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Abstract

We show how to construct certain groupoid models of irrational rotation algebras and show how

this can be used to to find projections in the algebra.
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Introduction

Groupoid C∗-algebras first appeared in the works of Jean Renault and Alain Connes and have been

studied ever since. A basic question one may ask is can a given C∗-algebra A be constructed as the

C∗-algebra of some groupoid? One of the most general answers to this has been given by Xin Li

who has shown in [3] that every classifiable simple stably finite C∗-algebra has a Cartan subalgebra.

Paired with the work of Jean Renault in [5] where it is shown that a C∗-algebra has a Cartan

subalgebra if and only if it is a C∗-algebra of a twisted étale essentially principal groupoid, this

leads to the conclusion that every classifiable C∗-algebra has a groupoid model.

The Jiang-Su algebra Z plays a crucial role in classification theory, every classifiable C∗-algebra

A is Z-stable, meaning that to A⊗Z. In [8] it was shown that the Jiang-Su algebra Z has infinitely

many non-isomorphic groupoid models. This was used in [9] to point out that if a Z-stable C∗-

algebra has a groupoid model, then it will consequently also have infinitely many non-isomorphic

groupoid models.

The work in this thesis is based on a paper of George Elliott and Dickson Wong, where they

give a groupoid construction of the Riffel projection of the irrational rotation algebra. We further

explore their construction in order to find groupoid models of the same algebra, thus exploring the

non-uniqueness phenomena explained above.

Review of topological groupoids and their C∗-algebras

We begin by giving a brief overview of topological groupoids and their C∗-algebra in order to fix

the language and notation which will be used later on.

Étale groupoids

Definition 1. A groupoid consists of a set of arrows G with a distinguished subset of objects G(0).

The set of arrows is equipped with two maps r, s ∶ G → G(0) specifying the range and source of the

arrow. The set of composable arrows G(2) is defined as the set of pairs of arrows (γ1, γ2) such that

s(γ1) = r(γ2). These sets come with a multiplication map (γ1, γ2)→ γ1γ2 from G(2) → G and inverse

map γ → γ−1 from G → G. These sets and maps adhere to list of axioms similar to those of a group.

To construct a C∗-algebra we need the groupoid to have a topology.

Definition 2. A topological groupoid is a groupoid G endowed with a locally compact topology.

We ask that the object space G(0) to be Hausdorff in the relative topology, the range, source,
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multiplication and inverse maps are asked to be continuous.

In general one more structure on the groupoid is necessary to construct a C∗-algebra. In order

to define a convolution product we need a system of Haar measures. We will avoid this since the

groupoids we will be considering are étale.

Definition 3. A topological groupoid is called étale if both the range map and source maps r, s ∶

G → G(0) are local homeomorphisms.

The simplest examples of such groupoids are transformation groupoids of discrete groups acting

on locally compact Hausdorff spaces.

C∗-algebra of étale groupoids

The first algebra one associates to an étale groupoid G is the convolution algebra Cc(G).

Definition 4. Given a Hausdorff étale groupoid G we equip the vector space of compactly supported

functions Cc(G) with a multiplication structure using the convolution product

(f ∗ g)(γ) = ∑
α∈G(γ)

f(α)g(α−1γ)

The ∗-operation is defined by f∗(γ) = f(γ−1).

Using these operation the vector space Cc(G) becomes a ∗-algebra called the convolution algebra

of the groupoid G. We should note here that the sum in the convolution product is well defined.

Since G is étale the set of arrows Gr(γ), which is the set of arrows with the same range as γ, is a

discrete set. Since both the functions f, g have compact support, this implies that the sum in the

convolution product is in fact finite.

The convolution algebra Cc(G) can be completed to a C∗-algebra by considering the norm ∥a∥ =

sup{∥π(a)∥ — π ∶ Cc(G)→ B(H)}, this completion is called the (full) groupoid C∗-algebra C∗(G).

The rotation algebra as a groupoid C∗-algebra

The rotation algebra Aθ is typically defined as the universal C∗-algebra generated by two unitary

elements u and v satisfying the relation vu = quv, where q = e2πiθ, with θ ∈ [0,1). We will now give

a description of the rotation algebra Aθ as a groupoid algebra.

Let the group of integers Z act on the circle T by a rotation with angle θ. The transformation

groupoid Gθ for this action is given the product topology Z × T, so it can be viewed as an infinite
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stack of circles each labeled by an integer. We will denote a point in this space by (z, n), where z is

a point on the circle and n is an integer, this point is the groupoid arrow going from the point z to

the point z + nθ.

