DEPARTMENT OF MATHEMATICS Topology Comprehensive Exam 2025 September 17, 2025 - 6:00 - 9:00 p.m. BA6183

NO AIDS ALLOWED. Passing score is 80 percent.
Last name
First name
Email

Question 1.

Fix an $n \times n$ matrix $A = (a_i^j)$, determining the following vector field on \mathbb{R}^n :

$$X_A = \sum_{i,j=1}^n a_i^j x^i \frac{\partial}{\partial x^j}.$$

- 1. What is the flow φ_t^A of the above vector field? Is it complete? Justify your answer.
- 2. Compute the pullback

$$(\varphi_t^A)^*v,$$

where $v = dx^1 \wedge \cdots \wedge dx^n$. Under what condition on A do we obtain $(\varphi_t^A)^*v = v$ for all t?

3. Under what condition on the $n \times n$ matrices A, B would we have that X_A and X_B are f-related by a diffeomorphism f of \mathbb{R}^n ? Justify your answer.

Question 2. The Euler characteristic of a smooth n-manifold M is defined as the alternating sum

$$\chi(M) = \sum_{i=1}^{n} (-1)^{i} \operatorname{dim} H^{i}(M, \mathbb{R}).$$

- 1. What are the possible values of the Euler characteristic of a compact 3-manifold, and why?
- 2. Provide an example of a compact 4-manifold M such that $\chi(M)=3$. Explain why it satisfies the condition.
- 3. Provide a sequence M_k of compact 4-manifolds such that $\chi(M_k)$ is unbounded as $k \to \infty$, with proof, stating clearly any results you need to use.

Question 3. Suppose M is a compact n-manifold with a smooth map to the circle $f: M \to S^1$ which has no critical points. Show that M is a mapping torus, i.e. M is diffeomorphic to $(X \times \mathbb{R})/\mathbb{Z}$, where X is a compact (n-1)-manifold, ϕ is a diffeomorphism of X, and $k \in \mathbb{Z}$ acts via $k \cdot (x,t) = (\phi^k(x), t+k)$.

Question 4.

- 1. Define "G is a topological group".
- 2. Prove that if G is a topological group then $\pi_1(G, e)$ is Abelian (for convenience, we take the basepoint of G to be its identity element e).

Question 5. Write a sketch of the proof of the following statement, including all the relevant definitions:

If $f_0: X \to Y$ and $f_1: X \to Y$ are homotopic, then for every $k \ge 0$, the maps $f_{0*}: H_k(X) \to H_k(Y)$ and $f_{1*}: H_k(X) \to H_k(Y)$ are the same.

Question 6. Let n be an even positive integer.

- 1. Show that for any continuous map $f: S^n \to S^n$ there is a point $x \in S^n$ such that $f(x) = \pm x$.
- 2. Show that any continuous map $g: \mathbb{R}P^n \to \mathbb{R}P^n$ has a fixed point, where $\mathbb{R}P^n$ denotes the *n*-dimensional real projective space $\mathbb{R}P^n := S^n/(x \sim -x)$.