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We study a class of varieties which generalize the classical orbital varieties of Joseph. We show

that our generalized orbital varieties are the irreducible components of a Mirković–Vybornov

slice to a nilpotent orbit, and can be labeled by semistandard Young tableaux.

Furthermore, we prove that Mirković–Vilonen cycles are obtained by applying the Mirković–

Vybornov isomorphism to generalized orbital varieties and taking a projective closure, refining

Mirković and Vybornov’s result.

As a consequence, we are able to use the Lusztig datum of a Mirković–Vilonen cycle to

determine the tableau labeling the generalized orbital variety which maps to it, and, hence,

the ideal of the generalized orbital variety itself. By homogenizing we obtain equations for

the cycle we started with, which is useful for computing various equivariant invariants such as

equivariant multiplicity.

As an application, we show that the Mirković–Vilonen basis differs from Lusztig’s dual sem-

icanonical basis in type A5. This is significant because it is a first example of two perfect bases

which are not the same. Our comparison relies heavily on the theory of measures developed in

[BKK19], so we include what we need.

We state a conjectural combinatorial “formula” for the ideal of a generalized orbital variety

in terms of its tableau.
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Preface

Curiosity killed the cat,

But satisfaction brought it back.

James Newell Osterberg Jr.

In their foundational paper [MV07], Mirković and Vilonen provided a geometric interpreta-

tion of the representation theory of reductive algebraic groups over arbitrary rings. Along the

way, they constructed a basis of algebraic cycles for the cohomology of “standard sheaves” on

the affine Grassmannian. While Ginzburg had already established an equivalence of categories

of representations and sheaves over the complex numbers, the basis of the now eponymous MV

cycles crucial to Mirković and Vilonen’s generalization was new. As such, it readily joined the

ranks of a small but influential group of “good geometric bases” of representations, including:

1. Lusztig’s canonical basis given by simple perverse sheaves on spaces of quiver representa-

tions [Lus90a]

2. Lusztig’s semicanonical basis of constructible functions on Lusztig’s nilpotent variety

[Lus92, Lus00] and its dual basis of generic modules for the preprojective algebra studied

by [GLS05]

3. Nakajima’s basis of cycles in Borel–Moore homology of (Lagrangian subvarieties of) quiver

varieties [Nak01]

Much of the last decade in geometric representation theory has been devoted to the study of

how these bases and their underlying spaces are related. The basic combinatorial structure

that they are known to share is that of a crystal [Kas95]. This includes restricting to bases for

weight spaces and tensor product multiplicity spaces inside weight spaces. The basic geometric

structure that all but Nakajima’s construction are known to share is that of a perfect basis: each

of them behaves well with respect to actions of Chevalley generators, in addition to restriction

and tensor product. Perfect bases were developed by Berenstein and Kazhdan in [BK07] in order

to relate combinatorial crystals with actual bases. In this thesis we will focus on comparing the

basis of MV cycles and the dual semicanonical basis. Both give a perfect basis of the coordinate

ring of the unipotent subgroup, whose crystal, B(∞), is equal to that of the Verma module of

highest weight zero.
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The key to this comparison is the polytope construction Pol of B(∞) conjectured by An-

derson in [And03] and supplied by Kamnitzer in [Kam07]. Due to the inherently geometric

nature of polytopes, the polytope construction of B(∞) reveals further geometric structure in

those crystal bases which admit maps b and Pol such that the triangle

B(∞)

geometric basis polytopes

Polb

Pol

commutes. The basis of MV cycles and the dual semicanonical basis were shown to be two such

bases in [BKT14]. In particular, the moment polytope of an MV cycle Z agrees (up to sign)

with the Harder–Narasimhan polytope of a generic preprojective algebra module M whenever

Z and M define the same element in B(∞).

To probe just how rich the “polytope structure” is, Baumann, Kamnitzer and Knutson, in

[BKK19], associate measures to perfect (actual) basis elements, and ask whether equal polytopes

have equal equivariant volumes.

Question. If M and Z define the same polytope, P , do they define the same measure, D, on

P?

For an element of the dual semicanonical basis, the measure D manifests as a piecewise

polynomial measure whose coefficients are Euler characteristics of composition series in the

corresponding module. ComputingD, givenM , is an exercise in basic hyperplane arrangements.

For an element of the basis of MV cycles, D can be reinterpreted as the Duistermaat–

Heckman measure of the corresponding MV cycle. This turns out to be related to equivariant

multiplicity. Given a local coordinate system, equivariant multiplicities are straightforward to

compute. To find a local coordinate system in type A, we rely on [MV07].

Mirković and Vybornov, in [MV07], showed that certain subvarieties of the affine Grassman-

nian of GLm are isomorphic to slices of N×N nilpotent matrix orbits which we will temporarily

denote O ∩ T. Here N depends on the connected component of the affine Grassmannian that

we start in. This isomorphism is what we will refer to as the Mirković–Vybornov isomorphism.

Mirković and Vybornov also showed that the slices O ∩ T are isomorphic to affine Nakajima

quiver varieties. Their combined results provide a geometric framework for skew Howe duality,

identifying the natural basis of weight spaces in Nakajima’s construction (“good basis” no. 3

above) with the natural basis of multiplicity spaces in skew Howe dual tensor products arising

from affine Grassmannians (c.f. Section 4.9.2).

In Chapter 5, we utilize the Mirković–Vybornov’s isomorphism to show that MV cycles can

be obtained as projective closures of irreducible components of a half-dimensional subvariety of

O ∩ T. We refer to these irreducible components as generalized orbital varieties.

First, inspired by Spaltenstein’s decomposition of the fixed point set of a flag variety under

a regular unipotent element [Spa76], we prove that generalized orbital varieties are in bijection
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with semistandard Young tableaux.

Theorem A. (Theorem 4.8.2) To each semistandard Young tableau τ we can associate a matrix

variety whose unique top dimensional irreducible component is dense in a generalized orbital

variety. Conversely, every generalized orbital variety is the Zariski closure of such a matrix

variety.

Interesting in its own right, this result lays the groundwork for a systematic description of

ideals of generalized orbital varieties. Paired with the Mirković–Vybornov isomorphism, and

the fact that semistandard Young tableaux can be “embedded” in B(∞), this result enables us

to compute equivariant multiplicities of MV cycles.

Theorem B. (Theorem 5.4.3) Let Xτ be the generalized orbital variety corresponding to the

semistandard Young tableau τ . Let Z̊τ be the image of Xτ under the Mirković–Vybornov iso-

morphism. Then the projective closure of Z̊τ is the MV cycle whose polytope defines the same

element of B(∞) as τ . In other words, we have the following commutative diagram.

tableaux B(∞)

generalized orbital varieties stable MV cycles

In Chapter 6, we present examples of equal basis vectors in types A4 and A5, and we conclude

with an example of inequality in type A5. This chapter is largely based on [BKK19, Appendix

A] which was coauthored with J. Kamnitzer and C. Morton-Ferguson. The calculations involved

are carried out using the computer algebra systems SageMath, Macaulay2 and Singular.

Theorem C. (Theorem 6.5.1) There exists an MV cycle Z and a generic preprojective algebra

module M such that Z and M have equal polytopes, but define different measures, and therefore

distinct vectors in associated representations.

Theorem C is related to the following general conjecture.

Conjecture. For any preprojective algebra module M , there exists a coherent sheaf FM on the

affine Grassmannian that is supported on a union of MV cycles such that

H0(FM ⊗O(n)) ∼= H•(G(M [t]/tn))

is an isomorphism of torus representations. Here G(M [t]/tn) is a variety of submodules for the

preprojective algebra tensored with C[t].

An earlier version of this conjecture motivated a number of recent works by Mirković and

his coauthors on the subject of local spaces. In Chapter 6 we explore a stronger version of the

correspondence dictated by this conjecture called “extra-compatibility”. It matches the coho-

mology of a flag variety of a preprojective algebra module and global sections of a corresponding

MV cycle.
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Chapter 1

Crystals, polytopes and bases

It admits all deformation is justified by

the search for the invariant.

Ozenfant and Le Corbusier

Let G be a complex algebraic simply-laced semisimple adjoint group of rank r and denote

by g its Lie algebra. A g-crystal is a combinatorial object associated to a representation of g.

The B(∞) crystal is associated to the highest weight zero Verma module of g. Historically,

the first construction of this crystal used Kashiwara’s crystal basis for the positive part of the

universal enveloping algebra of g as the underlying set [Kas95].

In this chapter we review the dictionary of combinatorial models for B(∞) that instructs

and warrants subsequent geometric comparisons. Every concrete computation we are able to

carry out starts with a “Lusztig datum”. Traditionally, one uses these data to establish or

compare crystal structure—something which we take for granted. We instead only use these

data as crystal passports, to pinpoint “corresponding” elements in different models.

Towards defining abstract crystals, we begin with an elementary construction of Lusztig’s

canonical basis for the positive part of the universal enveloping algebra of g (which is the same

as Kashiwara’s crystal basis). By dualizing, we meet a “perfect” basis whose underlying crystal

structure is again B(∞). We then explain how to determine Lusztig data in each of the following

models: MV polytopes and generic modules for preprojective algebras; and semistandard Young

tableaux when G is type A.

1.1 Notation

Let B be a Borel subgroup with unipotent radical U and let T be a maximal torus of B. Denote

by b, u and t their Lie algebras. Let P = Hom(T,C×) ⊂ t∗ be the weight lattice of T .

Denote by ∆ ⊂ P the subset of roots (nonzero weights of T on g with respect to the adjoint

action) and by ∆+ ⊂ ∆ the subset of positive roots (weights of T on u with respect to the adjoint

1



Chapter 1. Crystals, polytopes and bases 2

action). Denote by {αi}I ⊂ ∆+ the subset of simple roots (roots that cannot be expressed as

the sum of any two positive roots). Since ∆ is a root system, the simple roots are a basis for

t∗. We denote by Q+ the positive root cone (nonnegative integer linear combinations of simple

roots), and by Q the root lattice (integer linear combinations of simple roots). Note Q ⊆ P .

The positive root cone gives rise to the dominance order on P . This is the partial order λ ≥ µ
defined by the relation {(λ, µ) ∈ P × P

∣∣λ− µ ∈ Q+}.
The simple reflection through the root hyperplane Kerαi is denoted si and the set {si}I

generates the Weyl group W of G which acts on t∗ as well as t. The latter action is defined by

way of a W -invariant bilinear form ( , ) : P ×P → Q. Given α ∈ ∆ its coroot α∨ ∈ t is defined

by the requirement that λ(α∨) = 2 (λ,α)
(α,α) for all λ ∈ P . In particular, the simple coroots {α∨i }I

form a basis for t. Furthermore, the (i, j)th entry of the Cartan matrix of g is given by αj(α
∨
i ).

Indiscriminately, we sometimes also write 〈α∨, λ〉 for the pairing λ(α∨). We denote by ∆∨ the

set of coroots {α∨
∣∣α ∈ ∆}. The pairing 〈 , 〉 : ∆∨ × P → Z extends linearly to a pairing on

t× t∗ which is perfect. In the simply-laced case we will take ( , ) to be the dot product on the

ambient vector space t∗ ∼= Cr so that (α, α) = 2 and λ(α∨) = (α, λ) for all α ∈ ∆.

The fundamental weights {ωi}I are defined by the system {ωi(α∨j ) = δi,j}I×I forming a basis

for t∗ dual to the basis of simple coroots for t. If λ(α∨i ) ≥ 0 for all i ∈ I then λ is called dominant ,

and the subset of all such weights is denoted P+ ⊂ P . It parametrizes finite-dimensional highest

weight irreducible representations of G.

The coweight lattice is denoted P∨ and defined to be the set of coweights ξ such that

λ(ξ) ∈ Z for all λ ∈ P . Equivalently, P∨ = Hom(C×, T ). The fundamental coweights, {ω∨i }I ,
are likewise defined as the basis for t that is dual to the basis of simple coroots for t∗.

Given λ ∈ P+ we denote the irreducible representation of G having highest weight λ by L(λ).

Rather than work with individual representations, we will work in the coordinate ring of the

unipotent subgroup, C[U ]. Fix a highest weight vector vλ ∈ L(λ) and denote by v∗λ : L(λ)→ C
the linear form such that v∗λ(vλ) = 1 and v∗λ(v) = 0 for any weight vector v ∈ L(λ) other than vλ.

Berenstein and Kazhdan [BK07] define Ψλ : L(λ)→ C[U ] by requiring that Ψλ(v)(u) = v∗λ(u ·v)

for any u ∈ U . Thus, Ψ(L(λ)µ) ⊂ C[U ]−λ+µ. In [BK07, Corollary 5.43] they show that Ψλ is a

map of u-representations and that

C[U ] =
⋃
P+

Ψλ(L(λ)) . (1.1.1)

Let ei, fi ∈ g be root vectors of weights αi,−αi, respectively, such that [ei, fi] = α∨i . The

action of u on C[U ] by left invariant vector fields ei · f(u) = d
dt

∣∣
t=0

f(u exp(tei)) gives rise to the

perfect pairing

U(u)× C[U ]→ C

(a, f) 7→ 〈a, f〉 := (a · f)(1U ) .
(1.1.2)

Here U(u) denotes the universal enveloping algebra of u. Generated by the root vectors ei, it is
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graded by Q+, with deg ei = αi for any i ∈ I. The conjugation action of T on U makes C[U ]

into a Q+ graded algebra, too, and the pairing defined by Equation 1.1.2 induces isomorphisms

C[U ]−ν ∼= U(u)∗ν (1.1.3)

for all ν ∈ Q+.

We denote by s̄i the lift exp(−ei) exp(fi) exp(−ei) of si ∈W to G for any i ∈ I. By [Tit66,

Proposition 3], the set {s̄i}I satisfies the braid relations, so the lift w̄ makes sense for any

w ∈W . Fix a longest element w0 ∈W and write ` for its length. Note ` = #∆+ = dimU . We

call i = (i1, . . . , i`) a reduced word if w0 = si1 · · · si` is a reduced expression. Reduced words

induce convex orders on ∆+ where convex order means that the sum of any two positive roots

α+ β falls between α and β. To a reduced word i and a number 0 ≤ k ≤ `, we can associate:

• the expression si1 · · · sik , denoted w
i
k, and

• the positive root w
i
k−1αik , denoted β

i
k.

Not to be confused with the longest element, the value of w
i
k when k = 0 is defined to be the

identity element e ∈ W . With this notation the convex order on ∆+ coming from i is the

enumeration

β
i
1 ≤ β

i
2 ≤ · · · ≤ β

i
` . (1.1.4)

Example 1.1.1. Let g = sl3 and take i = (1, 2, 1) then

β1 = α1 ≤ β2 = s1α2 = α1 + α2 ≤ β3 = s1s2α1 = s1(α1 + α2) = α2 .

As a consequence of Equation 1.1.3, we have that C[U ] ∼= U(u)∗ as u-modules, making C[U ]

a representation which has the B(∞) “crystal structure”.

Definition 1.1.2. [Kas95] The data of a combinatorial g-crystal is a set B endowed with a weight

map wt : B → P and a family of maps

ẽi, f̃i : B → B t {0} εi, ϕi : B → Z (1.1.5)

for all i ∈ I, such that 〈α∨i ,wt(b)〉 = ϕi(b)− εi(b) for all b ∈ B. The element 0 is added so that

ẽi and f̃i are everywhere defined. Otherwise, the operators ẽi, f̃i are mutually inverse partial

bijections such that

b′′ = ẽib
′ ⇐⇒ f̃ib

′′ = b′ (1.1.6)

and then

wt(b′′) = wt(b′) + αi εi(b
′′) = εi(b

′)− 1 ϕi(b
′′) = ϕi(b

′) + 1 (1.1.7)

B is called upper semi-normal if, for all b ∈ B and for all i ∈ I, there exists n ∈ N such that

ẽni b = 0 and εi(b) = max{k
∣∣ẽki b 6= 0}. In other words, p = εi(b) is the largest integer such that

ẽpi b is defined, and, for all n ≥ p+ 1, ẽni b = 0.
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1.2 Lusztig data as an artifact of quantization

As the section title suggests, quantum groups play an auxiliary role for us: they are used to

define a Lusztig datum of an element of B(∞). According to Lusztig [Lus10], “the theory of

quantum groups is what led to extremely rigid structure, in which the objects of the theory

are provided with canonical bases with rather remarkable properties” specializing for q = 1 to

canonical bases for objects in the classical theory. Our exposition is based on [Tin17].

Let Uq(g) be the quantized universal enveloping algebra of g. Its standard generators over

C(q) are denoted {Ei, Fi,K±1
i }I in analogy with the root vectors {ei, fi, α∨i }I generating the

classical enveloping algebra, which can be obtained from Uq(g) by taking q = 1.

Two elements of the index set, i, j ∈ I, are said to be connected if they are joined by an

edge in the Dynkin diagram of g. The “upper triangular” C(q)-subalgebra of Uq(g) is generated

by {Ei}I subject to the following relations.

E2
i Ej + EjE

2
i = (q + q−1)EiEjEi if i, j are connected, and EiEj = EjEi otherwise. (1.2.1)

We denote this algebra U+
q (g). The abstract braid group is employed in the very elementary

construction of a family of PBW bases for U+
q (g), one for each choice of reduced word.

Let 〈Ti〉I be a presentation of the abstract braid group on #I strands. and define

Ti · Ej =


Ej i 6= j not connected

EiEj − q−1EjEi i, j connected

−FjKj i = j .

(1.2.2)

Fix a reduced word i = (i1, . . . , i`) and consider

E
i
1 := Ei1

E
i
2 := Ti1 · Ei2

E
i
3 := Ti1Ti2 · Ei3

... .

(1.2.3)

Each E
i
k is a weight vector in Uq(g) of weight β

i
k.

For n ≥ 1 we denote by [n] the quantum integer qn−1 + qn−3 + · · ·+ q−n+3 + q−n+1 and by

[n]! the quantum factorial [n][n−1] · · · [2][1]. Note, when q = 1, [n] = n and [n]! = n!. Consider

the set

Bi =

{
E

i
1

(n1)
E

i
2

(n2)
· · ·Ei

`

(n`)∣∣n1, . . . , n` ∈ N
}
, (1.2.4)

with X(n) denoting the divided power Xn/[n]!. Given n ∈ N` we will sometimes denote by

Ei(n) the element E
i
1

(n1)
E

i
2

(n2)
· · ·Ei

`

(n`)
.
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Example 1.2.1. Let g = sl3 and take i = (1, 2, 1) and i′ = (2, 1, 2). Then

(E
i
1, E

i
2, E

i
3) = (E1, E1E2 − q−1E2E1, E2)

(E
i′

1 , E
i′

2 , E
i′

3 ) = (E2, E2E1 − q−1E1E2, E1)

and (β
i
1, β

i
2, β

i
3) = (α1, α1 + α2, α2) and (β

i′

1 , β
i′

2 , β
i′

3 ) = (α2, α2 + α1, α1).

Theorem 1.2.1. [Lus90b, Propositions 1.8 and 1.13] Bi is a C(q)-linear PBW basis of U+
q (g)

for any choice of reduced word i.

The exponent n = (n1, . . . , n`) on the element Ei(n) of Bi is called its i-Lusztig datum and

we say that n has weight ν if ν =
∑

k nkβ
i
k.

The PBW bases in general do not have crystal structure, but can be used to define a basis

which does, whose elements can be represented uniquely by elements of Bi for every i as follows.

Theorem 1.2.2. [Lus90a, Proposition 2.3(b)–(c)] The Z[q−1]-submodule of U+
q (g) generated

by the basis Bi does not depend on the choice of i. It is denoted L. Similarly, the set Bi + q−1L
is a Z-basis of the quotient L/q−1L independent of i.

The extremely rigid structure underlying the family {Bi + q−1L} is uniquely specified if we

add the requirement that it be invariant with respect to an algebra antihomomorphism. We fix

the bar antihomomorphism ¯ : U+
q → U+

q defined by q̄ = q−1 and Ēi = Ei.

For each n ∈ N`, there is a unique bar-invariant element

bi(n) =
∑
m∈N`

c(n,m)Ei(m) (1.2.5)

with c(n, n) = 1 and c(n,m) ∈ q−1Z[q−1] for any m 6= n. Together the elements {bi(n)}n∈N`
form Lusztig’s canonical basis B of U+

q (g). Remarkably, it does not depend on the choice of i.

Theorem 1.2.3. [Lus90a, cf. Theorem 3.2] B is the unique basis of U+
q (g) such that

(i) B ⊂ L and B + q−1L is a Z-basis of L/q−1L agreeing with Bi + q−1L for any i.

(ii) B is pointwise bar invariant.

This theorem provides a family of inverse bijections to the defining parametrization of B in

Equation 1.2.5: the i-Lusztig datum of a canonical basis element, b 7→ ni(b), where n = ni(b) is

such that Ei(n) ≡ b mod q−1L.

Specializing B at q = 1 gives a basis of U(u) whose dual basis is a basis of C[U ] having

enough nice properties to merit a definition (c.f. [Lus90a, Theorems 1.6, 7.5]). But first, by

a slight abuse of notation, let us denote this dual basis B(∞) because it is the prototypical

construction and our landmark model of the B(∞) crystal structure.
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Definition 1.2.2. [BK07, Definition 5.30] B ⊂ C[U ] is called a perfect basis if it is a C-linear

basis of C[U ] endowed with an upper semi-normal crystal structure and having the following

properties.

• The constant function 1U belongs to B.

• Each b ∈ B is homogeneous of degree wt(b) with respect to the Q+ grading of C[U ].

• For each i ∈ I and for each each b ∈ B, the expansion of ei · b in the basis B has the form

ei · b = εi(b)ẽi(b) + SpanC({b′ ∈ B
∣∣εi(b′) < εi(b)− 1}) . (1.2.6)

Indeed, B(∞) is a pefect basis of C[U ], and the following theorem allows us to define (a

family of) bijections B → B(∞)→ N` for any perfect basis B of C[U ].