A function with compact support on Gθ is a finite linear combination of functions on the individual

circles in the stack. To analyze multiplication in this groupoid algebra it is enough to see how to

multiply two functions fn and fm, whose supports belong to the n-th and m-th circles respectively.

By definition of the convolution product we get (fn ∗ fm)(z, k) = ∑
k
fn(z, l)fm(z + lθ, k − l), from

which we see that we will only get an interesting result if l = n and k = m + n. This implies

that fn ∗ fm is a function with support contained in the m + n-th circle defined by the formula

fn ∗ fm(z, n +m) = fn(z)fm(z + nθ).

Consider the functions u defined to be equal to z on the circle with label 0 and v defined to be

equal to 1 on the circle with label 1. Clearly both u and v are unitaries and from the paragraph

above we can see that u ∗ v(z) = z as a function on the circle with label 1 while v ∗ u(z) = e2πiθz,

so these two unitaries satisfy the relation defining the rotation algebra Aθ. The ∗-algebra generated

by u, v and u∗, v∗ contains all polynomial functions supported on a finite set of circles, in particular

it is dense in the algebra of all compactly supported functions on this groupoid.

It now becomes important whether or not θ is rational or irrational.

Definition 5. A topological groupoid is said to be minimal if for every object x ∈ G(0) its orbit is

dense in the object space G(0).

For a rational rotation number it is clear that the groupoid Gθ is not minimal. From ergodic

theory we know that for an irrational rotation the orbit of any point on the circle is dense implying

that the groupoid Gθ is minimal. Minimality of the groupoid corresponds to the simplicity of the

groupoid algebra, the following theorem can be found in [1].

Theorem 1. Let G be an amenable étale groupoid. Then C∗(G) is simple if and only if G is effective

and minimal.

A groupoid is effective if the interior of its isotropy group is equal to the set of identity arrows.

In our case case the isotropy group consists only of the identity arrows so the above theorem can be

applied to Gθ.

Since the groupoid C∗-algebra C∗(Gθ) contains the ∗-algebra generated by u, v satisfying vu = quv

and is simple we can conclude that it is in fact isomorphic to the universal C∗-algebra satisfying this

relation Aθ. For example, restricting to the circle y = 0 we will get a circle with rotation number 1
θ
.
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Kronecker foliation

The Kronecker foliation groupoid Kθ is the transformation groupoid of the real numbers R acting

on the torus T2 by t.(x, y) = (x + t, y + tθ). In this case the group action is not discrete, so this

groupoid is not étale, but this can be addressed by restricting to various transversals.

Given a closed subspace X of the object space of a groupoid G we can restrict to this subset

by consider the groupoid with object space X defined by the set of all arrows γ such that both its

source and range belong to the subset X.

For example we can restrict it to circle defined by x = 0. To get back to the circle traveling along

the foliation we would have to travel for a time t equal to some integer n, from a point (0, y) to the

point (0, y + nθ). It is easy to see that this groupoid is precisely the one described above for the

irrational rotation.

The group SL2(Z) acts on the torus, a matrix A =
⎛
⎜⎜
⎝

a b

c d

⎞
⎟⎟
⎠
maps a point (x, y) to the point (ax+

by, cx + dy). The circle x = 0 would get mapped to the circle (by, dy). The groupoid corresponding

to this circle will also be a rotation groupoid with rotation number A(θ) = aθ+b
cθ+d .

Two circle groupoid

We now analyze what will happen if we restrict the Kronecker foliation to a union of two circles of the

form discussed in the previous section. For reasons to become apparent later we will ”desingularize”

this groupoid by replacing the point (0,0) where the two circles intersect with two points (0,0)1 and

(0,0)2, so that the object space is now a disjoint union of two circles. Every arrow going either to

or from the origin (0,0) is replaced by a two arrows, one for each of the new points. This groupoid

will be denoted by Gθ1,θ2 where θ1 and θ2 are the rotation numbers of the two chosen circles. We

will now give a more detailed description of this groupoid.

It should first be noted that this two circle groupoid Gθ1,θ2 contains disjoint copies of each of

groupoids Gθ1 and Gθ2 . These two copies are the arrows traveling from circle 1 to itself and circle 2

to itself. We now analyze the set of arrows going from one circle to the other.

Lemma 1. As a topological space the set of arrows going from circle 1 to circle 2 is a copy of the

real line R.

