Department of Mathematics
 University of Toronto

Topology Comprehensive Examination | 10:00-13:00 | 6/9/2013 | BA6183

Complete all six problems. Clearly state any theorems used.

1. Let K and L be embedded submanifolds of a smooth manifold M.
a) What does it mean for K and L to intersect transversally? State a precise definition.
b) Prove that if K and L intersect transversally, then $K \cap L$ is an embedded submanifold, and compute its dimension in terms of $\operatorname{dim} K, \operatorname{dim} L, \operatorname{dim} M$.
c) Let $S^{1} \subset \mathbb{R}^{2}$ be given by $\left\{\left(x_{1}, x_{2}\right): x_{1}^{2}+x_{2}^{2}=1\right\}$. Write the equations defining the tangent bundle of S^{1} as a subset of $T \mathbb{R}^{2}=\mathbb{R}^{2} \times \mathbb{R}^{2}$, using standard coordinates $\left(x_{1}, x_{2}, u_{1}, u_{2}\right)$ for the tangent vector

$$
u_{1} \frac{\partial}{\partial x_{1}}+u_{2} \frac{\partial}{\partial x_{2}}
$$

above the point $\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}$.
Finally, prove that this inclusion $T S^{1} \subset T \mathbb{R}^{2}$ is an embedded submanifold.
2. Let M be an n-dimensional smooth manifold, and fix a point $p \in M$.
a) Let $\mu \in \Omega^{1}(M, \mathbb{R})$ be a 1 -form such that $d \mu=0$ and $\mu(p) \neq 0$. Show there exists a neighbourhood U of p and coordinates $\left(x^{1}, \ldots, x^{n}\right)$ in this neighbourhood such that $\mu=d x^{1}$ in U.
b) Let $\mu_{i} \in \Omega^{1}(M, \mathbb{R})$, for $i=1, \ldots, n$. Give necessary and sufficient conditions on $\left\{\mu_{1}, \ldots, \mu_{n}\right\}$ for the existence of a coordinate system $\left\{x^{1}, \ldots, x^{n}\right\}$ near a point $p \in M$ such that $\mu_{i}=d x^{i}$ for all i.
3. a) Give a complete statement of Stokes' theorem for manifolds with boundary.
b) Let M be a compact oriented 3 -manifold with boundary, where the boundary is $\partial M=S^{1} \times S^{1}$. Let $\theta_{i} \in \Omega^{1}(\partial M), i=1,2$ be the 1 -forms obtained by pulling back the standard volume form $\theta \in \Omega^{1}\left(S^{1}\right)$ by the first and second projections $\pi_{i}: S^{1} \times S^{1} \rightarrow S^{1}, i=1,2$. Prove that it is not possible to extend both θ_{1} and θ_{2} to closed 1-forms on M (i.e. one of θ_{1}, θ_{2} must fail to extend in this way).
4. Let $X=S^{1} \vee S^{1}$ be the figure eight space:

a) Describe all connected two-sheeted covering spaces of X. You may use diagrams such as the one above.
b) Find a connected three-sheeted covering space of X which is regular, and find another which is not regular. Recall that a covering $p: \widetilde{X} \rightarrow X$ is regular when $p_{*} \pi_{1}(\widetilde{X})$ is normal in $\pi_{1}(X)$.
5. Compute the fundamental group of the punctured torus $S=T^{2} \backslash\{p\}$, where $p \in T^{2}$. Use this to compute the fundamental group of the genus two surface $S_{1} \cup S_{2}$ shown below. Provide a detailed derivation.

6. Compute the cohomology of $\mathbb{R} P^{n}$ with coefficients in \mathbb{Z} and with coefficients in $\mathbb{Z} / 2 \mathbb{Z}$, for all n. Describe the derivation clearly.