Theorem 1.2.4. [BK07, Theorem 5.37] Let B and B′ be two perfect bases of C[U ]. Then there

is a unique bijection B ∼= B′ that respects the crystal structure.

One consequence of this thesis is that perfect bases are not unique, and Theorem 1.2.4

justifies our comparison of two particular perfect bases on combinatorial grounds.

1.3 Three models for B(∞)

Here we describe three models for the B(∞) crystal structure (underlying the B(∞) dual

canonical basis); two in the simply-laced case, and one in type A. Each comes with its own

notion of Lusztig data (the southeasterly arrow below)

model B(∞)

N`
ni

b

ni

(1.3.1)

and the requirement that the above triangle commute for every reduced word i uniquely deter-

mines the horizontal arrow.

1.3.1 MV polytopes

We begin with the MV polytopes. This part of the exposition is based on [Kam07, Kam10].

Let Γ denote the set of Weyl orbits of fundamental coweights, aka chamber coweights, and

let M• = {Mγ}Γ be a collection of integers. Recall that aij = αj(α
∨
i ) are the entries of the

Cartan matrix of g.

M• is said to satisfy the edge inequalities if

Mwω∨i
+Mwsiω∨i

+
∑
j 6=i

ajiMwω∨j
≤ 0 (1.3.2)
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for all i ∈ I and for all w ∈W .

For completeness we recall here a convenient characterization of the Bruhat order on W .

Let u,w ∈ W be arbitrary, and fix a reduced expression w = si1 · · · sib . Then u ≤ w if and

only if there exists a reduced expression u = sj1 · · · sja such that (j1, . . . , ja) is a subword of

(i1, . . . , ib).

Let (w, i, j) ∈W × I × I be such that w ≤ wsi, w ≤ wsj in the Bruhat order, and suppose

i 6= j. M• is said to satisfy the tropical Plücker relation at (w, i, j) if aij = 0, or aij = aji = −1

and

Mwsiω∨i
+Mwsjω∨j

= min{Mwω∨i
+Mwsisjω∨j

,Mwsjsiω∨i
+Mwω∨j

} . (1.3.3)

The edge inequalities and tropical Plücker relations are due to Kamnitzer and can be found in

[Kam10], which covers groups that aren’t simply-laced as well.

Definition 1.3.1. M• is called a BZ (Berenstein–Zelevinsky) datum of weight (λ, µ) if

(i) M• satisfies the tropical Plücker relations,

(ii) M• satisfies the edge inequalities,

(iii) Mω∨i
= 〈µ, ω∨i 〉 and Mw0ω∨i

= 〈λ,w0ω
∨
i 〉 for all i.

BZ data define MV polytopes in t∗R = P ⊗R as follows. Given a BZ datum M• = (Mγ)Γ of

weight (λ, µ) we define for each w ∈W the weight µw ∈ t∗R by requiring that 〈µw, wω∨i 〉 = Mwω∨i

for each i ∈ I. Then

P (M•) = {ν ∈ t∗R
∣∣〈ν, γ〉 ≥Mγ for all γ ∈ Γ} = Conv({µw

∣∣w ∈W}) (1.3.4)

is an MV polytope of weight (λ, µ). Here Conv denotes convex hull. If µ ≤ λ in the dominance

order then we say that P (M•) has lowest vertex µe = µ and highest vertex µw0 = λ. Otherwise

P (M•) is empty.

Example 1.3.2. Let G = PGL2 and W = 〈s〉 = {e, s}, Then we can represent a coweight

(a, b) mod (1, 1) ∈ P∨ by the number a − b. In particular, the chamber coweights are ω∨ = 1

and sω∨ = −1. The tuple M• = (Mω∨ ,Msω∨) satisfies the edge inequalities ifMω∨ +Msω∨ = Mω∨ +Msω∨ ≤ 0 w = e

Msω∨ +Mω∨ = Msω∨ +Mω∨ ≤ 0 w = s .

The tropical Plücker relations hold automatically, so M• makes sense as a BZ datum of weight

(λ, µ) if and only if Mω∨ = µ, Msω∨ = −λ and µ ≤ λ. The corresponding MV polytope has

vertices µe = µ and µs = λ.

P (M•) = {ν
∣∣〈ν, ω∨〉 ≥Mω∨ , 〈ν, sω∨〉 ≥Msω∨} = {ν

∣∣µ ≤ ν ≤ λ} .
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The i-Lusztig datum of an MV polytope P (M•) is the tuple ni(M•) ∈ N` defined by

n
i
k(M•) = −M

w
i
k−1ω

∨
ik

−M
w

i
kω
∨
ik

−
∑
j 6=i

ajiMw
i
kω
∨
j
. (1.3.5)

The weights {µik := µ
w

i
k
}0≤k≤` determine the path µ

i
0 = µ → µ

i
2 → · · · → µ` = λ in the

1-skeleton of P (M•) and one can show that nk is the length of the kth leg of the path,

µ
i
k − µ

i
k−1 = nkβ

i
k . (1.3.6)

Note that under our assumptions on G, Q = P and so the MV polytopes lie in Q, and can be

translated to lie in Q+.

Example 1.3.3. Continuing with G = PL2, we have no choice but to take i = (1), and then

n1 = −Mω∨ −Msω∨ = −µ − (−λ) = λ − µ. Indeed, this is also the length of the only edge of

P (M•)—itself!

An MV polytope of weight (ν, 0), i.e. one whose lowest vertex µe = 0, is called stable and

the collection of all such polytopes is denoted P.

Example 1.3.4. Let G = PGL3. Consider the stable MV polytope S of weight (α1, 0). It has

Mω∨1
= 0 Mw0ω∨1

= 0

Mω∨2
= 0 Mw0ω∨2

= −1 .

Since S is just a line segment, we can infer from the conditions

〈ν, s1ω
∨
1 〉 ≥Ms1ω∨1

and 〈ν, s2ω
∨
2 〉 ≥Ms2ω∨2

on ν ∈ P that Ms1ω∨1
= −1 and Ms2ω∨2

= 0. Note, the (this time, nontrivial) tropical Plücker

relation

−1 + 0 = Ms1ω∨1
+Ms2ω∨2

= min(Mω∨1
+Ms1s2ω∨2

,Mω∨2
+Ms2s1ω∨1

) = min(0− 1, 0 + 0)

is satisfied.

The following theorem of Kamnitzer characterizes the set of all stable MV polytopes ac-

cording to their Lusztig data.

Theorem 1.3.1. [Kam10, Theorem 7.1] Taking i-Lusztig datum is a bijection P → N`.

Example 1.3.5. Once again take G = PGL3. The stable MV polytopes of weight (α1 + α2, 0)

are depicted below.

α1

α1 + α2

α2

α1 + α2
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With respect to the reduced word i = (1, 2, 1) their Lusztig data are (1, 0, 1) and (0, 1, 0)

respectively.

1.3.2 The dual semicanonical basis

Let (I,H) denote the double of the simply laced Dynkin quiver of G. Given h = (i, j) ∈ H, let

h̄ denote the oppositely oriented edge (j, i). To each edge h we attach a “sign” ε(h) ∈ {1,−1}
such that ε(h) + ε(h̄) = 0.

Definition 1.3.6. The preprojective algebra A is the quotient of the path algebra of Q by the

relation ∑
h∈H

ε(h)hh̄ = 0 . (1.3.7)

Thus, an A-module is an I-graded vector space M =
⊕

i∈IMi together with linear maps

{M(i,j) : Mi →Mj}(i,j)∈H

such that ∑
j:(i,j)∈H

ε(i, j)M(j,i)M(i,j) = 0 (1.3.8)

for all i ∈ I.

In type A we depict such modules by stacking dimMi digits i over each i ∈ I and drawing

arrows connecting the digits in adjacent columns. The digits denote basis vectors, and the

arrows may be adorned with small matrices indicating the actions Mh of h ∈ H. If an arrow

is unadorned, then the generic action is understood. In particular, the arrows are always

injections.

Example 1.3.7. Consider the module M = 1 → 2 for the preprojective algebra of the Dynkin

quiver of type A2. Once we fix ei ∈ Mi \ {0} for i = 1, 2, i.e. a basis of M , the action of A on

M is well-defined by M = 1→ 2:

(1, 2)e1 = e2 (1, 2)e2 = 0 (2, 1)M = 0 .

Identifying the vertex set I with the set of simple roots αi in ∆+, we denote by dim−−→M

the graded dimension
∑

I dimMiαi of a module. In particular, the module that has dimension

vector αi is called the simple module supported at i and denoted Si. The map dim−−→ thus gives

an isomorphism of the Grothendieck group of the category of A-modules and the root lattice

Q).

Given ν =
∑

I νiαi ∈ Q+, let Eν =
⊕

(i,j)∈H Hom(Cνi ,Cνj ). The adjoint action of
∏
I GLνi

on Eν has moment map ψ = (ψi)I : Eν →
∏
I glνi defined by

ψi(x) =
∑

j:(i,j)∈H

ε(i, j)x(j,i)x(i,j) . (1.3.9)
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The closed subvariety of points x ∈ Eν such that ψi(x) = 0 for all i ∈ I is called Lusztig’s

nilpotent variety of type ν and denoted Λ(ν). Its irreducible components are denoted Irr Λ(ν).

We view points x ∈ Λ(ν) as modules by sending x(i,j) ∈ Hom(Cνi ,Cνj ) to M(i,j) such that

in some basis of M the matrix of M(i,j) is equal to the matrix of x(i,j) in the standard basis of

⊕ICνi .
Fix ν =

∑
νiαi ∈ Q+ having height

∑
i νi = p. The set of all sequences (i1, . . . , ip) such

that
∑p

k=1 αik = ν is denoted Seq(ν). Given M ∈ Λ(ν) and i ∈ Seq(ν), we can consider the

variety Fi(M) of composition series of M of type i,

Fi(M) = {M = M1 ⊇M2 ⊇ · · · ⊇Mp+1 = 0
∣∣Mk/Mk+1 ∼= Sik} . (1.3.10)

The varieties defined by Equation 1.3.10 complement the paths of (co)weights in the 1-skeleton

of an MV polytope witnessed in section 1.3.1 and will be used to define the dual semicanonical

basis.

Let χ denote the topological Euler characteristic. Given Y ∈ Irr Λ(ν), we say that M is a

general point in Y if it is generic for the constructible function M 7→ χ(Fi(M)) on Y , i.e. if it

belongs to the dense subset of points of Y where χ(Fi(M)) is constant.

Consider the function ξM ∈ C[U ] that is defined by the system

〈ei, ξM 〉 = χ(Fi(M)) i ∈ Seq(ν) (1.3.11)

where ei is shorthand for the product ei1ei2 · · · eip ∈ U(u). The following result is an immediate

consequence of the definition and will come in handy in Chapter 6.

Lemma 1.3.2. Given M,M ′ ∈ Λ, we have ξMξM ′ = ξM⊕M ′.

Since

Λ(ν)→ C[U ]−ν M 7→ ξM . (1.3.12)

is constructible, for any component Y ∈ Irr Λ(ν), we can define cY ∈ C[U ]−ν by setting cY = ξM

for any any choice of general point M in Y . Note that cY ∈ C[U ]−ν since deg ei = ν for all

i ∈ Seq(ν).

We write Λ for the disjoint union
⋃
Q+

Λ(ν) and Irr Λ for the set of all irreducible components⋃
Q+

Irr Λ(ν). Irr Λ indexes the dual semicanonical basis B(Λ) = {cY }Irr Λ.

Saito, in [Sai02], defined a crystal structure on Irr Λ and showed that it was the B(∞)

crystal structure. The following result of Lusztig [Lus00] is an upgrade of Saito’s result. See

also [BKK19, Theorem 11.2].

Theorem 1.3.3. The set B(Λ) is a perfect basis of C[U ].

By Theorem 1.2.4, Theorem 1.3.3 implies that B(Λ) is in unique bijection with B(∞).
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Example 1.3.8. Let’s examine some of the ingredients of this section in the case G = PGL3.

The preprojective algebra A attached to the A2 quiver

• •
h

h̄

is the algebra generated by the arrows h and h̄ subject to the relations hh̄ = 0 and h̄h = 0.

The resulting nilpotent variety has connected components

Λ(ν1, ν2) = {(xh, xh̄) ∈ Hom(Cν1 ,Cν2)⊕Hom(Cν2 ,Cν1)
∣∣xhxh̄ = 0 and xh̄xh = 0} ,

indexed by roots ν = ν1α1 + ν2α2 ∈ Q. For instance, the connected component of Λ made up

of those modules which have dim−−→M = α1 +α2 decomposes into two irreducible components as

follows.

{(xh, xh̄) ∈ C2
∣∣xhxh̄ = 0} = {xh = 0}

⊔
{xh̄ = 0} = {1 λ←− 2}

⊔
{1⊕2}

{1 λ−→ 2} = C×
⊔
{0}

C× .

Definition 1.3.9. The HN (Harder–Narasimhan) filtration of a module M ∈ Λ is defined to be

the unique decreasing filtration

M = M1 ⊃M2 ⊃ · · · ⊃M ` ⊃M `+1 = 0 (1.3.13)

such that Mk/Mk+1 ∼= (B
i
k)
⊕nk for all 1 ≤ k ≤ `, and the i-Lusztig datum of M , ni(M), is the

tuple of multiplicities ni(M)k = nk. Here B
i
k is a certain indecomposable module of dimension

β
i
k. Just like β

i
k is obtained by applying a sequence of reflections to αk, B

i
k is built up from

the simple module Sk by applying a sequence of reflection functors. For further details, see

[BKT14, Theorem 5.10(i), Example 5.14]. For the slope-theoretic definition of an HN filtration,

see [BKT14, §1.4].

It turns out that ni is also constructible, and we can define ni(Y ) by ni(M) for any M that

is a general point in Y .

Theorem 1.3.4. [BKT14, Remark 5.25(ii)] Taking i-Lusztig datum is a bijection Irr Λ→ N`.
It agrees with the composite map Irr(Λ)→ B(∞)→ N`.

Example 1.3.10. Continuing with the previous example, fix the reduced word i = (1, 2, 1). The

indecomposable modules for this choice of reduced word are B1 = 1, B2 = 1← 2, and B3 = 2.

We would like to use the definition to find the Lusztig data of Irr Λ(α1 + α2). M = 1← 2 has

HN filtration M ⊃M ⊃ 0 ⊃ 0. The resulting “HN table” of Bk-subquotients is

M1/M2

M2/M3

M3

=
0
B2

0
.
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Therefore the component of Λ(α1 + α2) for which M is generic has Lusztig datum (0, 1, 0).

Similarly, the component for which M = 1→ 2 is generic has Lusztig datum (1, 0, 1), since M

has HN filtration M ⊃ B2 ⊃ B2 ⊃ 0, and, hence, HN table

M1/M2

M2/M3

M3

=
B1

0
B2

.

Henceforth, we will represent modules and their HN filtrations by HN tables.

Definition 1.3.11. Let Y ∈ Irr Λ and take M ∈ Y generic. The set

ν − Conv({dim−−→N
∣∣N ⊆M as A-submodule}) (1.3.14)

is called the HN polytope of Y and denoted Pol(Y ). Pol is yet another constructible map.1

Example 1.3.12. Take ν = α1 + α2. We can check that the HN polytopes of Irr Λ(ν) match up

with the MV polytopes computed in Example 1.3.5 according to their Lusztig data.

ν − Conv({dim−−→N
∣∣N ⊂ 1→ 2}) ν − Conv({dim−−→N

∣∣N ⊂ 1← 2})

= ν − Conv({dim−−→ 0,dim−−→ 2,dim−−→ (1→ 2)}) = ν − Conv({dim−−→ 0,dim−−→ 1,dim−−→ (1← 2)})

= ν − Conv({0, α2, α1 + α2}) = ν − Conv({0, α1, α1 + α2})

= Conv({α1 + α2, α1, 0}) = Conv({α1 + α2, α2, 0})

1.3.3 Semistandard Young tableaux

The final model we consider is only available in type A. We therefore fix throughout this section

G = PGLm. Consider the set of Young diagrams having at most m − 1 rows. Later we will

identify this set with the set of dominant coweights of G.

Y(m) = {λ = (λ1, . . . , λm) ∈ Zm
∣∣λ1 ≥ · · · ≥ λm = 0} . (1.3.15)

Given λ ∈ Y(m), we can consider the set of semistandard Young tableaux of shape λ, which we

denote by T (λ). We say that τ ∈ T (λ) has “coweight” µ = (µ1, . . . , µm) ∈ Nm if it has µ1 1s,

µ2 2s,. . . , and µm ms and we write T (λ)µ for the set of semistandard Young tableaux of shape

λ and coweight µ.

Given such a tableau τ ∈ T (λ)µ, we write τ (i) for the tableau obtained from τ by deleting

all boxes numbered j for any j > i, and we write λ
(i)
τ for its shape. The list of tuples (λ

(i)
τ )

1In [BKT14] the HN polytope of a module M is defined as Conv({dim−−→N
∣∣N ⊆ M as A-submodule}). The

discrepancy is due to the way we filter our modules by quotients instead of submodules. Indeed, we could equally
have defined our polytope as Conv({dim−−→N

∣∣N is a quotient of M}).
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(when it is arranged in a triangular configuration that looks locally like

λ
(i)
k

λ
(i+1)
k λ

(i+1)
k+1

satisfying λ
(i+1)
k+1 ≤ λ

(i)
k ≤ λ

(i+1)
k for all 1 ≤ k ≤ µ1 + · · ·+ µi, for all 1 ≤ i ≤ m− 1) is referred

to by Berenstein and Zelevinsky in [BZ88, §4] as the GT (Gelfand–Tsetlin) pattern of τ . It is

needed to define the Lusztig datum of τ .

Throughout this thesis we will only work with the reduced word i = (1, 2, . . . ,m−1, . . . , 1, 2, 1).

For this reason we omit it from the notation, writing n( ) in place of ni( ) and βk in place of

β
i
k. This choice yields n(τ) = (n1, . . . , n`) where

nk = λ
(j)
i − λ

(j−1)
i whenever k is such that βk = αi + · · ·+ αj .

Other choices of reduced word will result in a more complicated (possibly piecewise linear)

formula for n(τ). We will sometimes write n(i,j) for nk and αi,j for βk.

Example 1.3.13. The tableau
1 1 2
2 3 3

has GT pattern

λ
(1)
1

λ
(2)
1

λ
(3)
1

λ
(2)
2

λ
(3)
2 λ

(3)
3

=
2

3

3

1

3 0

and Lusztig datum n(τ) = (1, 0, 2). Note, n(τ) can be easily read off of the GT pattern of τ : it

is the string of Southwesterly differences starting with (the top of) the left side of the triangle,

and moving inward toward the bottom right corner, as pictured below.

1

0 2

2

3

3

1

3 0

Theorem 1.3.5. (cf. [CT15, Theorem 3.11]) There exists an embedding T (λ) → B(∞) such

that the composite map T (λ) → B(∞) → N` is given by τ 7→ n(τ). Conversely, given n ∈ N`

of weight ν ∈ Q, there exists µ ∈ P and τ ∈ T (ν + µ) such that n(τ) = n and the shape of τ is

the smallest possible. In particular, ν + µ is effective dominant.

Let us describe the embedding T (λ)→ B(∞) in terms of the so-called multisegment model

for B(∞).

A multisegment is a collection of segments [i, j] for various 1 ≤ i ≤ j ≤ m − 1 allowing

multiplicity. The basic segments [i, j] are in bijection with the simple roots αi,j . We depict

them as columns of height j− i+1 having base i. The i-Lusztig datum of a multisegment is the
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tuple of multiplicities with which the basic segments [i, j] occur in it. The tuple is ordered so

that the multiplicity of a segment [i, j] precedes the multiplicity of a segment [i′, j′] whenever

αi,j ≤i αi′,j′ in the convex order on ∆+ induced by i. The tableau τ ∈ T (λ) determines the

multisegment whose i-Lusztig datum is equal to that of τ .

The true value of the multisegment model for us is it is convenient for describing the partial

inverse B(∞) 99K T (λ) gauranteed by the second half of Theorem 1.3.5. Consider the following

example.

Example 1.3.14. In type A5 we fix the reduced expression i = (1, 2, 3, 4, 5, 1, 2, 3, 4, 1, 2, 3, 1, 2, 1)

and take n = (0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0). This determines the multisegment m depicted

below.

3
5
4

2
1

4
3
2

Note that the columns (basic segments) are strategically ordered such that they are increasing

in height and decreasing in base, with height taking priority. From this picture we can compute

ε∗2(m) = ε∗4(m) = 1 and all other ε∗i (m) = 0.

These quantities2 are calculated by placing “(” under each segment with base i, “)” under

each segment with base i+ 1, and counting the unpaired “(”s. Here, a “(” and a “)” are called

paired if the “(” is directly to the left of the “)”, or if the only parentheses between them are

paired.

For example, to see that ε∗2(m) = 1, we note that there is only one column with base 2. We

count ε∗2(m) = 1 unpaired open parenthesis:

3
)

5
4

2
1

4
3
2
(

The tuple (ε∗i (m)) contains the information of the smallest possible λ such that some τ ∈
T (λ) has Lusztig datum equal to that of m. Namely, λ =

∑
ε∗i (m)ωi. In this case, the smallest

possible shape of a tableau having prescribed Lusztig datum n is therefore ω2 +ω4 = (2, 2, 1, 1)

and the unique such tableau is
1 3
2 5
4
6

The reader can check that the GT pattern of τ does in fact yield Lusztig datum n.

2Related to εi appearing in the definition of a crystal; see [CT15] for details.
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1.4 More type A show and tell

As our creative take on a leitfaden, let us summarize the entirety of the data we will have

covered by the end of this thesis, in the context of our running G = PGL3 example of weight

ν = α1 + α2, including Example 1.3.7. Take the reduced word i = (1, 2, 1) and zoom in on the

Lusztig datum n = (1, 0, 1).

