 10am-1pm

Topology I

Problem 1. Let $\mathbb{S}^{3}=\left\{\left(z_{0}, z_{1}\right) \in \mathbb{C}^{2}:\left|z_{0}\right|^{2}+\left|z_{1}\right|^{2}=1\right\}$. Consider the map $\pi: \mathbb{S}^{3} \rightarrow \mathbb{R}^{3}=\mathbb{C} \times \mathbb{R}$ given by $\pi\left(z_{0}, z_{2}\right)=\left(2 z_{0} \bar{z}_{1},\left|z_{0}\right|^{2}-\left|z_{1}\right|^{2}\right)$.
(1) Show that $\pi\left(\mathbb{S}^{3}\right) \subset \mathbb{S}^{2} \subset \mathbb{R}^{3}$.
(2) Show that $\pi: \mathbb{S}^{3} \rightarrow \mathbb{S}^{2}$ is a submersion.

Hint: You can use without proof that that for any $p, q \in \mathbb{S}^{3}$ there are $A \in U(2), B \in O(3)$ such that $A p=q$ and $\pi(A p)=B \pi(q)$.
Problem 2. Consider the following subset of \mathbb{R}^{3} :

$$
C=\left\{(x, y, z): x^{3}=y^{2}+z^{2}\right\}
$$

Is C a smooth submanifold of \mathbb{R}^{3} ? Justify your answer.
Problem 3. Prove that the unit ball $B(0,1)=\left\{x \in \mathbb{R}^{n}:|x|<1\right\}$ is diffeomorphic to \mathbb{R}^{n} for any $n \geq 1$.

Topology II

Problem 4. Use the Mayer-Vietoris sequence to find the homology groups of spheres $\mathbb{S}^{n}, n \geq 1$.
Hint: You may assume $H_{1}\left(\mathbb{S}^{1}\right)=\mathbb{Z}$.
Problem 5. Use Van Kampen's theorem to compute the fundamental group of the figure eight.
Hint: You can use the fact that the fundamental group of \mathbb{S}^{1} is \mathbb{Z}.
Problem 6. Find the universal cover of

$$
\mathbb{S}^{2} \backslash\{N, S\}
$$

where N and S are the north and the south pole respectively.