Proof. Draw the Kronecker foliation in the plane R2. The flow lines are lines with slope θ and the

two circles correspond to the lines with slope d1

b1
and d2

b2
, assuming θ1 = a1θ+b1

c1θ+d2
and θ2 = a2θ+b2

c2θ+d2
. For
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each real number t there is precisely one point one line 1 which is transported by the flow lines to

line 2 in time t. Since θ is irrational it cannot happen so that two of these arrows in fact define

the same after taking the quotient by Z2. Thus the the time parameter t defines a homeomorphism

between the space of arrows going from circle 1 to circle 2 and the real line R.

From this description we can see that this groupoid is a locally compact Hausdorff étale principal

groupoid. Moreover the following lemma becomes obvious.

Lemma 2. The two circle groupoid Gθ1,θ2 is minimal.

This implies that the algebra C∗(Gθ1,θ2) is simple.

A crucial upside of the object space of Gθ1,θ2 being disconnected is that the two circles define

two complementary projections p1 + p2 = 1 in the algebra C∗(Gθ1,θ2).

To determine the isomorphism class of the C∗-algebra of this groupoid we proceed in two steps.

We first establish that C∗(Gθ1,θ2) is Riefell-Morita equivalent to an irrational rotation algebra and

then use Riefell’s classification of this Morita equivalence class to determine which algebra C∗(Gθ1,θ2)

is isomorphic to.

Rieffel-Morita Equivalence for groupoid C∗-algebras

Following the work of Jean Renault and Dana Williams [2] Rieffel-Morita equivalence of groupoid

C∗ − algebras can be established by finding a groupoid equivalence.

Definition 6. Given locally compact Hausdorff groupoids G and H with open range and source

maps, a locally compact Hausdorff space Z with a left G-action and a right H-action is called a

(G,H)-equivalence if the following holds:

• The left G-action commutes with the right H-action.

• The two anchor maps Z → G(0) and Z →H(0) are open and induce isomorphisms Z/H →H(0)

and G/Z → G(0).

The crucial result concerning groupoid equivalences is that they imply Rieffel-Morita equivalence

between the associated groupoid C∗-algebras (see [2]).

Theorem 2. Given two locally-compact Hausdorff groupoids G and H and a (G,H)-equivalence

Z, the space Cc(Z) can be naturally completed into a C∗(G) −C∗(H) imprimitivity bimodule. In

particular the groupoid C∗-algebras C∗(G) and C∗(H) are Rieffel-Morita equivalent.
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Recall that the two circle groupoid Gθ1,θ2 consists of a copy of the single circle groupoid Gθ1 , a

copy of the single circle groupoid Gθ2 and arrows going in between the two circles. Let Z be the set

of arrows in the two circle groupoid going from circle 1 to circle 2. The groupoid Gθ1 acts on Z on

the left by precomposition, the groupoid Gθ2 acts on Z on the right by composition. Associativity of

the multiplication map implies that these actions commute, the two anchor maps are open since the

groupoid is étale and the induced maps Z/Gθ → Gθ(0) and Gθ/Z → Gθ(0) are clearly isomorphisms.

This proves the following theorem.

Theorem 3. The space of arrows Z going from circle 1 to circle 2 with the natural left action of

Gθ1 and right action of Gθ2 is a (Gθ1 − Gθ2)-equivalence.

Together with theorem 2 this reproves half of result of Marc Rieffel (see [6]) which states that

two irrational rotation algebras Aθ1 and Aθ2 are Rieffel-Morita equivalent if and only if the rotation

numbers θ1 and θ2 differ by an element of SL2(Z).

As mentioned in the previous section the two circles in the object space of Gθ1,θ2 define comple-

mentary projections p1+p2 = 1 such that the two corners p1C
∗(Gθ1,θ2)p1 and p2C

∗(Gθ1,θ2)p2 are the

irrational rotation algebras Aθ1 and Aθ2 respectively. Thus the algebra C∗(Gθ1,θ2) is none other but

the linking algebra of Aθ1 and Aθ2 . In particular we have

Theorem 4. The groupoid algebra C∗(Gθ1,θ2) is Rieffel-Morita equivalent to the irrational rotation

algebra Aθ.

We will need the following result of Marc Rieffel from [7]

Theorem 5. For an irrational θ the only unital C∗-algebras which are Rieffel-Morita equivalent to

the irrational rotation algebra Aθ are algebras of the form Mn(Aθ′), where θ′ is in the same orbit

of SL2(Z) as θ.

This substantially narrows down the list of possibilities for the isomorphism class of C∗(Gθ1,θ2).

To completely determine the isomorphism class we will need to analyze the values of the trace on

the projections p1, p2.