1→ 2 ∈ Λ

(1, 0, 1) ∈ N` z ∈ C[U ] 1
α1(α1+α2) ∈ C(treg)

P2 ∈ IrrSν+ ∩ S0
−

1 2
3

∈ T (λ) {b = 0} ∈ IrrOλ ∩ n

Theorem 1.3.3

Eq. 3.5.1

Theorem 1.3.5

Theorem 1.3.4

Ch. 2

Ch. 3

Prop. 2.2.1

Eq. 3.5.4

Ch. 4

Ch. 5

Figure 1.1. Leitfaden

Here Oλ is the nilpotent orbit of 3×3 matrices having Jordan type λ = (2, 1), n is the set of

upper triangular matrices with coordinates
[

0 a c
0 0 b
0 0 0

]
, and U is the set of unitriangular matrices

with coordinates
[

1 x z
0 1 y
0 0 1

]
.

By the end of Chapter 5, the reader should be able to fill in the complementary data

associated to the other i-Lusztig datum of weight ν, n = (0, 1, 0).

The MV polytope model is absent from our spaghetti map because, while necessary to

make sense of the measures defined in Chapter 3, the information it contains is equivalent to

the information of the Lusztig data.

We conclude this chapter with a playful attempt to make up for this gap by presenting one

of the five polytopes of weight ν = α1 + 2α2 + α3 in type A3. Let M ∈ Λ(ν) be a module of

the following form.

1

22

3

Then, with respect to i = (1, 2, 3, 1, 2, 1), M has HN table

0
1← 2

0
2
0
3
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and, hence, i-Lusztig datum (0, 1, 0, 1, 0, 1). The HN polytope of M—also the MV polytope

with this Lusztig datum—is depicted below.

α1 + α2

α2 + α3

α2

Figure 1.2. The polytope of M ,
Conv({0, α2 + α3, 2α2, 2α2 + α3, α1 + α2, α1 + 2α2, α1 + 2α2 + α3})



Chapter 2

Background on the affine

Grassmannian

In this chapter we introduce the second perfect basis with which this thesis is concerned. Its

definition requires a bit more setup.

2.1 MV cycles as a basis of L(λ)

Let G∨ denote the canonical smooth complex semisimple simply connected group whose root

datum is dual to that of G. (See [Dem65] for the construction.) G∨ comes with a maximal

torus whose coweight lattice is P , the weight lattice of G. Our choice of positive and negative

roots provide a pair of dual opposite Borel subgroups B∨± with unipotent radicals U∨±.

Fix the indeterminate t. Let O denote the power series ring C[[t]], and K its fraction field,

the ring of Laurent series C((t)). The affine Grassmannian of G∨ is defined to be the quotient

G∨(K)/G∨(O), and is denoted by Gr. We identify G∨ with its functor of points, so that

G∨(R) = Hom(SpecR,G∨) for any ring R.

More generally, P can be identified with GrT
∨
, the torus fixed points of Gr. The torus T∨

acts on Gr as a subgroup of G∨(K) which acts on Gr by left multiplication.

Given λ ∈ P ≡ Hom(C×, T∨), we denote by tλ its image in T∨(K) and by Lλ its image

tλG∨(O) in Gr. Consider the orbits Grλ = G∨(O)Lλ and Sλ± = U∨±(K)Lλ for any λ ∈ P . The

former are finite-dimensional quasi-projective varieties, while the latter are infinite-dimensional

“semi-infinite cells”. Like Schubert cells in a flag variety, the semi-infinite cells are attracting

for a C× action on Gr.

The geometric correspondence of Mirković and Vilonen describes an equivalence of categories

between representations of G and certain sheaves on Gr, relating the highest weight irreducible

representations L(λ) of G to the G∨(O) orbits Grλ. More precisely, the correspondence proceeds

as follows.

17
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Theorem 2.1.1. [MV07, Proposition 3.10] For each λ ∈ P+ there is a decomposition

IH•(Grλ) =
⊕
µ≤λ

Htop(Grλ ∩Sµ−) (2.1.1)

with IH denoting intersection homology. Moreover,

L(λ)µ ∼= Htop(Grλ ∩Sµ−) (2.1.2)

for all µ ∈ P such that µ ≤ λ.

Let ρ∨ denote the half-sum of positive coroots of G. By [MV07, Theorem 3.2], the intersec-

tion Grλ ∩Sµ− has pure dimension 〈ρ∨, λ − µ〉. Therefore, the set of irreducible components of

Grλ ∩Sµ−, which we denote by Z(λ)µ, gives a basis for the vector space Htop(Grλ ∩Sµ−). These

are called the MV (Mirković–Vilonen) cycles of type λ and weight µ. We denote by Z(λ) the

disjoint union of all MV cycles of type λ, Z(λ) =
⋃
µ≤λZ(λ)µ. Given Z ∈ Z(λ) we write [Z]

for the corresponding basis vector in L(λ) with the isomorphisms in Equation 2.1.2 normalized

so that vλ = [{Lλ}]. Note that {Lλ} = Grλ ∩Sλ−.

2.2 Stable MV cycles as a basis of C[U ]

Consider the basis B(λ) = {[Z]}Z∈Z(λ) of L(λ). We know from Chapter 1 that the family of

bases
⋃
λ∈P+

B(λ) can be studied simultaneously, and in this section we describe how this is

done.

Given ν ∈ Q+, we define the stable MV cycles of weight ν to be the irreducible components

of Sν+ ∩ S0
−. We denote these irreducible components by Z(∞)ν and we denote their disjoint

union
⋃
Q+
Z(∞)ν by Z(∞).

The weight lattice P acts on Gr by left multiplication, with µ · L = tµL for any L ∈ Gr

and for any µ ∈ P . Since tµ ∈ T∨ ⊂ NG(U∨w), this action translates semi-infinite cells, with

ν · Sµw = Sµ+ν
w . In particular, we get an isomorphism of Sν+ ∩ S0

− and Sν+µ
+ ∩ Sµ− and, hence, a

bijection of irreducible components.

By [And03, Proposition 3], an MV cycle of type λ and weight µ can be described as an

irreducible component of Sλ+ ∩ S
µ
− that is contained in Grλ. Thus, the set of stable MV cycles

of weight ν = λ− µ whose µ-translates are contained in Grλ is in bijection with MV cycles of

type λ:

{Z ∈ Z(∞)
∣∣µ · Z ⊂ Grλ} → Z(λ) . (2.2.1)

This observation is key to transporting the family of bases
⋃
λ∈P+

B(λ) to a basis of C[U ].

Proposition 2.2.1. [BKK19, Proposition 6.1] For each ν ∈ Q+ and for each Z ∈ Z(∞)ν ,

there exists a unique element bZ ∈ C[U ]−ν such that, for any µ such that ν + µ ∈ P+,

µ · Z ⊂ Grν+µ =⇒ bZ = Ψν+µ([µ · Z]) ∈ C[U ]−ν . (2.2.2)
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By [BKK19, Proposition 6.2], the elements bZ guaranteed by Proposition 2.2.1 form a perfect

basis of C[U ]. This basis is called the MV basis of C[U ] for it is obtained by gluing the MV

bases of the representations L(λ). We denote it by B(Gr).

2.3 MV polytopes from MV cycles

Let A be a torus and let V be a possibly infinite-dimensional representation of A. Consider a

finite-dimensional A-invariant closed subvariety X of P(V ). We denote the set of A-fixed points

of X by XA and assume that every x ∈ XA is isolated.

The moment polytope of X is defined with the help of the dual determinant line bundle

O(n) → P(V ). O(n) has a natural A-equivariant structure, with the weight of A on the fibre

of O(n) over L = [v] ∈ P(V ) equal to −n times the weight of A on the representative v. This

follows by definition: O(n) has fibres O(n)L = (L⊗n)∗ = (L∗)⊗n and the weight of A on L∗ is

equal to minus the weight of A on L.

Equivariance of O(n) makes the space of sections H0(X,O(n)) into a representation, with

the action of a ∈ A given pointwise by (a · f)(x) = a · f(a−1 · x) for any f ∈ H0(X,O(n)) and

for any x ∈ X.

Given a fixed point x ∈ XA, we denote by ΦA(x) the weight of A on the fibre of O(1) at x.

Since V ∗ ∼= H0(P(V ),O(1)), this is the same as minus the weight of A on v ∈ V for any v such

that [v] = x.

Definition 2.3.1. The moment polytope of the triple (X,A, V ) is given by

Conv({ΦA(x)
∣∣x ∈ XA}) (2.3.1)

and denoted Pol(X).

We would like to apply this general setup to MV cycles. To do so we require a projective

action of A = T∨ on P(V ) that comes from a linear action of T∨ on V . The following exposition

is based on [MV07].

By definition, the roots of G∨ are equal to the coroots ∆∨ of G. Let C× be the subgroup of

automorphisms of K that rotate t. Consider the semidirect product G∨(K) o C× with respect

to this rotation action. It has maximal torus T∨ × C×.

Let Ĝ∨(K) be a central extension of G∨(K) oC× by C×. It turns out that the root system

of Ĝ∨(K) is equal to the root system of G∨(K) o C×. Indeed, the central C× acts by a scalar

called the “level” on any given irreducible representation. Moreover, the eigenspaces of T∨×C×

in the loop Lie algebra g∨(K) are

g∨(K)kδ∨+α∨ = tkg∨α∨ (k ∈ Z, α∨ ∈ ∆∨ ∪ {0})

with δ∨ denoting the character of T∨ × C× which is trivial on T∨ and the identity on C×. It

follows that the root system of G∨(K) is given by nonzero characters of T∨ × C× of the form
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α∨ + kδ∨ for some α∨ ∈ ∆∨ ∪ {0} and for some k ∈ Z.

Consider the level 1 highest weight zero irreducible representation of Ĝ∨(K), denoted L(Λ0).1

Let vΛ0 be a highest weight vector for L(Λ0). Since U∨±, T
∨ and the rotating C× all fix vΛ0 the

map g 7→ gvΛ0 induces an embedding of Gr into P(L(Λ0)). See Proposition 5.5.1.

We can therefore take (X,A, V ) = (Z, T∨, L(Λ0)) for any MV cycle Z. Remarkably, if Z

is an MV cycle of of type λ and weight µ, then applying the moment polytope construction of

Equation 2.3.1 to (Z, T∨, L(Λ0)) results in an MV polytope of weight (λ, µ).

Theorem 2.3.1. ([Kam10, Theorem 3.1]) Let P be an MV polytope with vertices (µw)W .

Then

Z =
⋂
Sµww (2.3.2)

is an MV cycle of weight of type µe and weight µw0, and its moment polytope,

Pol(Z) = Conv({µ
∣∣Lµ ∈ ZT∨}) , (2.3.3)

is such that P = Pol(Z).

It follows that we can define the Lusztig datum of an MV cycle to be the Lusztig datum of its

moment polytope. On the other hand, the proof of this theorem relies on certain constructible

functions which can be used to define Lusztig data of MV cycles directly. In Chapter 5 we will

see explicit formulae for these functions in type A.

As a corollary we see that if Z ∈ Z(∞)ν then Pol(Z) is a stable MV polytope of weight

(ν, 0) having lowest vertex µe = 0 and highest vertex µw0 = ν.

1L(Λ0) is sometimes also called the basic representation



Chapter 3

Further comparison

In this chapter we set up the geometric comparison of the perfect bases B(Gr) and B(Λ) of

C[U ]. We will use the nondegenerate W -invariant bilinear form ( , ) on P fixed in Chapter 1

to identify t∗ and t.

3.1 Measures from C[U ]

In this section we use the pairing defined by Equation 1.1.2 to associate to elements of C[U ]

measures on the real weight lattice t∗R = P ⊗ R. The information of these measures is an

“upgrade” from that of the MV polytopes.

Denote by PP the subspace of distributions on t∗R spanned by linear combinations of

piecewise-polynomial functions times Lebesgue measures on (not necessarily full-dimensional)

polytopes.

Given ν ∈ Q+ with p = ht ν, let i ∈ Seq(ν) and consider the map πi : Rp+1 → t∗R that takes

the kth standard basis vector to the kth partial sum αi1 + · · · + αik for each 1 ≤ k ≤ p. Let

δ∆p denote Lebesgue measure on the standard p-simplex ∆p = {x1 + · · · + xp+1 = 1} in Rp+1

and define Di to be its pushforward along πi.

The measures Di satisfy a “shuffle” product as follows. Given j ∈ Seq(ν ′) and k ∈ Seq(ν ′′),

we have that

Dj ∗Dk =
∑
i∈j�k

Di (3.1.1)

where j� k denotes the set of permutations i of j t k that maintain the same relative order

among elements of j and k. Note, if j has length a and k has length b, then j� k has
(
a+b
a

)
elements, each of which belongs to Seq(ν ′ + ν ′′).

Consider the free Lie algebra f on the set {ei}I . Its universal enveloping algebra U(f) is the

free associative algebra on the set {ei}I . In particular, U(f) is graded by Q+. Moreover, for

each ν ∈ Q+, the set {ei}Seq(ν), with ei denoting the element ei1 · · · eip , is a basis for U(f)ν .

The algebra U(f) is in fact a graded Hopf algebra with finite dimensional components, so

its graded dual (U(f))∗ is also a Hopf algebra. For each ν ∈ Q+ we can consider the dual basis

21
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{e∗i } indexed by i ∈ Seq(ν) for (U(f))∗−ν . From the definition of the coproduct on U(f) we get

the following “shuffle identify” in (U(f))∗

e∗j e
∗
k =

∑
i∈j�k

e∗i . (3.1.2)

There is a unique Hopf algebra map U(f)→ U(u) that sends ei to ei for each i ∈ I. The fact that

the dual map is an inclusion of algebras C[U ]→ (U(f))∗ implies that the map D : C[U ]−ν → PP
defined by

D(f) =
∑

i∈Seq(ν)

〈ei, f〉Di (3.1.3)

extends to an algebra map D : C[U ]→ PP.

We can think of D(bZ) and D(cY ) as measures on Pol(Z) and Pol(Y ), respectively. Indeed,

as shown in [BKK19] and recalled below, (modulo our chosen isomorphism of t∗R and tR,) the

former is exactly the Duistermaat–Heckman measure of Z, and both are supported on their

associated polytopes.

3.2 Measures from Gr

To define the Duistermaat–Heckman measure of an MV cycle we need to identify characters of

representations and measures. Let (X,A, V ) be a triple as in the general setup of Section 2.3.

Given a weight µ of A, let δµ denote the distribution on a∗R defined by δµ(f) = f(µ) for any

f ∈ C∞(a∗R) ⊗ C. Let R(A) denote the representation ring of A and consider the embedding

R(A) → PP which sends the class of an irreducible A-representation to the inverse Fourier

transform of its formal character. (See Section 3.4).

R(A)→ PP [V ] 7→
∑
µ

dimVµ δµ . (3.2.1)

The final ingredient in this definition of the Duistermaat–Heckman measure is the scaling

automorphism τn : µ 7→ µ
n of a∗R.

Definition 3.2.1. The Duistermaat–Heckman measure of (X,A, V ) is defined by

DH(X) = lim
n→∞

1

ndimX
(τn)∗[H

0(X,O(n))] . (3.2.2)

One can check that each τ∗n[H0(X,O(n)], and, hence, DH(X) is supported on Pol(X)

(c.f. [BP90]). For (X,A, V ) = (Z, T∨, L(Λ0)), this means that DH(Z) is supported on the

corresponding MV polytope, the moment polytope of Z, Pol(Z). Together with the following

theorem, this fact ensures that the measures coming from the MV basis B(Gr) are at least

upgrades of MV polytopes, in the sense that taking the support of a measure D(bZ) recoveres

the corresponding MV polytope Pol(Z).
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Theorem 3.2.1. [BKK19, Theorem 10.2] D(bZ) = DH(Z).

3.3 Extra-compatibility

Let Y ∈ Irr Λ. In this section we will see that the measure D(cY ) is also a limit supported on a

polytope. In other words, the comparison of polytopes undertaken in [BKT14] can be enhanced

to a comparison of sequences of measures and their limits.

Let Fn(M) be the space of (n + 1)-step flags of submodules of M and denote by Fn,µ(M)

the locus

Fn,µ(M) = {M = M1 ⊃M2 ⊃ · · · ⊃Mn ⊃Mn+1 = 0
∣∣∑ dim−−→Mk = µ} . (3.3.1)

Then, formally,

[H•(Fn(M))] =
∑
µ

[H•(Fn,µ(M))]δµ (3.3.2)

and one can check that this measure is supported on nPol(M).

Theorem 3.3.1. [BKK19, Theorem 11.4] Let M be a general point in Y of dimension dim−−→M =

ν. Then

D(cY ) = lim
n→∞

1

nρ(ν)
(τn)∗[H

•(Fn(M))] . (3.3.3)

In particular, D(cY ) is supported on Pol(Y ).

Given Z ∈ Z(∞) and Y ∈ Irr Λ having common polytope P , we can thus ask whether

D(cY ) = D(bZ), and, if so, we can ask whether the sequences converging to either measure

are in some sense compatible. We study the strongest possible form of compatibility, dubbed

“extra-compatibility” by the authors of [BKK19]. The pair (Z, Y ) is called extra-compatible if

dimH0(Z,O(n))µ = dimH•(Fn,µ(M)) for all n ∈ N and for all µ ∈ P whenever M is a general

point in Y . In Chapter 6, we present evidence of extra-compatibility in type A.

3.4 Fourier transform of a measure

The equivariant measures developed so far are as yet unwieldy, so in this section we recall

the poor man’s alternative and our equivariant invariant of choice: a coefficient on a Fourier

transform of an equivariant measure.

Definition 3.4.1. The Fourier transform is the map that takes a measure η ∈ PP to the mero-

morphic function FT (η) ∈ C(t) defined by

FT (η)(x) =

∫
t∗R

e〈µ,x〉dη(µ) (3.4.1)

for any x ∈ t.
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One can show that the Fourier transform is one to one, multiplicative on convolution of

distributions, and satisfies FT (δλ) = eλ [BKK19, Lemma 8.6]. Henceforth, we write eµ for the

function x 7→ e〈µ,x〉 and FT (η) for the function x 7→ FT (η)(x).

Given i = (i1, . . . , ip) in Seq(ν), let βij be the partial sum αi1 + · · ·+αij , not to be confused

with the positive root β
i
k depending on a reduced word i defined in Chapter 1.

Lemma 3.4.1. [BKK19, Lemma 8.7]

FT (Di) =

p∑
j=0

eβ
i
j∏

k 6=j(β
i
k − βij)

. (3.4.2)

Let D : C[U ]→ C(t) be the map that takes f ∈ C[U ]−ν to the coefficient of e0 in the Fourier

transform of D(f). By linearity,

D(f) =
∑

i∈Seq(ν)

〈ei, f〉Di (3.4.3)

and, as we can check by inspecting the j = 0 summand of Equation 3.4.2,

Di =

p∏
k=1

1

αi1 + · · ·+ αik
. (3.4.4)

To see that D(f) is a rational function for any f ∈ C[U ], one can rewrite it as follows.

Let x ∈ t. Then x is called regular if 〈α, x〉 6= 0 for all α ∈ ∆. We denote by treg the subset

of regular elements of t and distinguish the regular element e =
∑
ei that is the sum of root

vectors of weight αi.

Theorem 3.4.2. [BKK19, Proposition 8.4] For any x ∈ treg there exists unique ux ∈ U such

that uxxu
−1
x = x+ e. Moreover D can equally be defined as the pullback of the map

treg → U x 7→ ux . (3.4.5)

Namely, D(f)(x) = f(ux).

3.5 Reinterpreting D

Let Y ∈ Irr Λ(ν) and let M be a general point in Y . Then, by definition of cY ,

D(cY ) =
∑

i∈Seq(ν)

χ(Fi(M))Di (3.5.1)

and we refer to the right-hand side as the flag function of Y . More interesting is what we get

when we evaluate D on elements of the MV basis.
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Once again, let (X,A, V ) be a general triple as in Section 2.3. Let S be the multiplicative

set in H•A(V ) ∼= C[a] generated by nonzero weights of A. Then, the inclusion of fixed points

XA → X induces the isomorphism S−1HA
• (XA)→ S−1HA

• (X). In turn, the class of X acquires

the unique fixed point expansion

[X] =
∑
x∈XA

εAx (X)[{x}] (3.5.2)

over S−1C[a]. Following [Bri97], the coefficient εAx (X) is called the equivariant multiplicity of

X at x.

Theorem 3.5.1. [BKK19, Theorem 9.6] Let (X,A, V ) = (Z, T∨, L(Λ0)) with Z an an MV

cycle of weight ν. Then

FT (D(bZ)) =
∑

L∈ZT∨
εT
∨

L (Z)eΦT∨ (L) =
∑

β∈Pol(Z)

εT
∨

Lβ
(Z)eβ . (3.5.3)

In particular,

D(bZ) = εT
∨

L0
(Z) . (3.5.4)

3.6 Equivariant multiplicities via multidegrees

In this section, we see that equivariant multiplicities of MV cycles at fixed points can be

replaced by multidegrees of hyperplane sections. In turn, multidegrees of hyperplane sections

can be replaced by multidegrees of generalized orbital varieties, the subject of the following

chapter.

Let (X,A, V ) be as in Section 2.3. Given p ∈ XA we can choose a weight vector α ∈ V ∗

such that α(p) 6= 0 and {x ∈ X
∣∣α(x) 6= 0} is A-invariant. We write X̊p for X ∩ {α 6= 0} and

W for P(V ) ∩ {α 6= 0}. Note that W has dimension dimV − 1. Taking the projective closure

of X̊p we recover X.

