Department of Mathematics
 University of Toronto
 Topology Comprehensive Exam

September 19, 2016

Topology I

Problem 1. Let M^{n}, N^{m} be smooth manifolds such that $m>n$. Let $f: M^{n} \rightarrow N^{m}$ be a smooth map. Prove that f is not $1-1$.

Hint: Use the constant rank theorem.
Problem 2. Let $n \geq 1$ and let M^{n} be a closed (i.e compact and with no boundary) oriented manifold. Let $f: M \rightarrow \mathbb{S}^{n}$ be a smooth map such that $\int_{M} f^{*} \omega \neq 0$ for some $\omega \in \Omega^{n}\left(S^{n}\right)$.

Prove that f is onto.
Problem 3. Let M be a compact manifold without boundary. Let V_{1}, V_{2} be smooth vector fields on M transverse to the zero section of $T M$.

Prove that the number of zeros of V_{1} has the same parity as the number of zeros of V_{2}.

Topology II

Problem 4. Show that if a path-connected locally path-connected space X has $\pi_{1}(X)$ finite, then each map $X \longrightarrow S^{1}$ is nullhomotopic.

Problem 5. Assume that $f: S^{n} \longrightarrow S^{n}$ is not homotopic to the antipodal map (that sends each x to its antipodal point $-x$). Prove that f has a fixed point. (In other words, there exists x such that $f(x)=x$.)

Problem 6. Let $M^{2 n}$ be a closed orientable manifold of dimension $2 n$ such that $H_{n-1}\left(M^{2 n} ; \mathbb{Z}\right)$ is torsionfree. Prove that $H_{n}\left(M^{2 n} ; \mathbb{Z}\right)$ is also torsion-free.