Traces and measures

From [6] we know that the irrational rotation algebra Aθ has a unique trace and that the the range

of this trace on projections belongs to the set (Z + θZ) ∩ [0,1]. This allows us to determine the

rotation number by looking at the values of the trace on projections.
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Similarly to how for a commutative C∗-algebra C(X) traces correspond to suitable measures

on X, for a groupoid C∗-algebra C∗(G) traces correspond to suitable invariant measures on the

object space G(0). Recall that a groupoid is étale if both the range and source maps are local

homeomorphisms.

Definition 7. A subset of arrows B in a groupoid G is called a bisection if the restriction of the

range and source maps to B are local homeomorphisms.

Bisections in a groupoid form an inverse semigroup and this a suitable notion for how a groupoid

acts on subsets of its object space.

Definition 8. A regular Borel measure µ on the object space of a groupoid G(0) is said to be

invariant if for any bisection B we have µ(r(B)) = µ(s(B)).

The following result can be found in the lectures note of Ian Putnam [4]

Theorem 6. For a locally compact Hausdorff étale groupoid G with compact object space, every

invariant regular Borel measure µ defines a trace on the convolution algebra Cc(G) via the formula

τ(f) = ∫
G(0)

f(x)dµ

This trace extends to the groupoid C∗-algebra C∗(G).

For our two circle groupoid Gθ1,θ2 , every invariant measure µ will be the sum of an invariant

measure µ1 on the first circle and an invariant measure µ2 on the second circle. Considering only the

arrows mapping the first circle to itself we observe the measure µ1 has to be invariant under rotations

by multiples of θ1. Since the set {nθ1}n∈Z is dense in R we can conclude that the measure µ1 must

be invariant under all rotations, so it must be a multiple of the standard Lebesgue measure on the

circle. The same is true for the second circle. We will normalize the measure µ so that µ(G(0)) = 1,

abusing notation let µ1 and µ2 be the measures of the first and second circle respectively, so that

µ1 +µ2 = 1. The arrows going between the two circles determine the ratio of these two measures. To

simplify calculations lets assume that the first circle chosen is x = 0,so that θ1 = θ, the more general

case is computed similarly by applying a suitable SL(Z) transformation. By yet again carefully

looking at the flow lines between the two circle we can compute that

Lemma 3. For the two circle groupoid Gθ,θ′ the ratio µ2

µ1
= θ′.

This lemma implies that we have constructed the unique normalized trace τ on the two circle

groupoid algebra Gθ,θ′ . From this construction we see that the values of this trace τ on the two
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projections p1, p2 are precisely the measures of the two circles µ1, µ2. These two trace values µ1, µ2

can be found from ratio in lemma 3 and the condition that µ1 + µ2 = 1 to conclude that µ2 = 1
1+θ′ .

Another way to express µ2 would be to set S =
⎛
⎜⎜
⎝

0 1

1 0

⎞
⎟⎟
⎠
, this is the fractional linear transformation

which flips the rotation number, set T =
⎛
⎜⎜
⎝

1 1

0 1

⎞
⎟⎟
⎠
, this is the fractional linear transformation which

adds 1 to the rotation number, then if θ′ = A(θ), we have µ2 = STA(θ).

By using theorem 5 and this trace calculation we can conclude the following.

Theorem 7. The groupoid C∗-algebra C∗(Gθ,θ′) is isomorphic to the irrational rotation algebra

A 1
1+θ′

.

By choosing different values of θ′ we see that we have constructed groupoid models for all possible

irrational rotation algebras. As mentioned previously the two circles in the object space give a way

to clearly see projections in these algebras, without having to solve any functional equations.

More circles

Instead of considering two circles cut out of the Kronecker foliation, we may instead take any finite

number of different circles. We can repeat the ”desingularization” process by replacing their common

point of intersection (0,0) with a new point for each of the circles. The resulting n-circle groupoid

will be similar to the two circle groupoid, it will contain a disjoint copy of each of the chosen one

circle groupoids and the space of arrows going in between any two of these circles will be isomorphic

to a copy of the real line R. The same arguments as above can be used to see that the C∗-algebra

of this groupoid will be Rieffel-Morita equivalent to the irrational rotation algebra Aθ. The same

arguments can be used to build an invariant measure corresponding to the unique trace, although

the analog of lemma 3 becomes difficult to cleanly write down, but nevertheless the same conclusion

can be made: the C∗-algebra of this n-circle groupoid will be an irrational rotation algebra. We

have thus constructed groupoid models of the irrational rotation algebras whose objects spaces are

arbitrary finite union of circles.
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