The multidegree of the triple (X̊p, A,W ) is defined to be the unique element mdegW (X̊p) of

H•A(W ) ∼= C[a] such that mdegW (X̊p)[W ] = [X̊p] in H•A(W ). In practice, it can be computed

according to the following list of rules. (See [Jos97, Chapter 2, Lemma 3.2] or [KZJ14].) Given

a hyperplane H ⊂W

• mdegW (X̊p) = mdegX̊p∩H(X̊p ∩H) if X̊p 6⊂ H

• mdegW (X̊p) = mdegW∩H(X̊p) (weight of T on W/H) if X̊p ⊂ H

• mdegW (X̊p) =
∑

C∈Irr X̊p
mdegW (C)

Proposition 3.6.1. [BKK19, Proposition 9.5] If (X,A, V ) and (X̊p, A,W ) are as above, then

mdegW ({p}) is the product of weights of A on W , and we have the following equation in
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H•A(W ) ∼= C[a].

εAp (X) =
mdegW (X̊p)

mdegW ({p})
. (3.6.1)

Let v∗Λ0
be such that v∗Λ0

(v) = 1 if v is the highest weight vector vΛ0 , and v∗Λ0
(v) = 0 if

v is any other weight vector. In other words, v∗Λ0
is projection onto the highest weight space

of L(Λ0). The intersection W = P(L(Λ0)) ∩ {v∗Λ0
6= 0} is an affine space. Moreover, if Z is a

stable MV cycle embedded in P(L(Λ0)), then Z̊ = Z ∩ {v∗Λ0
6= 0} is an open neighbourhood of

L0 ∈ Z.

Proposition 3.6.1 will allow us to compute εT
∨

L0
(Z) using the Mirković–Vybornov isomor-

phism in terms of the multidegree of the triple (Z̊, T∨,W ). But first, we shall pin down Z̊ by

studying generalized orbital varieties.



Chapter 4

Generalized orbital varieties for

Mirković–Vybornov slices

In this chapter we give a Spaltenstein type decomposition of a subvariety of the Mirković–

Vybornov slice that lends itself to coordinatizing MV cycles in type A.

4.1 Setup and context

Fix m ≥ 0. We say that µ = (µ1, . . . , µm) ∈ Zm is effective if µi ≥ 0 for all 1 ≤ i ≤ m. Recall

the notation Y(m) for partitions having at most m parts. Fix a positive integer N ≥ m and

denote by Y(m)N the subset of partitions of (size) N .

Y(m)N = {λ = (λ1 ≥ λ2 ≥ · · · ≥ λm ≥ 0)
∣∣ m∑

1

λi = N} . (4.1.1)

Given λ ∈ Y(m)N we denote by Oλ the conjugacy class of N ×N matrices having Jordan type

λ.

In [MV03], the authors define a family of slices Tµ to Oλ through the Jordan normal forms

Jµ associated to effective dominant weights µ ∈ Y(m)N , with the additional property that

µm 6= 0. They show that the intersection Oλ ∩ Tµ is an irreducible affine variety isomorphic to

a subvariety of the affine Grassmannian. Let n denote the algebra of uppertriangular N × N
matrices.

In this chapter, towards refining this isomorphism of Mirković and Vybornov, we investigate

the half-dimensional subvariety Oλ ∩ Tµ ∩ n of Oλ ∩ Tµ. Our first result is that the set of

irreducible components Irr(Oλ ∩ Tµ ∩ n) is in bijection with semistandard Young tableaux of

shape λ and weight µ.

Recall that given τ ∈ T (λ)µ we denote by λ
(i)
τ the shape of the tableau τ (i) obtained from

τ ∈ T (λ)µ by deleting all entries j > i. Given an N ×N matrix A ∈ Oλ we denote by A(i) the

upper left |λ(i)| × |λ(i)| submatrix of A, with |λ(i)| =
∑i

j=1 λ
(i)
j . The GT pattern (λ(i)) of τ is

27
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used to define a matrix variety X̊τ as follows.

X̊τ =
{
A ∈ Tµ ∩ n

∣∣A(i) ∈ Oλ(i) for 1 ≤ i ≤ m
}
. (4.1.2)

Our first result is that by taking closures of top dimensional components of X̊τ , as τ varies

over the set of semistandard Young tableaux of shape λ and weight µ, we get a complete list of

irreducible components of the transverse intersection Oλ ∩ Tµ ∩ n. Part of this claim appears

in [ZJ15] where it is stated without proof.

We call the closure of the top dimensional component of X̊τ a generalized orbital variety for

the Mirković–Vybornov slice Tµ, for when τ is a standard Young tableau, Tµ = glN and the

decomposition

Oλ ∩ n =
⋃

σ∈T (λ)µ

Xσ (4.1.3)

is a special case of a correspondence established in [Jos84, Corollary 9.14] relating the ordinary

orbital varieties and Spaltenstein’s [Spa76] decomposition of the fixed point set of a unipotent

transformation on a flag variety. In particular, the varieties Xσ recover the ordinary orbital

varieties, as the irreducible components of Oλ ∩ n. In fact, conventions differ about whether

ordinary orbital varieties are subvarieties of n that are dense in a component of Oλ ∩ n or are

the closed irreducible components of Oλ ∩ n. These issues will not be relevant for us and we

will take generalized orbital varieties to be closed.

4.2 Gaining traction

To give a more tractable description of the sets defined by Equation 4.1.2, we will need addi-

tional notation. Fix τ ∈ T (λ)µ and (i, k) ∈ {1, 2, . . . ,m} × {1, 2, . . . , µi}. We denote by λ
(i,k)
τ

(respectively, by µ
(i,k)
τ ) the shape (respectively, the weight) of the tableau τ (i,k) obtained from τ

by deleting all j > i and all but the first k occurrences of i. Here, repeated entries of a tableau

are ordered from left to right, so that the first occurrence of a given entry is its leftmost.

We make the identifications λ
(i)
τ ≡ λ

(i,µi)
τ , µ

(i)
τ ≡ µ

(i,µi)
τ and τ (i) ≡ τ (i,µi) for all i. We also

do away with the subscript τ as (we never work with two tableaux at a time, so) it is always

clear from from the context.

Example 4.2.1. If we take

τ = 1 1 2
2 3

as before, then we find that

τ (2) = 1 1 2
2

has shape λ(2) = (3, 1) and weight µ(2) = (2, 2), while

τ (2,1) = 1 1
2
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has shape λ(2,1) = (2, 1) and weight µ(2,1) = (2, 1).

Now let (e1
1, . . . , e

µ1
1 , . . . , e1

m, . . . , e
µm
m ) be an enumeration of the standard basis of CN which

we call the µ-numeration so as to have something to refer to later. Following [MV03, §1.2],

we define the Mirković–Vybornov slice Tµ through the Jordan normal form Jµ to be the set of

A ∈ glN such that

for all 1 ≤ a, s ≤ m, for all 1 ≤ b ≤ µa , 1 ≤ t ≤ µs ,

if 1 ≤ t < µs or t = µs < b ≤ µa , then (ets)
′(A− Jµ)eba = 0 .

(4.2.1)

Here (ets)
′ denotes the transpose of the column vector (ets).

Example 4.2.2. The weight of the tableau from the last example, µ = (2, 2, 1), leads us to the

µ-numeration (e1
1, e

2
1, e

1
2, e

2
2, e

1
3) of C5, and elements of Tµ in this basis take the block form

0 1 0 0 0
∗ ∗ ∗ ∗ ∗
0 0 0 1 0
∗ ∗ ∗ ∗ ∗
∗ 0 ∗ 0 ∗


with ∗s denoting unconstrained entries. Thus, for instance,

τ = 1 1 2
2 3

=⇒ X̊τ =




0 1 0 0 0
0 0 a b c
0 0 0 1 0
0 0 0 0 d
0 0 0 0 0

 such that a, d = 0 and b, c 6= 0

 .

While due to [MV03], the definition of this slice is motivated (and, as we see in the proof

of Theorem 5.2.1, elucidated) by the lattice description of Gr dating at least as far back as

[Lus81].

Given (i, k) ∈ {1, 2, . . . ,m}×{1, 2, . . . , µi}, we denote by V (i,k) the span of the first |µ(i,k)| =
µ1 + · · · + µi−1 + k basis vectors of CN in the µ-numeration. Similarly, we denote by A(i,k)

the restriction A
∣∣
V (i,k) viewed as the top left |λ(i)| × |λ(i)| submatrix of A. We are justified in

viewing the restriction of A as a submatrix since we will be working with upper triangular A.

Finally, as we did for tableaux, we make the identification V (i) ≡ V (i,µi) and A(i,µi) ≡ A(i) for

all 1 ≤ i ≤ m.

4.3 A boxy description of X̊τ

In this section we show that the block-by-block restrictions {A(i) such that 1 ≤ i ≤ m} of

Equation 4.1.2, coming from deleting boxes of τ one “weight-block” at a time, can be replaced

by the box-by-box restrictions {A(i,k) such that 1 ≤ k ≤ µi, 1 ≤ i ≤ m} coming from deleting

boxes of τ one by one.
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Example 4.3.1. Continuing with the previous example REF, we see that subset of T(2,2,1) ∩ n

determined by the conditions A(1) ⊂ O(2), A(2) ⊂ O(3,1), and A ⊂ O(3,2) is unchanged if we add

that A(1,1) ∈ O(1) and A(2,1) ∈ O(2,1).

Lemma 4.3.1. Let B be an (N − 1)× (N − 1) matrix of the form[
C v
0 0

]
for some (N − 2)× (N − 2) matrix C and column vector v. Let A be an N ×N matrix of the

form C v w
0 0 1
0 0 0


for some column vector w. Let p ≥ 2. If rankCp < rankBp, then rankBp < rankAp.

Proof. Let

B =

[
C v
0 0

]
and let

A =

C v w
0 0 1
0 0 0

 =

 B
w
1

0 0 0

 .
Suppose rankBp > rankCp for p ≥ 0. Clearly rankAp > rankBp for p = 0, 1 independent of

the assumption. Suppose p ≥ 2. Since

Bp =

[
Cp Cp−1v
0 0

]
this means Cp−1v 6∈ ImCp. So Cp−2v 6∈ ImCp−1 and Cp−2v + Cp−1w 6∈ ImCp−1. Since

Ap =

Cp Cp−1v Cp−1w + Cp−2v
0 0 0
0 0 0


it follows that rankAp > rankBp as desired.

Now fix λ, µ and τ ∈ T (λ)µ. Let A ∈ X̊τ . Recall that V (i,k) denotes the span of the first

µ1 + · · ·+ µi−1 + k vectors of the µ-numeration (e1
1, . . . , e

µ1
1 , . . . , e1

m, . . . , e
µm
m ).

Lemma 4.3.2. A(m,µm−1) ∈ Oλ(m,µm−1).

Proof. Let B = A(m,µm−1). Assume µm > 1 or else there is nothing to show. Let C =

A(m,µm−2).

By definition of X̊τ , A ∈ Oλ. Let λ(B) denote the Jordan type of B and λ(C) the Jordan

type of C. Since dimV/V (m−1) = µm is exactly the number of boxes by which λ and λ(m−1)
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differ, λ(B) must contain one less box than λ, and λ(C) must contain one less box than λ(B).

Let c(A) denote the column coordinate of the box by which λ and λ(B) differ, and let c(B)

denote the column coordinate of the box by which λ(B) and λ(C) differ. Then

rankBp − rankCp =

1 p < c(B)

0 p ≥ c(B)
,

so we can apply Lemma 4.3.1 to our choice of (A,B,C) to conclude that rankAp > rankBp for

p < c(B). At the same time,

rankAp − rankBp =

1 p < c(A)

0 p ≥ c(A)

implies that c(A) > c(B). We conclude that B ∈ Oλ(m,µm−1) as desired.

Thus we see that the µ × µ block rank conditions defining X̊τ in Equation 4.1.2 refine a

possibly redundant set of a× a box rank conditions for each 1 ≤ a ≤ N .

Proposition 4.3.3.

X̊τ =
{
A ∈ Tµ ∩ n such that A(i,k) ∈ Oλ(i,k) for 1 ≤ k ≤ µi and 1 ≤ i ≤ m

}
. (4.3.1)

Proof. The non-obvious direction of containment is an immediate consequence of Lemma 4.3.2.

4.4 Irreducibility of Xτ

Set τ − m ≡ τ (m,µm−1), and let r equal to the row coordinate of the last m, aka the row

coordinate of the box by which τ and τ − m differ. Let L = Span(eµ11 , eµ22 , . . . , e
µm−1

m−1 ).

Lemma 4.4.1. Let B ∈ X̊τ−m and let S = (Bλr−1)
−1

ImBλr . Then

V (m,µm−1) = S + L . (4.4.1)

Proof. Let 1 ≤ a ≤ m and 1 ≤ b ≤ µa. If b ≤ µa − 1 then eba = B(eb+1
a ) − v for some v ∈ L.

Note that

B(eb+1
a ) ⊂ (Bc−1)−1 ImBc

for any c. Therefore eba ∈ (Bc−1)−1 ImBc + L unless of course for (a, b) = (m,µm).
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Lemma 4.4.2. Let B ∈ X̊τ−m and let S = (Bλr−1)
−1

ImBλr . Then

dimS = N − r , and (4.4.2a)

dimS ∩ L = m− r . (4.4.2b)

Proof. By Lemma 4.3.2, B has Jordan type λ(m,µm−1) which differs from λ by a single box in

position (r, λr). Denote by

(f1
1 , . . . , f

λ1
1 , . . . , f1

r , . . . , f
λr−1
r , . . . , f1

` , . . . , f
λ`
` )

a Jordan basis for B. Then

ImBλr−1 = Span({f1
c , . . . , f

λc−λr+1
c }1≤c≤`)

= Span({f1
c , . . . , f

λc−λr
c }1≤c≤`) + Span({fλc−λr+1

c }1≤c≤`)

= ImBλr + Span({fλc−λr+1
c }1≤c≤`) ,

with fpc ≡ 0 if p ≤ 0. In particular, fλc−λr+1
c is equal to Bλr−1(fλcc ) and is nonzero if c > r.

Thus dim (Bλr−1)
−1

ImBλr = N − r.
By Lemma 4.4.1, dim(S + L) = N − 1. Therefore

dimS ∩ L = dimS + dimL− dim(S + L)

= (N − r) + (m− 1)− (N − 1)

= m− r .

(4.4.3)

Lemma 4.4.3. The map

X̊τ → X̊τ−m A 7→ A(m,µm−1) (4.4.4)

has irreducible fibres of dimension m− r.

Proof. Let B ∈ X̊τ−m and let FB denote the fibre over B. Assume µm > 1. Then A ∈ FB
takes the form [

B v + eµm−1
m

0 0

]
for some v ∈ L. In other words, A is determined by some v ∈ L.

Let u ∈ KerAλr \ (KerAλr−1 ∪ KerBλr). Of course the first λr − 1 columns of λ have

less boxes than the first λr columns. In addition, the λrth column, by definition of r, contains

the “last” m. So dim KerBλr and dim KerAλr differ by 1 (the 1 box at the end of row r),

while dim KerAλr and dim KerAλr−1 differ by r (the length of the λrth column, which includes

the box at the end of row r). Suppose without loss of generality that u = eµmm + w for some

w ∈ V (m,µm−1) where a coefficient of zero on eµm would result in u actually contributing to
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KerBλr and a nonzero coefficient can be normalized. Then

0 = Aλr(u) = Aλr(eµmm + w) = Bλr−1(v + eµm−1
m ) +Bλr(w) . (4.4.5)

Let S = (Bλr−1)
−1

(ImBλr) and S′ = (Bλr−2)−1(ImBλr−1). Equation 4.4.5 implies that v +

eµm−1
m ∈ S, while the assumption u 6∈ KerAλr−1 implies v + eµmm 6∈ S′. These are the only

conditions on v, making (S \ S′ + eµm−1
m ) ∩ L the total space of permissible v.

Lemma 4.4.1 lets us rewrite eµm−1
m = s+ l for some s ∈ S \ S′ and some l ∈ L. Moreover, a

choice of such a pair (s, l) provides an isomorphism

(S \ S′ + eµm−1
m ) ∩ L = (S + l) ∩ L→ S \ S′ ∩ L

v 7→ v − l .
(4.4.6)

The map

(S \ S′) ∩ L→ FB

c 7→
[
B c+ s
0 0

] (4.4.7)

is then also an isomorphism. Since (S \S′)∩L is locally closed, FB is irreducible. Lemma 4.4.2,

Equation 4.4.2b then applies to give the desired dimension count.

4.5 Irreducibility of generalized orbital varieties

We would like to use Lemma 4.4.3 to describe Irr(Oλ∩Tµ∩n). First, we will need the following

proposition.

Proposition 4.5.1. Let X and Y be (irreducible) varieties. Let f : X → Y be surjective, with

irreducible fibres of dimension d. Assume Y has a single component of dimension m and all

other components of Y have smaller dimension. Then X has unique component of dimension

m+ d and all other components of X have smaller dimension.

To prove Proposition 4.5.1 we will use [Mum88, I, §8, Theorem 2] and [Sta18, Lemma 005K]

which are recalled below.

Theorem 4.5.2. [Mum88, I, §8, Theorem 2] Let f : X → Y be a dominating morphism of

varieties and let r = dimX − dimY . Then there exists a nonempty open U ⊂ Y such that:

(i) U ⊂ f(X)

(ii) for all irreducible closed subsets W ⊂ Y such that W ∩U 6= ∅, and for all components Z

of f−1(W ) such that Z ∩ f−1(U) 6= ∅, dimZ = dimW + r.
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Lemma 4.5.3. [Sta18, Lemma 005K] Let X be a topological space. Suppose that Z ⊂ X is

irreducible. Let E ⊂ X be a finite union of locally closed subsets (i.e. E is constructible). The

following are equivalent

1. The intersection E ∩ Z contains an open dense subset of Z.

2. The intersection E ∩ Z is dense in Z.

Proof of Proposition 4.5.1. Let X = ∪IrrXC be a (finite) decomposition of X. Consider the

restriction f
∣∣
C

: C → f(C) of f to an arbitrary component. It is a dominating morphism of

varieties, with irreducible fibres of dimension d.

We apply Theorem 4.5.2. Let U ⊂ f(C) be an open subset satisfying properties (i) and (ii).

Then, takingW = {y} ⊂ U for some y ∈ U ⊂ f(C), we get that dim f−1(y) = dimC−dim f(C).

Since all fibres have dimension d, the difference dimC − dim f(C) is constant and equal to d,

independent of the component we’re in.

Since f is surjective, it is in particular dominant, so we have that

Y = f(X) = f(∪IrrXC) = ∪IrrXf(C) = ∪IrrXf(C) = ∪IrrXf(C) .

We now show that no two irreducible components can have m-dimensional image. Suppose

towards a contradiction that C1 6= C2 ∈ IrrX are two components of dimension m + d. Since

dimCi = d + dim f(Ci) = d + m for both i = 1, 2, dim f(C1) = dim f(C2) = m, so f(C1) =

f(C2). For each i = 1, 2, denote by fi the restriction f
∣∣
Ci

, and let Ui ⊂ fi(Ci) be the open sets

supplied by Theorem 4.5.2 (equivalently, by Lemma 4.5.3) for the constructible sets Ei = f(Ci).

Fix y ∈ U = U1 ∩U2, a dense open subset of f(C1) = f(C2). Since Vi = f−1
i (U) = f−1(U)∩Ci

contains f−1
i (y) = f−1(y)∩Ci = f−1(y) for both i = 1, 2, the set V = V1 ∩V2 is nonempty and

open. Moreover, V is contained in C1 ∩ C2, proving that C1 = C2.

With Lemma 4.4.3 and Proposition 4.5.1 in hand, we are ready to state and prove the

first part of our first main theorem, which says that our matrix varieties are irreducible in top

dimension.

For each 1 ≤ i ≤ m, let ρ(i) = (i, i− 1, . . . , 1). Set ρ ≡ ρ(m), and, unambiguously, denote by

〈 , 〉 the standard inner product on Zi for any i.

Proposition 4.5.4. X̊τ has one irreducible component X̊ top
τ of maximum dimension 〈λ−µ, ρ〉.

Proof. Consider the restriction map

X̊τ → X̊τ (m−1) .

By induction on m, we can assume that X̊τ (m−1) has one irreducible component of dimension

d = 〈λ(m−1)−µ(m−1), ρ(m−1)〉, and apply Proposition 4.5.1 in conjunction with Lemma 4.4.3 to

conclude that X̊τ has one irreducible component of dimension d+
∑µm

1 (m− rm,k) where rm,k

is equal to the row coordinate of the kth m in τ . Note X̊τ (1) = {Jµ1}.



Chapter 4. Generalized orbital varieties 35

The reader can check that

µm∑
k=1

(m− rm,k) = 〈λ− µ, ρ〉 − d .

It follows that the generalized orbital variety Xτ = X̊top
τ is irreducible. It is also implicit in

the proof of Proposition 4.5.4 that there is a rational map πb : Xτ → Xτ (b) for all 1 ≤ b ≤ m.

4.6 Conjectured recursion

In this section, we state the conjecture that X̊τ is itself irreducible. We use the fact that

A×B = A×B in the Zariski topology.

Conjecture 4.6.1. The map in Lemma 4.4.3 is a trivial fibration. Consequently X̊ top
τ = X̊τ

and Xτ = X̊τ is defined by a recurrence Xτ
∼= Xτ−m × Cm−r for r equal to the row coordinate

of the last m in τ .

Example 4.6.1. Let τ = 1 2
3 4

so m = 4 and r = 2. Then A ∈ X̊τ takes the form

 0 a b c
0 0 0 e
0 0 0 f
0 0 0 0


with a, f 6= 0 and ae+bf = 0. Since e = −bf/a, i.e. the defining equations completely determine

the coordinate e in the fibre over a point of X̊τ− 4 , the isomorphism

X̊τ → X̊τ− 4 × C× C× A 7→ (A
∣∣
V (3) , (c, f))

supplies the desired trivialization.

