Problem 2. In standard coordinates \(x, y, z \), the Euler vector field on \(\mathbb{R}^3 \) is given by \(E = x \frac{\partial}{\partial x} + y \frac{\partial}{\partial y} + z \frac{\partial}{\partial z} \).

a) Let \(v = dx \wedge dy \wedge dz \). Show that \(i_E(v) \) pulls back to the unit sphere \(S^2 \subset \mathbb{R}^3 \) to define a volume form \(\omega \).

b) Write down vector fields \(V_1, V_2, V_3 \) on \(\mathbb{R}^3 \) whose flows are the rotations about the \(x, y, z \) axes, respectively.

c) Show that \(V_1, V_2, V_3 \) are tangent to \(S^2 \), defining vector fields on \(S^2 \).

d) Finally, find functions \(f_1, f_2, f_3 \) on \(S^2 \) such that \(i_{V_k}(\omega) = df_k, \quad k = 1, 2, 3 \).

Problem 3. Let \(X \) be a manifold and \(\phi : X \to X \) a diffeomorphism. The mapping torus of \((X, \phi)\) is defined to be the quotient manifold \(M = (X \times \mathbb{R})/\sim \), where the equivalence relation is \((x, t) \sim (\phi(x), t+1)\).

a) If \(M = U \cup V \) for open sets \(U, V \), write down the short exact sequence of cochain complexes which relates the de Rham complexes of \(M, U, V \), and \(U \cap V \), being careful to define the maps involved.

b) Using the Mayer-Vietoris long exact sequence, compute the de Rham cohomology groups of the mapping torus of \((S^n, A)\), where \(A : S^n \to S^n \) is the antipodal map \(x \mapsto -x \).

Topology II

Problem 4. Give an example of a non-trivial knot in \(\mathbb{R}^3 \), that is an embedding \(f : S^1 \to \mathbb{R}^3 \) such that \(\pi_1(\mathbb{R}^3 \setminus f(S^1)) \) is not isomorphic to \(\mathbb{Z} \). Prove your answer.

Problem 5.

a) Prove that each continuous map \(f : CP^2 \to CP^2 \) has a fixed point.

b) Prove that \(\mathbb{R}P^3 \) is not homotopy equivalent to \(\mathbb{R}P^2 \vee S^3 \).

Problem 6. Let \(M \) be a closed \(n \)-dimensional manifold such that its fundamental group is isomorphic to the free group \(F_2 \) with two generators. (Recall that \(F_2 = \mathbb{Z} * \mathbb{Z} \).

a) Determine \(H^{n-1}(M; \mathbb{Z}_2) \).

b) Prove that each two-dimensional homology class of \(M \) is spherical. (This means that for each \(h \in H_2(M; \mathbb{Z}) \) there exists a continuous map \(f : S^2 \to M \) such that \(h = f_*([S^2]) \), where \([S^2]\) denotes the fundamental homology class of the 2-dimensional sphere \(S^2 \), and \(f_* \) denotes the homomorphism \(H_2(S^2; \mathbb{Z}) \to H_2(M; \mathbb{Z}) \) induced by \(f \). Or, in other words, this means that the Hurewicz homomorphism \(\pi_2(M) \to H_2(M) \) is surjective.)