To state our conjecture more precisely we need to define an order <τ on the set [m− 1] =

{1, 2, . . . ,m−1}. We do so by the following tableau sort function. This function takes a tableau

as input and outputs a permutation of the alphabet [m− 1] which we interpret as an ordering

of the alphabet from largest to smallest induced by the tableau.

def sort(t):

MT = max(t)[0]

L = []

for i in range(1,MT):

s = t.restrict(i)

MS ,(r,c) = max(s)

L.insert(r,MS)

return L
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It depends on the max function

def max(t):

ME = -1,(0,0)

for c in t.corners ():

if t.entry(c) > ME[0]:

ME = t.entry(c),c

return ME

which once again takes a tableau as input and outputs the (value, position) pair of the rightmost

largest corner entry. Here, the position of an entry is its (row, column) coordinate, with the

top left entry of a tableau anchored in position (0, 0). The resulting order is best illustrated by

example.

Example 4.6.2. The tableau
1 1 3
2 2
4

has maxentry 4,(2,0). The resulting list L is 3,1,2. The tableau

1 2
3 4

has maxentry 4,(1,1). The resulting list L is 2,3,1.

We claim that the smallest m − r elements of the ordered set ([m− 1], <τ ) correspond

precisely to the unconstrained entries in the last column of a generic point A ∈ X̊τ . In the case

of
1 2
3 4

this agrees with the computation of Example 4.6.1: the first and third entries of the last column

are unconstrained.

Conjecture 4.6.2. Let (A1, . . . , Am−1) be coordinates on Xτ given by the a priori nonzero

entries in the last column of A ∈ Tµ. Let i1, . . . , im−r be the m − r smallest elements of

([m− 1], <τ ). Then the isomorphism Xτ
∼= Xτ−m × Cm−r is defined by extending the map

X̊τ → X̊τ−m × Cm−r

A 7→ (A(m−1), (Ai1 , . . . , Aim−r)) .

We intend to pursue this in the future, especially insofar as it can help us to (efficiently)

deduce the equations, multidegrees, or initial ideals of generalized orbital varieties.

Let P = τ (m−1). We conjecture that the permutation achieved by our sort applied to a

standard tableau τ is precisely the permutation associated to the pair (P, P ) by Viennot’s

geometric construction (RSK). In particular, this permutation is always an involution. Let τ̃

be the tableau obtained from τ by deleting all but the max entries and performing a Jeu de
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Taquin to standardize the result in case it is skew.

When τ is semistandard, the permutation achieved by our sort is that associated to the pair

(P̃ , P̃ ). Let JT denote the Jeu de Taquin function. Below is an example of the commuting

operations just described.

Example 4.6.3. Let

τ =
1 1 3
2 2
4

.

Then our sort function results in the permutation π = 123
213 . Viennot’s geometric construction

applied to π produces a standard Young tableau as follows (c.f. [Sag13, Section 3.6]).

123

213

Viennot7−→

1

1

2

2

3

3
RSK7−→ 1 3

2
. (4.6.1)

This agrees with

1̃ 1 3
2 2
4

= JT

 1 3
2

4

 =
1 3
2
4

(4.6.2)

up to the maximum entry of our input tableau.

Note that the tableau
1 3
2 4

for instance would give the same permutation. More generally, a feature of sort is that it

depends only on a certain standard skeleton of a given semistandard tableau. In addition, it

does not depend on (the position occupied by the largest entry) m.

We cite private communication with D. Muthiah in conjecturing furthermore that a distin-

guished facet in the Stanley–Reisner description of the initial ideal of Xτ is given by the union

of the i− ri unconstrained entries over all 1 ≤ i ≤ m.

4.7 Equations of generalized orbital varieties

Here we record our method for finding equations with the help of the computer algebra system

Macaulay2. Given a tableau τ ∈ T (λ)µ we initiate a matrix A ∈ Tµ ∩ n and consider its

|µ(i)| × |µ(i)| submatrices Ai for all 1 ≤ i ≤ m.

The first nontrivial restriction on the entries of A may come from the shape λ(2) of τ (2)

as follows. Recall that this shape is recording the Jordan type of the (µ1 + µ2) × (µ1 + µ2)

submatrix A2. This means that the number of boxes h
(2)
c in the first c columns of τ (2) is equal

to the nullity of Ac2. Equivalently, the number of boxes r
(2)
c to the right of the cth column is

equal to the rank of Ac2 so all (r
(2)
c + 1)× (r

(2)
c + 1) minors of Ac2 must vanish.
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The ideal of our matrix variety is thus built up by iteratively adding equations for (r
(i)
c +

1)× (r
(i)
c + 1) minors of Aci . We have to take care to discard any prime factors that hold on Oλ

but not on Oλ at every step. This is accomplished either by inspecting the output of a primary

decomposition, or by preemptively performing a rip operation on (known) irrelevant substrata.

For example, let

τ = 1 2
3

and take

A =

[
0 a c

0 b
0

]

in X̊τ . Clearly the ideal of 2× 2 minors is (ab). Since rankA2 = 1 forces a 6= 0, we must colon

out ideal (a). The desired variety is therefore described by the ideal (ab) : (a) = (b). The colon

operation is defined on pairs of ideals I, J by

I : J = {f
∣∣fJ ⊂ I}

and loosely corresponds to ripping the hypersurface where J vanishes.

In the appendix we detail this method as applied to our counterexample. Below we take it

up on a smaller example.

Example 4.7.1. Let

τ =
1 1 3
2 2
4

.

Then A ∈ X̊τ takes the form 
0 1 0 0 0 0
0 0 a1 a2 a3 a4

0 0 0 1 0 0
0 0 0 0 a5 a6

0 0 0 0 0 a7

0 0 0 0 0 0


and

A2 =


0 0 a1 a2 a3 a4

0 0 0 a1 a2a5 a2a6 + a3a7

0 0 0 0 a5 a6

0 0 0 0 0 a5a7

0 0 0 0 0 0
0 0 0 0 0 0

 A3 =


0 0 0 a1 a2a5 a2a6 + a3a7

0 0 0 0 a1a5 a2a5a7 + a1a6

0 0 0 0 0 a5a7

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


Since rankA2

2 = 0, all 1 × 1 minors, a1, a2, vanish. Vanishing of 3 × 3 minors of A2 coming

from rankA2 = 2 introduces no new vanishing conditions. All rankAc3 conditions are vacuous.

Finally rankA3 = 0 imposes a3a7 = a5a7 = 0. However, rankA3 = 3 does not allow both

A4, A6 = 0. So, upon coloning out, we end up with a7 = 0. The condition rankA2 = 1 leaves

just one 2× 2 minor to consider, it is a3a6 − a4a5. Note rankA3
k = 0 for all k.
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4.8 Decomposing Oλ ∩ Tµ ∩ n

Lemma 4.8.1. Let λ ≥ µ be dominant effective of size m. Then

Oλ ∩ Tµ ∩ n =
⋃
τ

X̊τ

Proof. Let A ∈ Oλ ∩Tµ ∩ n and B = A(m,µm−1). Suppose first that µm > 1. It suffices to show

that A ∈ X̊τ for some τ ∈ T (λ)µ. As in Lemma 4.3.1, write

A =

C v w
0 0 1
0 0 0


and let

B =

[
C v
0 0

]
.

Denote by λ(B) and λ(C) the Jordan types of B and C respectively. Suppose p′ and p′′ are

such that λ and λ(B) differ by a box in column p′ and λ(B) and λ(C) differ by a box in column

p′′. Let us show that p′′ < p′. Indeed

rankBp′ = rankAp
′ − 1 (4.8.1)

rankCp
′′

= rankBp′′ − 1 . (4.8.2)

By Lemma 4.3.1, Equation 4.8.2 implies that rankBp′′ < rankAp
′′
. The assumption that λ(B)

and λ(A) differ in column p′ (and column p′ only) means that λ(B) and λ(A) have columns

of equal length to the right of column p′. In particular, rankAp = rankBp for all p > p′. By

induction on m, and µm it suffices to show p′ 6= p′′ when µm = 2.

If m = 1 and µm = 2, then by definition of Tµ and n, A =

[
0 1

0 0

]
, so τ = 1 1 , which is

semistandard.

Suppose m > 1, µm = 2, and A ∈ Oλ ∩ Tµ ∩ n is as above, i.e.

A =

C v w
0 0 1
0 0 0

 .
Recall,

Ak =

Ck Ck−1v Ck−1w + Ck−2v
0 0 0
0 0 0

 .
Suppose (towards a contradiction) that p′ = p′′ = p, and consider Ap and Ap−1. Since the

number of boxes that are to the right of column p in each of λ, λ(B), and λ(C) is the same,

rankCp = rankBp = rankAp. Looking at Ap, this implies in particular that Cp−1w+Cp−2v ∈
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ImCp. So Cp−2v is in the image of Cp−1.

On the other hand, rankCp−1 = rankBp−1 − 1 = rankAp−1 − 2. So neither Cp−2v nor

Cp−2w + Cp−3v can be in ImCp−1. This contradicts the previous conclusion that Cp−2v is in

the image of Cp−1.

It follows that p′′ < p′. Let τ be a tableau of shape λ and weight µ such that λ(m,µm−1) =

λ(B) and λ(m,µm−2) = λ(C). Iterate the argument on B, filling the remaining µm − 2 boxes of

λ with m. If µm = 1, then there is no ambiguity in filling the box where λ(B) and λ differ with

m. Repeat this (two-case) argument on A(m−1) and so forth to determine τ completely.

To conclude, the reader can check that A ∈ X̊τ against the boxy description of Equa-

tion 4.3.1.

Theorem 4.8.2. The map τ 7→ Xτ is a bijection T (λ)µ → Irr(Oλ ∩ Tµ ∩ n).

Proof. By Corollary 5.2.2, Oλ ∩ Tµ ∩ n ∼= Grλ ∩ Sµ−. By [MV07, Theorem 3.2], the latter

intersection is pure dimensional of dimension 〈λ − µ, ρ〉. It follows that Oλ ∩ Tµ ∩ n must be

pure dimensional also.

Let Y ∈ Irr(Oλ∩Tµ∩n). Because of the pure-dimensionality Y must intersect Oλ and that

intersection must be dense in Y . Together with Lemma 4.8.1, pure-dimensionality also implies

that Y ∩ X̊τ is dense in Y for some τ , and so Y = Xτ .

Alternatively, one can wield the fact that the MV cycles of type λ and weight µ give a basis

of L(λ)µ whose dimension is well-known to be equal to the number of semi-standard Young

tableaux of shape λ and weight µ.

4.9 Applications and relation to other work

4.9.1 Big Spaltenstein fibres

Given an ordered partition ν ` N , let Pν ⊂ GLN be the parabolic subgroup of block upper

triangular matrices with blocks of size ν and denote by pν its Lie algebra. We’ll view elements

of the partial flag variety Xν := GLN/Pν interchangeably as parabolic subalgebras of glN which

are conjugate to pν and as flags

0 = V0 ⊂ V1 ⊂ · · · ⊂ V(ν′)1 = CN

such that dimVi/Vi−1 = νi. Here ν ′ denotes the conjugate partition of ν.

For u− 1 ∈ Oλ fixed, Shimomura, in [Shi80], establishes a bijection between components of

the big Spaltenstein fibre Xu
µ and T (λ)µ, generalizing Spaltenstein’s decomposition in [Spa76]

for the case µ = (1, . . . , 1) and implying that big Spaltenstein fibres also have the same number

of top-dimensional components as Oλ ∩ Tµ ∩ n.

We conjecture that the coincidence is evidence of a correspondence implying a bijection

between generalized orbital varieties and top-dimensional irreducible components of Oλ ∩ pµ.
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More precisely, let N denote the set of nilpotent matrices in glN . Let

g̃µ = {(A, V•) ∈ N ×Xµ

∣∣AVi ⊂ Vi for i = 1, . . . , µ′1} .

Another description is

g̃µ = {(A, p) ∈ N ×Xµ

∣∣A ∈ p} .

Let A = u − 1 ∈ Oλ and consider the restriction of pr1 : g̃µ → N defined by pr1(A, p) = A to

g̃λµ = pr−1
1 (Oλ). We conjecture that the (resulting) diagram

Oλ ∩ pµ {pµ}

Xu
µ g̃λµ Xµ

{A} Oλ

(4.9.1)

has an orbit-fibre duality (generalizing that which is established in [CG10, §6.5] in the case

µ = (1, . . . , 1) and Oλ ∩ pµ = Oλ ∩ n) such that the maps

Oλ ∩ pµ → g̃λµ ← Xu
µ

give a bijection of top dimensional irreducible components,

Irr(Oλ ∩ pµ)→ Irr(Xu
µ) . (4.9.2)

Combining the bijection Irr(Xu
µ) → T (λ)µ coming from Shimomura’s generalized decomposi-

tion, with our bijection Irr(Oλ ∩ Tµ ∩ n)→ T (λ)µ, we get a bijection

Irr(Oλ ∩ pµ)→ Irr(Oλ ∩ Tµ ∩ n) . (4.9.3)

Since Oλ ∩Tµ ∩ n ⊂ Oλ ∩ pµ, this suggests a bijection of Irr(Oλ ∩ pµ) and Irr(Oλ ∩Tµ ∩ n) such

that

X ∈ Irr(Oλ ∩ pµ) =⇒ X ∩ Tµ ∩ n ∈ Irr(Oλ ∩ Tµ ∩ n) .

4.9.2 Symplectic duality of little Spaltenstein fibres

Recall the parabolic analogue of the Grothendieck–Springer resolution

T ∗Xµ
∼= {(A, V•) ∈ Oµ′ ×Xµ

∣∣AVi ⊂ Vi−1 for all i = 1, . . . , (µ′)1}
πµ−→ Oµ′ (4.9.4)

given by projection onto the first component. Denote by Xλ′
µ the preimage π−1

µ (Oµ′ ∩Tλ′) and

by πλ
′
µ the restriction πµ

∣∣
Xλ′
µ

.
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Let X0 = Oλ ∩Tµ. View λ and µ as weights of G = GLm, i.e. as partitions having m parts,

and denote by T ⊂ G the maximal torus. Choose a coweight ρ : C× → T such that

{x ∈ X0

∣∣ lim
t→0

ρ(t) · x = Jµ} = Oλ ∩ Tµ ∩ n

and denote this attracting set by Y0. Let top = dim(Oλ ∩ Tµ).

Lemma 4.9.1. [BLPW16, Lemma 7.22, Example 7.25] Htop(Y0) ∼= IH top
T (X0).

Let F ! = (πλ
′
µ )−1(Jλ′).

Theorem 4.9.2. [BLPW16, Theorem 10.4] Xµ
λ′ and Xλ′

µ are symplectic dual. In particular,

IH top
T (X0) ∼= H top(F !).

Combining these results, we get that

Htop(F !) ∼= Htop(Y0) . (4.9.5)

On the other hand, by [Ros12, Lemma 2.6], the irreducible components of the little Spaltenstein fibre

F !, which is equidimensional by [Gin12], are in bijection with T (λ)µ. Thus, our bijection is

predicted by and can be viewed as symplectic dual to that of Rosso.



Chapter 5

Equations for Mirković–Vilonen

cycles

Fix G = GLm. In this case, G∨ = G, so we can identify T∨ = T and P∨ = P . Let Gr =

G(K)/G(O). In this chapter we use the Mirković–Vybornov isomorphism to show that MV

cycles can be obtained as projective closures of generalized orbital varieties (or, homogenizations

of their ideals). We start by showing that the decomposition of the last chapter is compatible

with the crystal structure on MV cycles in the sense that the Lusztig datum of an MV cycle tells

us exactly which generalized orbital variety is embedded into it under the Mirković–Vybornov

isomorphism. We exploit the explicit description of a generalized orbital variety (coming from

its tableau) to get an explicit description of the projective embedding of an MV cycle into

P(L(Λ0)). Via the embedding, we can exhibit the equivariant multiplicity of a stable MV cycle

in terms of the multidegree of a generalized orbital variety, accomplishing what we set out to

do following the general setup of Proposition 3.6.1.

5.1 Lattice model for the affine Grassmannian

In type A we have at our disposal the O-lattice model for Gr. Recall that L is an O-lattice if

it is a free submodule of the vector space Km with the property that K ⊗O L ∼= Km. Let L0

denote the standard lattice Om and denote by Lat the set all O-lattices. Lat carries a natural

action of GLm(K) for which the stabilizer of any given lattice L ∼= L0 is GL(L) ∼= GLm(O).

We can therefore apply the orbit-stabilizer theorem to see that the map

Gr→ Lat gG(O) 7→ gL0 (5.1.1)

is an isomorphism. Henceforth, we identify Gr and Lat (abandoning the latter notation).

Recall that set-theoretically GrT ∼= P . Since P ∼= Zm, the partitions of the previous chapter

can be viewed as weights of T and, hence, as points in Gr. If λ is effective, then Lλ = tλG(O)

is generated by tλiei over O. Henceforth, we fix N ≥ m and consider effective partitions λ ∈ P

43
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of size N . The size of a partition λ determines the connected component of Gr to which Lλ

belongs.

5.2 The Mirković–Vybornov isomorphism

Consider the quotient map G(K) → Gr. Given a subgroup H ⊂ G, we denote by H1[t−1] the

kernel of the evaluation at t−1 = 0 map H[t−1]→ H. Given µ ≤ λ in the dominance order on

P , let Grµ denote the orbit G1[t−1] · Lµ in Gr. Note, |µ| = N and let N denote the cone of

nilpotent N ×N matrices. Up to a transpose, the following version of the Mirković–Vybornov

isomorphism is due to Cautis and Kamnitzer.

Theorem 5.2.1. [CK18, Theorem 3.2], [MV19] The map

Φ̃ : Tµ ∩N → G1[t−1]tµ (5.2.1)

defined by

Φ̃(A) = tµ + a(t)

aij(t) = −
∑

Akijt
k−1

Akij = kth entry from the left of the µj × µi block of A

gives the Mirković–Vybornov isomorphism of type λ and weight µ

Φ : Oλ ∩ Tµ → Grλ ∩Grµ A 7→ Φ̃(A)L0 . (5.2.2)

Proof. Let (eit
j
∣∣1 ≤ i ≤ m, j ≥ 0) be a basis of Cm ⊗ C[t]. It induces a basis in any finite-

dimensional quotient of L0. In particular, it induces a basis in the N -dimensional quotient

L0/gL0.

One can check that the map taking gG(O) to the transpose of the matrix of left multipli-

cation by t on the quotient L0/gL0,

gG(O) 7−→
[
t
∣∣
L0/gL0

]′
,

in the induced basis ([e1], [te1], . . . , [tµ1−1em], . . . , [em], [tem], . . . , [tµm−1em]) is a two-sided in-

verse of Φ.

Example 5.2.1. Let’s see what happens to a generalized orbital variety under this isomorphism.

Take

τ = 1 1 2
2 3
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as in Example 4.2.2. Then

Φ(Xτ ) =

gL0

∣∣g =

 t2 0 0
−a− bt t2 0
−c −d t

 for some a, b, c, d ∈ C with a, d = 0

 .

We denote by φ the restriction of Φ to Oλ ∩ Tµ ∩ n.

Corollary 5.2.2. Let µ be dominant. Then φ is an isomorphism of Oλ ∩Tµ ∩n and Grλ ∩Sµ−.

Proof. Let A ∈ Tµ ∩ n. Then Φ̃(A) ∈ (U−)1[t−1]tµ. Since (U−)1[t−1]tµ ⊂ U−(K)tµ it follows

that Φ(A) ∈ Sµ−. If also A ∈ Oλ, then Φ(A) ∈ Grλ ∩ Sµ−.

Conversely, let L ∈ Sµ−, and take g ∈ U−(K)tµ such that L = gL0. Since U− is unipotent we

can write U−(K) as the product (U−)1[t−1]U(O). Suppose g = g1g2t
µ for some g1 ∈ (U−)1[t−1]

and some g2 ∈ U(O). Now, since µ is dominant, there exists g3 ∈ U(O) such that g2t
µ = tµg3.

So, gL0 = g1t
µL0, and we can trade in our representative g for g1t

µ. Since (U−)1[t−1]tµ ⊂
G1[t−1]tµ it follows that Sµ− ⊂ Grµ, so Grλ ∩ Sµ− ⊂ Grλ ∩Grµ. Since Φ is onto, so is φ.

5.3 Lusztig and MV cycles

MV polytopes for GLm can be defined via BZ data, just as in Chapter 1, Definition 1.3.1.

We need only to enlarge the set of chamber weights for GLm to include the “all 1s” weight

ωm = (1, 1, . . . , 1). Since the vertices (µw)W of the MV polytope P (M•) associated to a BZ

datum of weight (λ, µ) by Equation 1.3.4 satisfy the “additional” constraint 〈µw, ωm〉 = Mωm ,

P (M•) is contained in a hyperplane of the weight lattice.

Hyperplanes correspond to connected components, and the MV polytope of a an MV cycle

of weight (λ, µ) will have Mωm = |λ| = |µ| = N . The MV polytopes for GLm satisfying

Mωm = 0 are thus the MV polytopes for SLm, and we can always translate an MV polytope

for GLm to make this equation hold. Moreover, the stable MV polytopes are exactly the same

for SLm, PGLm, and GLm.

We can define the Lusztig datum of an MV cycle in terms of the BZ datum of its MV poly-

tope. Or, we can define the Lusztig datum directly using Kamnitzer’s constructible functions.

Let V be a finite dimensional complex vector space, and consider the valuation map

val : V ⊗K → Z

v 7→ k if v ∈ V ⊗ tkO \ V ⊗ tk+1O .
(5.3.1)

When V = C we see that val records the lowest power on an element of K which enjoys the

filtration

· · · ⊂ t2C[[t]] ⊂ tC[[t]] ⊂ C[[t]] ⊂ t−1C[[t]] ⊂ · · ·

by lowest degree of indeterminate t. Note that if V is a representation of G then V ⊗ K is

naturally a representation of G(K).
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Fix a chamber weight γ = wωi for some 1 ≤ i ≤ m and for some w ∈ W . Let vωi be a

highest weight vector in the ith fundamental irreducible representation L(ωi) =
∧iCm of G,

(e.g. vωi = e1 ∧ · · · ∧ ei will do,) and consider the map

Dwωi : Gr→ Z

gG(O) 7→ val(g′vw0w−1ωi) .
(5.3.2)

Let J denote the subset of [m] = {1, 2, . . . ,m} corresponding to the nonzero entries of w0w
−1ωi.

Then g′vw0w−1ωi is the wedge product of those columns of g′ which are indexed by J , and

val(g′vw0w−1ωi) = min
I

val det
I×J

(g′) . (5.3.3)

The minimum is taken over all i element subsets of [m] and detI×J denotes the i × i minor

using rows I and columns J .

Lemma 5.3.1 ([Kam10] Lemma 2.4). Dγ is constructible and

Sµw = {gG(O) ∈ Gr
∣∣Dwωi(gG(O)) = 〈µ,ww0ωi〉 for all i} . (5.3.4)

Piecing together Kamnitzer’s results, we get the following classification theorem.

Theorem 5.3.2. [Kam10, Proposition 2.2, Theorem 3.1] Let M• be a BZ datum of weight

(λ, µ), and set

µw =
m−1∑
i=1

Mwωiwαi . (5.3.5)

Then

Z = {L ∈ Gr
∣∣Dwωi(L) = Mww0ωi for all wωi ∈ Γ} (5.3.6)

is an MV cycle of type λ and weight µ. Moreover,

Φ(Z) =
⋂
w∈W

Φ(Sµww ) = P (M•) , (5.3.7)

with

Mww0ωi = 〈µw, ww0ωi〉 . (5.3.8)

All MV cycles (MV polytopes) arise via Equation 5.3.6 (Equation 5.3.7).

Recall that a choice of reduced word allows us to draw a path in the 1-skeleton of an MV

polytope, enumerate a subset of the vertices (µw)W as µk = µwk , always starting with µ0 = µe

and ending with µ` = µw0 . A subset of the fixed points of an MV cycle of type λ and weight µ

thus acquires an order with the first fixed point given by µe = λ and the last given by µw0 = µ.

In the associated polytope, the order on the vertices is reversed, with the lowest vertex µPol
0 = µ

and the highest vertex µPol
` = λ. This is due to the presence of the w0 in the definition of our Dγ
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and the description of our Sµw. In [Kam10], Kamnitzer works in the left quotient G(O)\G(K),

and the w0 is needed to transport the classification established in the left quotient to the right

quotient.

We now zoom in on the behaviour of Dωi the constructible functions corresponding to the

lowest weight λ. For any m ≥ b ≥ 1, for any g ∈ G(K), we denote by gb the restrction g
∣∣
Fb

where Fb = SpanO(e1, . . . , eb). When g is upper triangular, we can (and do) identify gb with

the b× b upper left submatrix of g, an element of Gb(K) = GLb(K). Thus, if g ∈ U−(K), then

for any 1 ≤ i ≤ b ≤ m,

Dωi(gbGb(O)) = val(g′bvwb0ωi
)

= val(g′v[b−i+1 b])

= min
I

val det
I×[b−i+1 b]

(g′)

= min
K

val det
[b−i+1 b]×K

(g) .

(5.3.9)

Again, the minimums are taken over all i element subsets of [m] = {1, 2, . . . ,m}, wb0 denotes

the longest element in the Weyl group of Gb = GLb, and [b− i+ 1 b] denotes the m-tuple that

looks like a string of i 1s in positions b − i + 1 through b sandwiched by 0s. We denote the

function minK val det[b−i+1 b]×K(g) by ∆[b−i+1 b](gG(O)).

We can define the Lusztig datum of an MV cycle Z in terms of BZ data as in [Kam10,

Equation 17].

n
i
k(Z) ≡ n(a,b)(Z) = M[a b] −M[a b−1] −M[a+1 b] +M[a+1 b−1] (5.3.10)

whenever βk = αa + · · ·+ αb. In terms of the constructible functions ∆[a b] this is

n(a,b)(L) = ∆[a b](L)−∆[a b−1](L)−∆[a+1 b](L) + ∆[a+1 b−1](L) (5.3.11)

on generic points L = gG(O) of Z.

5.4 Equal Lusztig data

Note that

Grλ ∩ Sµ− = Grλ ∩Sµ− ∪ lower dimensional components . (5.4.1)

This follows from the decompositions of Grλ and Sµ± afforded by [MV07]. In particular, an MV

cycle of type λ and weight µ is an irreducible component of Grλ ∩ Sµ− of dimension 〈ρ, λ− µ〉.
We need this fact to ensure that the projective closure of the image of a generalized orbital

variety is an MV cycle. Indeed, the restricted Mirković–Vybornov isomorphism has Grλ ∩ Sµ−
as its codomain.

Now, let us describe more precisely which MV cycle a particular generalized orbital variety
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will be mapped into. For the remainder of this chapter we fix a tableau τ ∈ T (λ)µ. Our first

result is that a dense open subset of the generalized orbital variety labeled by τ will be mapped

to an MV cycle of type λ and weight µ.

Lemma 5.4.1. For a dense subset of A ∈ Xτ , φ(A) ∈ Sλ+ ∩ S
µ
−.

Proof. Let Z̊τ = φ(Xτ ). By Corollary 5.2.2, Z̊τ is an irreducible component of Grλ∩Sµ−. In view

of the decomposition recalled in Equation 5.4.1 this means that Z̊τ is dense in an irreducible

component of Grλ ∩Sµ−, i.e. an MV cycle. Indeed, dimXτ = 〈ρ, λ−µ〉 is also the pure dimension

of Grλ ∩Sµ− by [MV07, Theorem 3.2]. Taking the projective closure Z̊τ in Grλ ∩Sµ− we obtain

the corresponding MV cycle, which we denote Zτ .

Let Uτ = φ−1(Sλ+) ∩Xτ . Since Zτ ∩ Sλ+ is dense and constructible in Zτ , Uτ is dense and

constructible in Xτ . Clearly φ(A) ∈ Sλ+ ∩ S
µ
− for all A ∈ Uτ .

It remains to show that Zτ = φ(Xτ ) has Lusztig datum n(τ). We begin by decorating

the maps involved in the construction of the Mirković–Vybornov isomorphism by a number

1 ≤ b ≤ m to distinguish the underlying group GLb.

Φ̃b : Tµ(b) ∩Nb → (Gb)1[t−1]tµ
(b)

Φb : Oλ(b) ∩ Tµ(b) → Grλ
(b) ∩Grµ(b)

φb : Oλ(b) ∩ Tµ(b) ∩ nb → Grλ
(b) ∩ Sµ

(b)

−

Here nb and Nb denote upper triangular and nilpotent matrices of size |µ(b)| × |µ(b)|. Further-

more, we denote by πb the birational map

Oλ ∩ Tµ ∩ n→ Oλ(b) ∩ Tµ(b) ∩ nb A 7→ A(b) .

Let U (b) = Uτ (b) = φ−1
b (Sλ

(b)

+ ) ∩Xτ (b) as in the proof of the previous Lemma 5.4.1. U (b) is

dense and constructible in Xτ (b) . Since πb : Xτ → Xτ (b) is surjective, U = π−1
b (U (b)) is dense

and constructible in Xτ .

Lemma 5.4.2. The generic value of ∆[b−i+1 b] on Zτ is 〈λ(b), wb0ωi〉.

Proof. Given A ∈ U , let g = Φ̃(A) and gb = Φ̃b(A(b)). Since A(b) ∈ Uτ (b) , gbGb(O) ∈ Sλ(b)+ and

the result follows by Lemma 5.3.1 and the calculation in Equation 5.3.9.

We are now ready to verify our main first main result.

Theorem 5.4.3. φ(Xτ ) is an MV cycle of type λ and weight µ having Lusztig datum n(τ).

Proof. Given A ∈ U , let g = Φ̃(A). Then, combining Equation 5.3.11 and Lemma 5.4.2, we



Chapter 5. Equations for Mirković–Vilonen cycles 49

find that for any 1 ≤ a ≤ b ≤ m,

n(gG(O))(a,b) = 〈λ(b), wb0ωb−a+1〉 − 〈λ(b), wb0ωb−a〉

− 〈λ(b−1), wb−1
0 ωb−a〉+ 〈λ(b−1), wb−1

0 ωb−a−1〉

= 〈λ(b), wb0eb−a+1〉 − 〈λ(b−1), wb−1
0 eb−a〉

= λ(b)
a − λ(b−1)

a .

Since n(τ)(a,b) = λ
(b)
a −λ(b−1)

a by definition, this checks that the generic value of n on Zτ is n(τ)

as desired.

Let Z be a stable MV cycle of weight ν. If λ is the smallest dominant effective weight such

that µ := −ν + λ is dominant effective with µm 6= 0, then tµZ is an MV cycle of type λ and

weight µ. Let τ be the Young tableau of shape λ and weight µ whose Lusztig datum is equal

to that of Z. Then φ(Xτ ) is open and dense in tµZ.

Proposition 5.4.4. [BKK19, Proposition A.5] Let Z ∈ Z(∞)ν be a stable MV cycle of Lusztig

datum n, and let Xτ be as above. Then

D(bZ) = εTL0
(Z) = εTLµ(tµZ) =

mdegTµ∩n(Xτ )

mdegTµ∩n({Jµ})
(5.4.2)

where the denominator is given by
∏

∆+
β by definition of Tµ.

5.5 Plücker embedding in general

In this section we detail how equations for a generalized orbital variety Xτ lead to equations

for the corresponding MV cycle Zτ . We begin by recalling the embedding Υ of the entire

affine Grassmannian based on the Kac–Moody construction of Chapter 2 and proceed to give

an explicit description of Υ on the subvarieties Grλ using the generalized orbital varieties of

Chapter 4.

Proposition 5.5.1. The map Υ : Gr → P(L(Λ0)) defined by gG∨(O) 7→ [g · vΛ0 ] is a G∨(K)-

equivariant embedding.

Sketch of proof. To see that Υ is well-defined we need to show that G∨(O) fixes vΛ0 . This is

a consequence of the fact that n− and the Iwahori b∨(O) + tn∨−(O) which together generate

g∨(O) both annihilate vΛ0 .

First let’s recall a basic construction. Let Grk V be the Grassmannian of k-planes in a finite

dimensional complex vector space V . The dual determinant bundle Det∗ → Grk V is the line

bundle whose fibre over W ∈ Grk V is equal to (
∧kW )∗ ∼=

∧k V/W . Note that Det, unlike the

tautological bundle, has nonzero holomorphic global sections. In fact, it is ample.
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To describe the orbits Grλ in terms of lattices there is no information lost in restricting

attention to those lattices which are contained in the standard lattice L0. This is because when

λ is effective dominant, i.e. λ = (λ1 ≥ λ2 ≥ · · · ≥ λm ≥ 0), gG(O) ∈ Grλ defines gL0 ⊂ L0.

Moreover,

{L ∈ Gr
∣∣L ⊂ L0 and

[
t
∣∣
L0/L

]
has Jordan type λ} = Grλ .

Let L ∈ Grλ and take p = λ1. Then tpL0 ⊂ L. Denote by S the set

((1, 0), (1, 1), . . . , (1, p− 1), . . . , (m, 0), (m, 1), . . . , (m, p− 1)) .

We use it to index the standard basis {vs}s∈S for V = L0/t
pL0 so that v(i,j) = [eit

j ].

Lemma 5.5.2. Let L ∈ Grλ ∩ Grµ and choose a representative g ∈ G(K) such that L = gL0.

Then, as a subspace of V , L/tpL0 has basis

([ge1], [tge1], . . . , [tp−µ1−1ge1], . . . , [gem], [tgem], . . . , [tp−µm−1gem]) . (5.5.1)

Certainly, tkgei ∈ L = gL0 for all 1 ≤ i ≤ m and k ≥ 0. The purported spanning set also

has the right cardinality, mp −N = dimL/tpL0. Shortly, we will see that it is in fact linearly

independent.

Proposition 5.5.3. [BKK19, Proposition A.6], [Zhu16, Section 2.6] Let k = mp − N . The

map

υ : Grλ → Grk V L 7→ L/tpL0 (5.5.2)

is a closed embedding. Moreover, the dual determinant bundle on Grk V pulls back to the line

bundle L = Υ∗O(1).

Proof sketch. Let L ∈ Grλ. Since tpL0 ⊂ L ⊂ L0, L is determined by L/tpL0. To see that

υ∗Det∗ = Υ∗O(1), we start by checking that

LL
∼=

k∧
(L0/t

pL0)/(L/tpL0) ∼=
k∧
L0/L .

Let L = gL0 and write g = utνh for some u ∈ U(K), ν ≤ λ and h ∈ G(O). Note hL0 = L0.

The natural equivariant structure on Det∗ as well as G(K)-equivariance of Υ implies there is a

natural equivariant structure on L . In particular, multiplication by u gives an isomorphism of

LLν and LL.

Now L0/Lν has basis ([eit
k] for 1 ≤ i ≤ m and 1 ≤ k ≤ νi−1). Wedging these together in

degree |ν| gives the eigenvector

vν = [e1] ∧ [e1t] ∧ · · · ∧ [e1t
ν1−1] ∧ · · · ∧ [em] ∧ [emt] ∧ · · · ∧ [emt

νm−1] ∈
|ν|∧
L0/Lν

which has eigenvalue tν11 t
ν2
2 · · · tνmm and, hence, weight ν.



Chapter 5. Equations for Mirković–Vilonen cycles 51

On the other hand, tνvΛ0 is contained in the Λ0− ν + (ν, ν)δ∨ weight space of L(Λ0). Since

minus the T weight of the line through tνvΛ0 is −(−ν) = ν, we also have that ΦT (Lν) = ν, and

Equivariant allows us to conclude that Det∗L
∼= LL for all L as desired.

We now return to Lemma 5.5.2. If we expand the elements in Equation 5.5.1 in the standard

basis of V we obtain a block matrix B of size (mp−N)×mp whose ith row block has rth row

equal to the vector of coefficients on [tr−1gei] expanded in powers of t. The determinant map

mp−N∧
: Grmp−N (V )→

mp−N∧
V

associates to L/tpL0 a line in
∧mp−N V . The latter space has basis indexed by (mp − N)-

subsets C of S. Dually, the coordinate of the line
∧mp−N (L/tpL0) in P(

∧mp−N V ) under the

usual Plücker embedding is given by minors ∆C(B) of B using the columns C ∈
(

S
mp−N

)
.

Proof of 5.5.2. In the event that gL0 = φ(A) for some A ∈ Oλ ∩ Tµ ∩ n, we can say precisely

that

gei = tµiei +
∑
j>i

(−
∑
k

Akjit
k−1)ej

where, as in the statement of Theorem 5.2.1, Akji denotes the kth entry from the left of the

µi × µj block of A. In particular, the highest power occuring in a coefficient of ej is at most

µj − 1 which is less than µi when j > i if we assume that µ is dominant. It follows that B is

block “upper triangular”. Moreover, the leftmost 1 in the rth row of the ith block of p − µi
rows occurs in column µi + r of the ith block of p columns. This works out to a nonzero pivot

entry (equal to 1) in every row, so that the set in Equation 5.5.1 is a basis.

Proposition 5.5.4. [BKK19, Proposition A.7] Let k = mp−N . Under the chain of maps

Oλ ∩ Tµ ∩ n
φ−→ Grλ ∩ Sµ−

υ−→ Grk V
ψ−→ P(

k∧
V )

A is sent to the point ψ ◦ υ ◦ φ(A) = [∆C(B)]C∈(Sk)
where B is the matrix of the basis of

φ(A)/tpL0 supplied by Lemma 5.5.2 expanded in the standard basis of V .

Let C0 be the subset of columns containing leading 1s. Then ∆C0(B) = 1 and we can

consider the affine space A( mp
mp−N)−1 ⊂ P(

∧mp−N Cmp) defined by the condition ∆C0 6= 0. Since

Oλ ∩Tµ ∩ n is mapped into this affine space, the image of a generalized orbital variety Z̊ is the

intersection of the corresponding MV cycle Z with this open affine space.

Definition 5.5.1. [CLO15, Chapter 8] The homogenization of an ideal K is denoted Kh and

defined to be the ideal (fh
∣∣f ∈ K) where

fh(x0, x1, . . . , xd) =

deg f∑
i=0

fi(x1, . . . , xd)x
deg f−i
0 (5.5.3)
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if f =
∑deg f

0 fi is the expansion of f as the sum of its homogeneous components fi of deg fi = i.

Corollary 5.5.5. [BKK19, Corollary A.8] The ideal of Z in P(
∧k V ) equals the homogenization

of the kernel of the map

C[{∆C

∣∣C ∈ (S
k

)
}]→ C[Z̊] . (5.5.4)

Example 5.5.2. Let λ = (3, 2) and µ = (2, 2, 1), and take p = 3. Note mp−N = 3 · 3− 5 = 4.

Recall that A ∈ Oλ ∩ Tµ ∩ n takes the form
0 1 0 0 0

0 a b c

0 1 0

0 d

0


so φ(A) takes the form  t2

−a− bt t2

−c −d t


and

LA = φ(A)L0 = SpanO(t2e1 − (a+ bt)e2 − ce3, t
2e2 − de3, te3) .

To go back, we take the transpose of
[
t
∣∣
L0/LA

]
in the basis ([e1], [te1], [e2], [te2], [e3]).

Now

LA/t
3L0 = SpanC([t2e1]− a[e2]− b[te2]− c[e3], [t2e2]− d[e3], [te3], [t2e3])

so in the basis ([e1], [te1], [t2e1], [e2], [te2], [t2e2], [e3], [te3], [t2e3])

B =

 0 0 1 −a −b 0 −c 0 0
0 0 0 0 0 1 −d 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1

 .
Relabeling

S = ((1, 0), (1, 1), (1, 2), (2, 0), (2, 1), (2, 2), (3, 0), (3, 1), (3, 2))

= (1, 2, 3, 1̄, 2̄, 3̄, 1
¯
, 2
¯
, 3
¯
)

we find that ∆33̄2
¯
3
¯

= 1.

5.5.1 The case µ = ωm

Let N = m, µ = (1, 1, . . . , 1) and p = 2, so that mp − N = m. In this case the Mirković–

Vybornov isomorphism assumes the very easy form Φ(A) = (tµ−A′)G(O) and the corresponding

lattice is

LA = SpanO({eit−A′ei}1≤i≤m) . (5.5.5)
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We re-index the basis elements [eit
j ] of V = L0/t

2L0 as follows.

(v1, . . . , vm, v1̄, . . . , vm̄) = ([e1t], . . . , [emt], . . . , [e1], . . . , [em]) . (5.5.6)

In this basis, υ(LA) is the row space of the m× 2m matrix B =
[
I −A

]
.

As above, subsets C ⊂ S of size m index a basis of
∧m V , with S = (1, . . . ,m, 1̄, . . . , m̄)

denoting the special index set. For any C ⊂ S of size m, we can consider the minor ∆C(B)

using the columns C.

The results of the last section combine to form a chain of T -equivariant maps

Oλ ∩ n→ Grλ ∩ S0
− → Gr(m,V )→ P(

m∧
V ) (5.5.7)

under which A is sent to the line [∆C(B)]C∈(Sm). In particular, the weight of vi is equal to the

weight of vī is equal to the standard basis vector εi of t∗ such that αi = εi − εi+1.

From the simple form of B, it is immediate that Oλ ∩ n is mapped into the affine space

A(2mm )−1 ⊂ P(
∧m V ) cut out by ∆12345 6= 0.



Chapter 6

Case studies

Fix G = PGLm and i = (1 2 . . . m−1 . . . 1 2 1). In this chapter we present examples of equality

and non-equality between “corresponding” MV basis and dual semicanonical basis vectors, as

well as evidence of “extra-compatibility” (both terms recalled below).

We espouse the ex crystal point of view, where the basic input is i-Lusztig data, even

though we always start with a tableau.1 The output of primary interest to us is the ideal of

a generalized orbital variety. Its multidegree and Hilbert series aid and abet us in establishing

non-equality and in studying extra-compatibility, respectively.

6.1 Varying degrees of equality

Recall the question we set out to answer.

Question. If M and Z define the same polytope, P , do they define the same measure, D, on

P?

Now that we have met the structures, the models, and the methods, we are in a position to

carry out some computations. Figure 6.1 below depicts the functional flowchart by which we

process the data of our examples.

We will say that Y ∈ Irr Λ(ν) and Z ∈ Z(∞)ν correspond if n(Y ) = n(Z). By way of

Theorem 1.3.5, we can associate to a Lusztig datum of weight ν, a tableau of weight µ, where

µ is the “smallest” possible weight such that ν + µ is a partition.

Theorem 6.1.1. ([BKK19, c.f. Corollary A.10]) If τ ∈ T (ν + µ)µ is such that n(τ) = n(Z),

then tµZ is the MV cycle corresponding to the generalized orbital variety labeled by τ .

This theorem is actually a corollary of our first two main results, Theorems A and B: the

generalized orbital variety labeled by a semistandard Young tableau τ ∈ T (λ)µ is mapped under

the Mirković–Vybornov isomorphism to the MV cycle of weight (λ, µ) and Lusztig datum n(τ);

therefore, t−µZ is a stable MV cycle of weight λ− µ and Lusztig datum n(τ).

1Under the rug we are applying the appropriate partial inverse B(∞)→ T (λ) supplied by Theorem 1.3.5 and
described in Chapter 1.

54
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Irr Λ(ν)

N` C[U ] PP C[treg]

IrrSν+ ∩ S0
− IrrOλ ∩ Tµ ∩ n

Y 7→cYn 7→Y

n7→Z

D

D FT

Z 7→bZ

φ(X)=tµZ∩Grµ

Z 7→X
mdeg
p(µ)

Figure 6.1. Flowchart

Using the the fact that equality of polytopes, Pol(Y ) = Pol(Z), is the same as equality

of i-Lusztig data, n(Z) = n(Y ), we can actually avoid polytopes in answering the opening

question.

Identify P∨ = Zm/Z(1, 1, . . . , 1) and let M be a general point in Y . Recall that D(cY )

(Theorem 3.2.1) and D(bZ) (Theorem 3.3.1) are limits in n of (scalings of) distributions on t∗

which are obtained from the representation classes

[H•(Fn(M))], [H0(Z,L ⊗n)] ∈ R(T∨) (n ∈ N) (6.1.1)

via the map that sends a T∨-representation V to the measure
∑

dimVνδν . The torus weight

spaces are given by H•(Fn,ν(M)) and H0(Z,L ⊗n)ν respectively, and corresponding Z and Y

are said to be extra-compatible if for all n ∈ N and for all µ ∈ Q+

χ(Fn,ν(M)) = dimH0(Z,L ⊗n)ν . (6.1.2)

Note, extra-compatibility is a priori stronger than equality of measures D or D. Conversely,

it is not known whether equality of basis vectors implies extra-compatibility. All in all, we have

the following relations.

Proposition 6.1.2. (cf. [BKK19, Proposition 12.2]) Consider the five statements below.

i) Y and Z are extra-compatible.

ii) cY = bZ

iii) D(cY ) = D(bZ)

iv) D(cY ) = D(bZ)

v) Pol(Y ) = Pol(Z)
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They are related as follows.

(i) (v)

(iii)

(ii) (iv)

Def. 3.2.1+Thm. 3.3.1+Thm. 3.2.1

?

Thm. 6.5.1

/

Thm. 3.2.1

Def. of DDef. of D

?
6.2 The string order on B(∞)

To check equality of basis vectors (in our first two examples) we rely on the string order on

B(∞) developed by Baumann in [Bau11]. Given (b′, b′′) and (c′, c′′) in B(∞)×B(∞), we write

(b′, b′′) ≈ (c′, c′′) if one of the three conditions below is satisfied.

• There is i ∈ I such that ϕi(b
′) = ϕi(b

′′) and (c′, c′′) = (ẽib
′, ẽib

′′).

• There is i ∈ I such that ϕi(b
′)− ϕi(b′′) > 0 and (c′, c′′) = (f̃ib

′, f̃ib
′′).

• (c′, c′′) = (σb′, σb′′).

Here σ is is an antiautomorphism which we do not define—we will only make use of the first

condition.

Given (b′, b′′) ∈ B(∞) × B(∞) we write b′ ≤str b
′′ if b′ and b′′ have the same weight and if

for any finite sequence of elementary moves

(b′, b′′) = (b′0, b
′′
0) ≈ (b′1, b

′′
1) ≈ · · · ≈ (b′n, b

′′
n) (6.2.1)

one has ϕi(b
′
n) ≤ ϕi(b′′n) for all i ∈ I.

Proposition 6.2.1. [Bau11, Proposition 2.6]

1. The relation ≤str is an order on B(∞).

2. The transition matrix between two perfect bases is upper triangular with respect to the

order ≤str.

This means that if Z and Y correspond, then

bZ =
∑

b(Y ′)≤strb(Z)

m(Z, Y ′)cY ′ (6.2.2)

with b(Z) = b(Y ), so m(Z, Y ) = 1. Here b(?) is an element of the B(∞) crystal (c.f. Section 1.3),

not to be confused with b? (or c?) which denotes an element of C[U ]. If we can show that b(Z)

is minimal with respect to the string order ≤str then we’ll have bZ = cY in C[U ].
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In particular, to show that some cY agrees with some bZ does not require any geometry,

while to show that some pair of corresponding basis vectors is not equal—as we will do in our

last example—does.

6.3 Case 1: Evidence for extra-compatibility in A4

Take λ = (2, 2, 1, 0, 0) and µ = (1, 1, 1, 1, 1) = 0. Put ν = λ− µ = α1 + 2α2 + 2α3 + α4 and let

Z ∈ Z(∞)ν and Y ∈ Irr Λ(ν) be the corresponding pair with Lusztig datum equal to that of

the tableau τ ∈ T (λ)µ pictured below.

1 2
3 4
5

This case is interesting because it is the “smallest” example not covered by the analysis of

[BKK19, §12.5]. In particular:

• cY is not a “flag minor” (see [GLS05]);

• general points M ∈ Y , while still rigid, are not Maya modules (see [KS11]);

• Z is not a Schubert variety (see [BKK19]).

Proposition 6.3.1. bZ = cY .

Proof. We will show that b(τ) is minimal with respect to the string order. The result then

follows by applying Equation 6.2.2. First note that b(τ)(= b(Z) = b(Y )) has string datum

(3, 2, 1, 4, 2, 3), meaning that in terms of the highest weight vector b∞ ∈ B(∞)

b(τ) = f3f2f1f4f2f3b∞ .

Note that under the map T (λ) → B(∞), b∞ = b(τh) where τh is the highest weight tableau

pictured below.
1 1
2 2
3

Since elements of different weights are not comparable in the string order, we need only consider

the five elements of T (λ)µ and their images in B(∞). These elements along with their ϕi values

are listed below. Any other elements of weight λ− µ in B(∞) will necessarily not be less than

any element in the image of T (λ)µ in the string order.

From this table it follows by definition that bi 6≤str b5 for any i 6= 5 except perhaps i = 1. To

see that b1 6≤str b5 we need to work a little harder. One can check by hand or with the help of
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b ~ε = (ε1, ε2, ε3, ε4)

b1 (0, 0, 1, 0)
b2 (0, 1, 0, 1)
b3 (1, 0, 0, 1)
b4 (0, 1, 0, 0)
b5 = b(τ) (1, 0, 1, 0)

Sage that

ε3(b1) = ε3(b5) = 1

ε2(f3b1) = ε2(f3b5) = 0

ε1(f2f3b1) = ε1(f2f3b5) = 0

ε4(f1f2f3b1) = ε4(f1f2f3b5) = 0

and

ϕ3(e4e1e2e3b1) = 1 > ϕ3(e4e1e2e3b5) = 0 .

We followed this particular sequence of elementary moves, because it is the start of the path

back to b∞ from b5 given by our choice of string datum. In terms of tableaux,

τ
3−→

1 2
3 3
5

2−→
1 2
2 3
5

1−→
1 1
2 3
5

4−→
1 1
2 3
4

2−→
1 1
2 2
4

3−→ τh

while

τ1 =
1 4
2 5
3

3−→
1 3
2 5
3

2−→
1 2
2 5
3

1−→
1 1
2 5
3

4−→
1 1
2 4
3

2−→ 0

where τ1 is such that b(τ1) = b1.

As a corollary, it follows that D(bZ) = D(cY ). Once we have the ideal of the orbital variety

which is open dense in tµZ we can check this directly.

For our main result, we show that Z and Y are extra-compatible to order 2.

Theorem 6.3.2. [BKK19, Theorem A.11]. Let L be the line bundle afforded by the embedding

Υ. (See Chapter 5.) Let M be a general point of Y . Then

(i) For all n ∈ N, dimH0(Z,L ⊗n) = dimH•(Fn(M))

(ii) For n = 1, 2 and for all ν ∈ Q+, dimH0(Z,L ⊗n)ν = dimH•(Fn,ν(M))

To prove this theorem we begin by describing the orbital variety of Z.
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6.3.1 Orbital variety of τ

If A ∈ Tµ ∩ n = n has coordinate 
0 a1 a2 a3 a4

0 0 a5 a6 a7

0 0 0 a8 a9

0 0 0 0 a10

0 0 0 0 0


then the generalized orbital variety X which is labeled by τ is the vanishing locus of the ideal

I = (a5, a10, a1a6 + a2a8, a7a8 − a6a9, a1a7 + a2a9) .

One can verify either by hand or using Macaulay2 that this ideal is prime.

Next, applying the rules for computing multidegrees from Chapter 3.6 (or using a computer)

we find that

mdegn(X) = α2α4(α13 + α24 + α1α3) . (6.3.1)

6.3.2 MV cycle

Let p = λ1 = 2. Since X is contained in the subspace {a5, a10 = 0}, the description of the MV

cycle tµZ = φ(X) afforded by Corollary 5.5.5 can be simplified. By ignoring minors which are

forced to vanish among the set of
(

10
5

)
possible Plücker coordinates, we can exhibit tµZ as a

subvariety of P16 using just the following minors.

b0 = ∆12345 b1 = ∆13451 b2 = ∆12451 b3 = ∆12351 b4 = ∆12341 b5 = ∆12352

b6 = ∆12342 b7 = ∆12353 b8 = ∆12343 b9 = ∆12312 b10 = ∆12412 b11 = ∆12413

b12 = ∆12512 b13 = ∆12513 b14 = ∆12313 b15 = ∆13413 b16 = ∆13513

Let P = C[b0, b1, . . . , b16]. Then tµZ is equal to Proj(P/Kh) where Kh is the homogenization

of Ker(P → C[n]/I). Explicitly K = K1 +K2 where

K1 = (b9 − b3b6 + b4b5, b10 − b2b6, b11 − b2b8,

b12 − b2b5, b13 − b2b7, b14 − b3b8 + b4b7, b15 − b1b8, b16 − b1b7)

K2 = (b1b5 + b2b7, b6b7 − b5b8, b1b6 + b2b8)

are the ideals coming from C[n] and I respectively.

If we’re careful, Kh is actually the ideal of ψ ◦ υ(tµZ) ∼= tµZ, but the distinction is moot

thanks to Propositions 5.5.3 and 5.5.4 which guarantee that

H0(φ ◦ υ(tµZ),O(1)) = H0(υ(tµZ),Det∗) = H0(tµZ,L ) . (6.3.2)

since ψ∗O(1) = Det−1 and υ∗Det−1 = L .

Since H0(tµZ,L ) = H0(Z,L ), it suffices to compute the Hilbert series of Kh. We do so
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with the help of Macaulay2. First we find that the Hilbert polynomial of Kh is

PZ = −2P3 + 18P4 − 40P5 + 25P6

where Pk denotes the Hilbert polynomial of Pk which is given by n 7→
(
n+k
k

)
.

Next we verify that (i.e. that Z is projectively normal)

P/Kh ∼=
⊕

H0(Z,OZ(n))

by checking that depthKh = 7. (See [Eis05, Corollary A.1.12 and Corollary A.1.13].) We

conclude that

dimH0(Z,L ⊗n) = PZ(n)

for all n.

6.3.3 Preprojective algebra module

Using Theorem 1.3.4 we find that the (abridged—0 summands omitted) HN table for the Lusztig

datum n(τ),
1
2

2← 3
3← 4

,

determines a general point M ∈ Y of the form

1 3

22 4

3

with the maps chosen such that Ker(M2 →M3), Im(M3 →M2) and Im(M1 →M2) are distinct.

This module has the property that any two submodules of a given dimension vector are

isomorphic, and this property is exploited in [BKK19, Appendix] to compute dimH•(Fn(M))

recursively as follows. Given ν ∈ Q+ we denote by Fn(M)ν the component of Fn(M) consisting

of those (n+ 1)-step flags that have dimension ν at step n. Since all submodules of dimension

ν are isomorphic, there exists N ⊂M such that Fn(M)ν ∼= Fn−1(N)× F1,ν(M). The resulting

recurrence

dimH•(Fn(M)ν) = dimH•(Fn−1(N)) + dimH•(F1,ν(M))

is helpful for computing the right-hand side of the formula

dimH•(Fn(M)) =
∑
ν∈Q+

dimH•(Fn(M)ν) .
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By induction on n one finds that

dimH•(Fn(M)) =
(n+ 1)2(n+ 2)2(n+ 3)(5n+ 12)

144

which is equal to PZ(n). See Table 6.1 below. This shows Theorem 6.3.2 (i).

ν F1(M)ν dimH•(F1,ν(M)) dimH•(Fn(M)ν)

(0, 0, 0, 0) Point 1 1
(0, 1, 0, 0) Point 1 n
(0, 0, 1, 0) Point 1 n
(0, 0, 1, 1) Point 1 1

2n(n+ 1)
(0, 1, 1, 0) P1 2 1

2n(3n+ 1)
(0, 1, 1, 1) P1 2 1

6n(n+ 1)(5n+ 1)
(0, 2, 1, 0) Point 1 1

2n
2(n+ 1)

(1, 1, 1, 0) Point 1 1
6n(n+ 1)(n+ 2)

(0, 1, 2, 1) Point 1 1
12n(n+ 1)2(n+ 2)

(0, 2, 1, 1) Point 1 1
6n

2(n+ 1)(2n+ 1)
(1, 1, 1, 1) Point 1 1

24n(n+ 1)(n+ 2)(3n+ 1)
(1, 2, 1, 0) Point 1 1

6n
2(n+ 1)(n+ 2)

(0, 2, 2, 1) Point 1 1
12n

2(n+ 1)2(n+ 2)
(1, 2, 1, 1) Point 1 1

24n
2(n+ 1)(n+ 2)(3n+ 1)

(1, 2, 2, 1) Point 1 1
144n

2(n+ 1)2(n+ 2)(5n+ 7)

Table 6.1. Spaces of (chains of) submodules of M .

6.3.4 Extra-compatibility

Recall that Fn,ν(M) denotes the variety of (n + 1)-step flags of submodules of M whose di-

mension vectors sum to a fixed dimension vector ν. In Theorem 6.3.2 (ii) we wish to show

that

dimH0(tµZ,O(n))ν = dimH•(Fn,ν(M)) (6.3.3)

for n = 1, 2 and for all µ ∈ P . We can describe Fn,µ(M) by hand.
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ν H•(F1(M)ν)

0 1
α1 1
α1 + α2 1
α1 + α2 + α3 2
α1 + α2 + α3 + α4 2
α2 + α3 1
α2 + α3 + α4 1
α3 1
α3 + α4 1
α1 + α3 1
α1 + α3 + α4 1
α1 + 2α2 + α3 1
α1 + 2α2 + α3 + α4 1
α1 + α2 + 2α3 + α4 1
α1 + 2α2 + 2α3 + α4 1

17

Table 6.2. The correspondence on the level of torus representations between F1(M) and Z

To describe the left-hand side we use Macaulay2, computing a truncated Hilbert series of Jh

in the polynomial ring P which is multigraded by the usual degree plus the torus action. The

latter grading is inherited from C[n]. Indeed, the information of the first and second columns of

the above table is contained in the following truncated Hilbert series, with the formal variable

ui = ti/ti+1 capturing weight αi piece of I ⊂ C[n]. The torus graded Hilbert series of the 17

dimensional representation H0(Z,O(1)) is

1+u1 +u3 +u1u2 +u1u3 +u2u3 +u3u4 +2u1u2u3 +u1u3u4 +u2u3u4 +u1u
2
2u3 +2u1u2u3u4 +

u1u
2
2u3u4 + u1u2u

2
3u4 + u1u

2
2u

2
3u4.

Remembering some more terms we can see the correspondence on the level of torus rep-

resentations between F2(M) and Z. The torus graded Hilbert series of the 110 dimensional

representation H0(Z,O(2)) is:

1 + u1 + u3 + u2
1 + u1u2 + u1u3 + u2u3 + u2

3 + u3u4 + u2
1u2 + u2

1u3 + 2u1u2u3 + u1u
2
3 +

u2u
2
3 +u1u3u4 +u2u3u4 +u2

3u4 +u2
1u

2
2 + 2u2

1u2u3 +u1u
2
2u3 +u2

1u
2
3 + 2u1u2u

2
3 +u2

2u
2
3 +u2

1u3u4 +

2u1u2u3u4 +u1u
2
3u4 +u2u

2
3u4 +u2

3u
2
4 + 2u2

1u
2
2u3 + 2u2

1u2u
2
3 + 2u1u

2
2u

2
3 + 2u2

1u2u3u4 +u1u
2
2u3u4 +

u2
1u

2
3u4 + 3u1u2u

2
3u4 + u2

2u
2
3u4 + u1u

2
3u

2
4 + u2u

2
3u

2
4 + u2

1u
3
2u3 + 3u2

1u
2
2u

2
3 + u1u

3
2u

2
3 + 2u2

1u
2
2u3u4 +

3u2
1u2u

2
3u4 + 3u1u

2
2u

2
3u4 + u1u2u

3
3u4 + u2

1u
2
3u

2
4 + 2u1u2u

2
3u

2
4 + u2

2u
2
3u

2
4 + 2u2

1u
3
2u

2
3 + u2

1u
3
2u3u4 +

4u2
1u

2
2u

2
3u4 +u1u

3
2u

2
3u4 +u2

1u2u
3
3u4 +u1u

2
2u

3
3u4 + 2u2

1u2u
2
3u

2
4 + 2u1u

2
2u

2
3u

2
4 +u1u2u

3
3u

2
4 +u2

1u
4
2u

2
3 +

3u2
1u

3
2u

2
3u4 +2u2

1u
2
2u

3
3u4 +u1u

3
2u

3
3u4 +3u2

1u
2
2u

2
3u

2
4 +u1u

3
2u

2
3u

2
4 +u2

1u2u
3
3u

2
4 +u1u

2
2u

3
3u

2
4 +u2

1u
4
2u

2
3u4 +

2u2
1u

3
2u

3
3u4+2u2

1u
3
2u

2
3u

2
4+2u2

1u
2
2u

3
3u

2
4+u1u

3
2u

3
3u

2
4+u2

1u
4
2u

3
3u4+u2

1u
4
2u

2
3u

2
4+2u2

1u
3
2u

3
3u

2
4+u2

1u
2
2u

4
3u

2
4+

u2
1u

4
2u

3
3u

2
4 + u2

1u
3
2u

4
3u

2
4 + u2

1u
4
2u

4
3u

2
4.



Chapter 6. Case studies 63

In Table 6.3 below we see that dimH•(F2,ν(M)) and the coefficients on the Hilbert series

of H0(Z,O(2)), the dimensions of H0(Z,O(2))ν = H0(tµZ,O(n))ν+2µ, coincide.

ν + 2µ H•(F2,ν(M))

(2, 2, 2, 2, 2) 1

(3, 1, 2, 2, 2) 1

(3, 2, 1, 2, 2) 1

(3, 2, 2, 1, 2) 2

(3, 2, 2, 2, 1) 2

(2, 3, 2, 1, 2) 1

(2, 3, 2, 2, 1) 1

(2, 2, 3, 1, 2) 1

(2, 2, 3, 2, 1) 1

(3, 3, 1, 2, 1) 1

(3, 3, 1, 1, 2) 1

(3, 1, 3, 2, 1) 1

(3, 1, 3, 1, 2) 1

(4, 0, 2, 2, 2) 1

(4, 1, 1, 2, 2) 1

(4, 1, 2, 1, 2) 2

(4, 1, 2, 2, 1) 2

(4, 2, 1, 2, 1) 2

(4, 2, 1, 1, 2) 2

(4, 0, 3, 2, 1) 1

(4, 0, 3, 1, 2) 1

(4, 2, 0, 2, 2) 1

(4, 3, 0, 2, 1) 1

(4, 3, 0, 1, 2) 1

(4, 2, 2, 0, 2) 3

(4, 2, 2, 1, 1) 4

(3, 3, 2, 0, 2) 2

(3, 3, 2, 1, 1) 3

(3, 2, 3, 0, 2) 2

(3, 2, 3, 1, 1) 3

(4, 3, 2, 0, 1) 2

(4, 3, 1, 1, 1) 3

(4, 3, 1, 0, 2) 2

(4, 2, 3, 0, 1) 2

(4, 1, 3, 1, 1) 3
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(4, 1, 3, 0, 2) 2

(4, 2, 2, 2, 0) 3

(3, 3, 2, 2, 0) 2

(3, 2, 3, 2, 0) 2

(4, 3, 2, 1, 0) 2

(4, 3, 1, 2, 0) 2

(4, 2, 3, 1, 0) 2

(4, 1, 3, 2, 0) 2

(2, 4, 2, 0, 2) 1

(2, 4, 2, 1, 1) 1

(2, 3, 3, 0, 2) 1

(2, 3, 3, 1, 1) 1

(3, 4, 2, 0, 1) 1

(3, 4, 1, 1, 1) 1

(3, 4, 1, 0, 2) 1

(3, 3, 3, 0, 1) 1

(2, 4, 2, 2, 0) 1

(2, 3, 3, 2, 0) 1

(3, 4, 2, 1, 0) 1

(3, 4, 1, 2, 0) 1

(3, 3, 3, 1, 0) 1

(2, 2, 4, 0, 2) 1

(2, 2, 4, 1, 1) 1

(3, 2, 4, 0, 1) 1

(3, 1, 4, 1, 1) 1

(3, 1, 4, 0, 2) 1

(2, 2, 4, 2, 0) 1

(3, 2, 4, 1, 0) 1

(3, 1, 4, 2, 0) 1

(4, 4, 2, 0, 0) 1

(4, 4, 1, 1, 0) 1

(4, 4, 1, 0, 1) 1

(4, 3, 3, 0, 0) 1

(4, 4, 0, 2, 0) 1

(4, 4, 0, 1, 1) 1

(4, 4, 0, 0, 2) 1

(4, 2, 4, 0, 0) 1

(4, 1, 4, 1, 0) 1

(4, 1, 4, 0, 1) 1
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(4, 0, 4, 2, 0) 1

(4, 0, 4, 1, 1) 1

(4, 0, 4, 0, 2) 1

110

Table 6.3. Correspondence on the level of torus representations between F2(M) and Z for
M .

This check completes Theorem 6.3.2 (ii).

6.3.5 Equal D

We now check directly that D(bZ) = D(cY ). To compute the flag function of Y we analyze the

geometry of composition series Fi(M).

If ν belongs to the subset

(1, 2, 3, 2, 4, 3) (1, 2, 3, 4, 2, 3) (1, 3, 2, 4, 3, 2) (3, 4, 1, 2, 3, 2)

(1, 3, 4, 2, 3, 2) (3, 1, 2, 4, 3, 2) (3, 1, 4, 2, 3, 2) (3, 4, 2, 1, 2, 3)

(3, 2, 1, 2, 4, 3) (3, 2, 1, 4, 2, 3) (3, 2, 4, 1, 2, 3)

of Seq(ν) then Fi(M) is a point, so χ(Fi(M)) = 1.

If ν belongs to the subset

(1, 3, 2, 2, 4, 3) (1, 3, 2, 4, 2, 3) (1, 3, 4, 2, 2, 3) (3, 1, 2, 2, 4, 3)

(3, 1, 2, 4, 2, 3) (3, 1, 4, 2, 2, 3) (3, 4, 1, 2, 2, 3)

of Seq(ν) then Fi(M) ∼= P1, so χ(Fi(M)) = 2. For all other values of i in Seq(ν), the variety is

empty.

The flag function is a rational function, but we can use p(µ) = mdegn(0) to clear the

denominator. By direct computation, one obtains that the flag function is given by D(cY )p(µ).

Comparing with mdegn(X) and applying Proposition 5.4.4 proves the expected equality.

6.4 Case 2: Weak evidence of extra-compatibility in A5

This time, we take λ = (2, 2, 1, 1) and µ = (1, 1, 1, 1, 1, 1). Put ν = λ − µ = α1 + 2α2 + 2α3 +

2α4 + α5 and let Z ∈ Z(∞)ν and Y ∈ Irr Λ(ν) be the corresponding pair with Lusztig datum

equal to that of the tableau τ ∈ T (λ)µ pictured below.

τ =

1 3
2 5
4
6
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This case is interesting because it is the simplest example for which Y is a component whose

general point is not rigid.

Proposition 6.4.1. bZ = cY

Proof. First note that b(τ) = b(Z) = b(Y ) has string data (2, 1, 3, 4, 3, 2, 5, 4) meaning that in

terms of the highest weight vector b∞ ∈ B(∞)

b(τ) = f2f1f3f4f3f2f5f4b∞ .

Note that we are once again identifying B(λ) with a subset of B(∞) such that the highest

weight tableau
1 3
2 5
4
6

goes to the highest weight vector b∞.

Since wt(b(τ)) = 0 we need only consider the zero weight space of B(ω2 + ω4) ⊂ B(∞):

From this table it is immediate that bi 6≤str b6 for any i 6= 6 except perhaps i = 1 or i = 8. To

b ~ε = (ε1, ε2, ε3, ε4, ε5)

b1 (0, 0, 0, 1, 0)
b2 (0, 0, 1, 0, 1)
b3 (0, 1, 0, 0, 1)
b4 (1, 0, 0, 0, 1)
b5 (0, 0, 1, 0, 0)
b6 = b(τ) (0, 1, 0, 1, 0)
b7 (1, 0, 0, 1, 0)
b8 (0, 1, 0, 0, 0)
b9 (1, 0, 1, 0, 0)

see that b1 6≤str b6 and b8 6≤str b6 we use Sage to determine f strings for each of b1, b8.

Since
ε4(b1) = ε4(b6) = 1

ε3(f4b1) = ε3(f4b6) = 0

ε2(f3f4b1) = ε2(f3f4b6) = 0

ε1(f2f3f4b1) = ε1(f2f3f4b6) = 0

ε5(f1f2f3f4b1) = ε5(f1f2f3f4b6) = 0

and

ε4(f5f1f2f3f4b1) = 1 ≥ ε4(f5f1f2f3f4b6) = 0

it follows that m(b1, b6) = 0.
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Similarly, since

ε2(b6) = ε2(b8) = 1

ε1(f2b6) = ε1(f2b8) = 0

ε3(f1f2b6) = ε3(f1f2b8) = 0

while

ε2(f3f1f2b6) = 0 < ε2(f3f1f2b8) = 1

it follows that m(b6, b8) = 0.

As a corollary, it follows that D(bZ) = D(cY ). Once we have the ideal of the orbital variety

which is open dense in tµZ = Z we can check this directly.

For our main result, we show that Z and Y are extra-compatible to order 1.

Theorem 6.4.2. [BKK19, Theorem A.12] Let M be a general point of Y . For all ν ∈ Q+,

dimH0(Z,L )ν = dimH•(F1,ν(M)) . (6.4.1)

To prove this theorem we again begin by describing the generalized orbital variety of Z.

6.4.1 Orbital variety

If A ∈ Tµ ∩ n = n has coordinate

A =


0 a1 a2 a3 a4 a5

0 0 a6 a7 a8 a9

0 0 0 a10 a11 a12

0 0 0 0 a13 a14

0 0 0 0 0 a15

0 0 0 0 0 0


then the generalized orbital variety X which is labeled by τ is the vanishing locus of the prime

ideal I(X) computed and verified with the aid of Macaulay2.

One can compute the Hilbert series of I(X) as with the previous example.

6.4.2 Preprojective algebra module

Next, a general point Ma ∈ Y takes the form

2 4

1 33 5

2 4
1

[ 1
0 ] [ 0

1 ]
1

−a
[ a 1 ] [ 1 1 ]

−1

(6.4.2)
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a15

a10

a1

a6a11 + a7a13

a12a13 − a11a14

a6a12 + a7a14

a2a11 + a3a13

a3a6 − a2a7

a2a12 + a3a14

a5a6a13 − a2a9a13 − a4a6a14 + a2a8a14

a5a7a13 − a3a9a13 − a4a7a14 + a3a8a14

a5a7a11 − a3a9a11 − a4a7a12 + a3a8a12

Table 6.4. Generators of I(X)

It is straightforward to find all submodules of Ma and thus to describe the space F1(Ma).

Comparing with the computation of H0(Z,L ) via Table 6.6 yields the proof of Theorem 6.4.2.

6.4.3 Equal D

To compute D(cY ) we again enumerate composition series. We find 148 sequences i such that

Fi(Ma) ∼= P1 and 104 sequences i such that Fi(Ma) is a point. Using a computer, we check that

the resulting polynomial p(µ)D(cY ) agrees with the multidegree of X,

mdegn(X) = α1α3α5 (2α1,4α1,5α2α3,5 + α1,3α1,5α3,4α3,5 + α1,2α15α2α4 + α1,2α2α2,3α4

+α1,2α2α3,4α4 + α1,3α34α3,5α4 + α2α3,4α3,5α4)

6.5 Case 3: Nonequality of basis vectors in A5

Take λ = (4, 4, 2, 2) and µ = (2, 2, 2, 2, 2, 2). Consider the “double” of the tableau from the

previous case.

τ =

1 1 3 3
2 2 5 5
4 4
6 6

Let Y ∈ Irr Λ have Lusztig data equal to n(τ). A general point in Y is of the form Ma⊕Ma′

with a 6= a′ ∈ C. Let I(ω2 + ω4) = I(ω2)⊕ I(ω4) where

are the standard injective A-modules.

Theorem 6.5.1. [BKK19, Theorem A.13] Let Y ′ ∈ Irr Λ(ν/2) be the component from Equa-

tion 6.4.2, and let Y ′′ ∈ Irr Λ(ν) be the component whose general point is I(ω2 + ω4). Then

D(bZ) = D(cY ′)
2 − 2D(cY ′′) .

In particular, D(bZ) 6= D(cY ), and therefore bZ 6= cY .
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C ν

(1, 2, 3, 4, 5, 6) (0, 0, 0, 0, 0, 0)

(1, 2, 3, 4, 5, 1̄) (1, 0, 0, 0, 0,−1)

(1, 2, 3, 4, 6, 1̄) (1, 0, 0, 0,−1, 0)

(1, 2, 3, 5, 6, 1̄) (1, 0, 0,−1, 0, 0)

(1, 2, 4, 5, 6, 1̄) (1, 0,−1, 0, 0, 0)

(1, 2, 3, 4, 5, 2̄) (0, 1, 0, 0, 0,−1)

(1, 2, 3, 4, 6, 2̄) (0, 1, 0, 0,−1, 0)

(1, 2, 3, 5, 6, 2̄) (0, 1, 0,−1, 0, 0)

(1, 2, 4, 5, 6, 2̄) (0, 1,−1, 0, 0, 0)

(1, 2, 3, 4, 1̄, 2̄) (1, 1, 0, 0,−1,−1)

(1, 2, 3, 5, 1̄, 2̄) (1, 1, 0,−1, 0,−1)

(1, 2, 4, 5, 1̄, 2̄) (1, 1,−1, 0, 0,−1)

(1, 2, 3, 6, 1̄, 2̄) (1, 1, 0,−1,−1, 0)

(1, 2, 4, 6, 1̄, 2̄) (1, 1,−1, 0,−1, 0)

(1, 2, 3, 4, 5, 3̄) (0, 0, 1, 0, 0,−1)

(1, 2, 3, 4, 6, 3̄) (0, 0, 1, 0,−1, 0)

(1, 2, 3, 4, 1̄, 3̄) (1, 0, 1, 0,−1,−1)

(1, 2, 3, 5, 1̄, 3̄) (1, 0, 1,−1, 0,−1)

(1, 2, 3, 5, 1̄, 4) (1, 0, 0, 0, 0,−1)

(1, 2, 3, 6, 1̄, 3̄) (1, 0, 1,−1,−1, 0)

(1, 2, 3, 6, 1̄, 4) (1, 0, 0, 0,−1, 0)

(1, 2, 3, 4, 2̄, 3̄) (0, 1, 1, 0,−1,−1)

(1, 2, 3, 5, 2̄, 3̄) (0, 1, 1,−1, 0,−1)

(1, 2, 3, 5, 2, 4) (0, 1, 0, 0, 0,−1)

(1, 2, 3, 6, 2̄, 3̄) (0, 1, 1,−1,−1, 0)

(1, 2, 3, 6, 2̄, 4̄) (0, 1, 0, 0,−1, 0)

(1, 2, 3, 4, 5, 4̄) (0, 0, 0, 1, 0,−1)

(1, 2, 3, 4, 6, 4̄) (0, 0, 0, 1,−1, 0)

(1, 2, 3, 4, 1̄, 4̄) (1, 0, 0, 1,−1,−1)

(1, 2, 4, 5, 1̄, 4̄) (1, 0,−1, 1, 0,−1)

(1, 2, 4, 6, 1̄, 4̄) (1, 0,−1, 1,−1, 0)

(1, 2, 3, 4, 2̄, 4̄) (0, 1, 0, 1,−1,−1)

(1, 2, 4, 5, 2̄, 4̄) (0, 1,−1, 1, 0,−1)

(1, 2, 4, 6, 2̄, 4̄) (0, 1,−1, 1,−1, 0)

(1, 2, 3, 4, 3̄, 4̄) (0, 0, 1, 1,−1,−1)

35

Table 6.6. An indexing of the basis for the space spanned by the minors C of the matrix B.
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ν F1(M)ν dimH•(F1(M)ν)

(1, 2, 2, 1, 0) Point 1

(1, 1, 0, 1, 1) Point 1

(0, 1, 1, 2, 1) Point 1

(1, 1, 2, 1, 1) Point 1

(1, 1, 1, 2, 1) Point 1

(0, 0, 1, 1, 1) Point 1

(0, 0, 1, 2, 1) Point 1

(0, 0, 0, 1, 1) Point 1

(1, 1, 1, 1, 1) P1 2

(0, 1, 1, 1, 0) P1 2

(0, 1, 0, 0, 0) Point 1

(0, 1, 1, 0, 0) Point 1

(1, 2, 2, 1, 1) Point 1

(0, 1, 0, 1, 0) Point 1

(1, 2, 2, 2, 1) Point 1

(1, 2, 1, 1, 1) Point 1

(1, 1, 1, 0, 0) Point 1

(1, 1, 0, 1, 0) Point 1

(0, 1, 2, 1, 0) Point 1

(1, 1, 1, 1, 0) P1 2

(1, 1, 0, 0, 0) Point 1

(1, 1, 2, 1, 0) Point 1

(0, 0, 0, 1, 0) Point 1

(0, 0, 0, 0, 0) Point 1

(0, 0, 1, 1, 0) Point 1

(0, 1, 1, 1, 1) P1 2

(0, 1, 0, 1, 1) Point 1

(1, 2, 1, 1, 0) Point 1

(0, 1, 2, 1, 1) Point 1

(1, 1, 2, 2, 1) Point 1

(0, 1, 2, 2, 1) Point 1

35

Table 6.7. Components of the quiver Grassmannian of Qξ

Proof. By Lemma 1.3.2 and multiplicativity of D the computation of the right-hand side is

reduced to the previous section (and the easy computation of D with respect to I(ωi)).

For the left-hand side, we use Equation 4.3.1 to give a description of the generalized orbital

variety Xτ . With the help of a computer we find that it is the vanishing locus of a prime ideal
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1

2

3

4

2

3

4

5

I(ω2)

1

2

3

4

2

3

4

5

I(ω4)

I seen in Figure 6.2 of dimension 16 inside a polynomial ring with 24 generators.

From there, it is easy to compute the multidegree of Xτ and thus D(bZ).
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b15, b10, b1, a15, a10, a1
a14b11 − a13b12 − a12b13 + a11b14
a12b6 + a14b7 + a6b12 + a7b14
a11b6 + a13b7 + a6b11 + a7b13
a12b2 + a14b3 + a2b12 + a3b14
a11b2 + a13b3 + a2b11 + a3b13
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a9a13b3 − a8a14b3 + a7a14b4 − a7a13b5 − a5a13b7 + a4a14b7 − a3a14b8 + a3a13b9 − a5a7b13 + a3a9b13 + a4a7b14 − a3a8b14
a9a11b3 − a8a12b3 + a7a12b4 − a7a11b5 − a5a11b7 + a4a12b7 − a3a12b8 + a3a11b9 − a5a7b11 + a3a9b11 + a4a7b12 − a3a8b12
a9a13b2 − a8a14b2 + a6a14b4 − a6a13b5 − a5a13b6 + a4a14b6 − a2a14b8 + a2a13b9 − a5a6b13 + a2a9b13 + a4a6b14 − a2a8b14
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2
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2
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2
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2
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2
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2
14

Figure 6.2. Ideal of Xτ
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Figure 6.3. Multidegree of Xτ
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∆11̄2̄3̄4̄

∆122̄3̄4̄

∆131̄3̄4̄

∆121̄3̄4̄

∆1233̄4̄

∆141̄2̄4̄

∆131̄2̄4̄

∆121̄2̄4̄

∆1242̄4̄

∆1232̄4̄

∆1341̄4̄

∆1241̄4̄

∆1231̄4̄

∆12344̄

∆151̄2̄3̄

∆141̄2̄3̄

∆131̄2̄3̄

∆121̄2̄3̄

∆1252̄3̄

∆1242̄3̄

∆1232̄3̄

∆1451̄2̄

∆1351̄2̄ −∆1251̄3̄

∆1341̄2̄ −∆1241̄3̄

∆12452̄

1
∆3

1251̄3̄
−∆1251̄2̄∆1351̄3̄

∆1341̄3̄∆1251̄3̄ −∆1241̄3̄∆1351̄3̄

∆1241̄3̄∆1251̄3̄ −∆1241̄2̄∆1351̄3̄

∆1231̄3̄∆1251̄3̄ −∆1231̄2̄∆1351̄3̄

∆12353̄∆1251̄3̄ −∆12352̄∆1351̄3̄

∆12343̄∆1251̄3̄ −∆12342̄∆1351̄3̄

∆13451̄∆1251̄3̄ −∆12451̄∆1351̄3̄

∆12353̄∆1341̄3̄ −∆12343̄∆1351̄3̄

∆1251̄2̄∆1341̄3̄ −∆1241̄2̄∆1351̄3̄

∆12352̄∆1341̄3̄ −∆12342̄∆1351̄3̄

∆3
1241̄3̄

−∆1241̄2̄∆1341̄3̄

∆1231̄3̄∆1241̄3̄ −∆1231̄2̄∆1341̄3̄

∆12353̄∆1241̄3̄ −∆12342̄∆1351̄3̄

∆12343̄∆1241̄3̄ −∆12342̄∆1341̄3̄

∆1251̄2̄∆1241̄3̄ −∆1241̄2̄∆1251̄3̄

∆12352̄∆1241̄3̄ −∆12342̄∆1251̄3̄

∆13451̄∆1241̄3̄ −∆12451̄∆1341̄3̄

∆1251̄2̄∆1231̄3̄ −∆1231̄2̄∆1251̄3̄

∆1241̄2̄∆1231̄3̄ −∆1231̄2̄∆1241̄3̄

∆13451̄∆1231̄3̄ −∆12351̄∆1341̄3̄ + ∆12341̄∆1351̄3̄

∆12451̄∆1231̄3̄ −∆12351̄∆1241̄3̄ + ∆12341̄∆1251̄3̄

∆1251̄2̄∆12353̄ −∆12352̄∆1251̄3̄

∆1241̄2̄∆12353̄ −∆12342̄∆1251̄3̄

∆1231̄2̄∆12353̄ −∆12352̄∆1231̄3̄

∆13451̄∆12353̄ + ∆12345∆1351̄3̄

∆12451̄∆12353̄ + ∆12345∆1251̄3̄

∆1251̄2̄∆12343̄ −∆12342̄∆1251̄3̄

∆1241̄2̄∆12343̄ −∆12342̄∆1241̄3̄

∆1231̄2̄∆12343̄ −∆12342̄∆1231̄3̄

∆12352̄∆12343̄ −∆12342̄∆12353̄

∆13451̄∆12343̄ + ∆12345∆1341̄3̄
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∆13451̄∆12342̄ + ∆12345∆1241̄3̄
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∆12351̄∆12342̄ −∆12341̄∆12352̄ + ∆12345∆1231̄2̄

Figure 6.4. Ideal of Zτ ∩ {∆12345 = 1}
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Index of Notation

G simple simply-connected complex algebraic group
g the Lie algebra of G
G∨ the Langlands dual group of G
U, B, T the usual associated suspects B = UT ⊂ G
u, b, t their Lie algebras
U∨, B∨, T∨ their Langlands dual groups
P = X•(T ) weight lattice
P∨ = X•(T ) coweight lattice, P∨ = X•(T∨)
t∗R = P ⊗ R real weight lattice
tR = P∨ ⊗ R real coweight lattice
w0 ∈W the longest element in the Weyl group of G
` = lenw0 length of any reduced word for w0

(I,H,H
ε→ {±1}) the doubled Dynkin quiver of G

{αi}I , {α∨i }I basis of simple roots for t∗, simple coroots for t
aij = 〈α∨i , αj〉 = αj(α

∨
i ) (i, j)th entry of Cartan matrix of g

si = sαi simple reflections in W acting by λ 7→ λ− 〈λ, αi〉αi on P
ei = eαi Chevalley generators of U(u), root vectors weighted by Π
i = (i1, . . . , i`) reduced expression for w0

w
i
k = si1 · · · sik subword
≤i associated convex order

∆ ⊃ ∆+ = {βik}
`
1 roots, positive roots; ordered by ≤i with β

i
k = w

i
k−1αk

αi,j = αi + · · ·+ αj shorthand for positive roots in type A
Q+ ⊂ Q “positive” root cone in root lattice
ν =

∑
νi if ν =

∑
νiαi is positive

Seq(ν) all i = (i1, . . . , ip) such that
∑
αik = ν

ν• = (νw)W collection of vectors in P
{ωi}I , {ω∨i }I fundamental weights, fundamental coweights

X̊τ ⊂ Xτ open dense subset of generalized orbital variety

Z̊τ ⊂ Zτ open dense subset of associated MV cycle, Z̊τ = φ(Xτ )
Z(∞) =

⋃
ν∈Q+

Z(∞)ν stable MV cycles

Z(λ) =
⋃
µ∈P+

Z(λ)µ MV cycles of type λ

B(∞) Lusztig’s dual canonical basis of C[U ]
cY ∈ B(Λ) dual semicanonical basis of C[U ]
bZ ∈ B(Gr) MV basis of C[U ]
vλ ∈ L(λ) highest weight vector in irreducible highest weight rep
Ψ =

∑
Ψλ Berenstein–Kazhdan map

⋃
L(λ)→ C[U ]

O ⊂ K rings of formal power series, Laurent series
Gr affine Grassmannian

G1 = Ker(Gr
ev→ G) ???

Tµ ∩N
Φ̃→ G1[t−1]tµ ???

Oλ ∩ Tµ
Φ→ Grλ ∩Grµ Φ(A) = Φ̃(A)L0

φ = Φ
∣∣
Oλ∩Tµ∩n

restricted Mirković–Vybornov isomorphism

ψ moment map defining Λ
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T (λ)µ semistandard Young tableaux of shape λ and weight µ

Oλ ∩ Tµ ∩ n
τ→ T (λ)µ labeling of generalized orbital varieties by semi-standard Young tableaux

A the preprojective algebra of (I,H, ε)
Λ Lusztig’s nilpotent variety, elements are modules M for A
Fi(M) variety of composition series of type i
Fn(M) ⊃ Fn,µ(M) n+ 1 step flags in; of dim−−→ = µ

H0 sections
dim−−→ dimension vector of a A-module in Q+

O, L structure sheaf, line bundle
ni( ) = (ni( )β)∆+ i-Lusztig datum
Seq(ν) ordered partitions of ν
i,k, j elements of Seq(ν)
PP measures on t∗R
� shuffle product
δ∆p Lebesgue measure on p-simplex
Di pushfroward of Lebesgue measure on p-simplex

Di the “leading” coefficient on its Fourier transform
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