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Given a semisimple algebraic group G, shifted Yangians are quantizations of certain gener-
alized slices in G((¢t71)). In this thesis, we work with these generalized slices and the shifted
Yangians in the simply-laced case.

Using a presentation of antidominantly shifted Yangians inspired by the work of Leven-
dorskii, we show the existence of a family of comultiplication maps between shifted Yangians.
We include a proof that these maps quantize natural multiplications of generalized slices.

On the commutative level, we define a Hamiltonian action on generalized slices, and show
a relationship between them via Hamiltonian reduction. This relationship is established by
constructing an explicit inverse to a multiplication map between slices.

Finally, we conjecture that the above relationship lifts to the Yangian level. We prove this

conjecture for sufficiently dominantly shifted Yangians, and for the sl;-case.
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Chapter 1

Introduction

Given a simple finite-dimensional Lie algebra g, the Yangian Y(g) is a prominent object in
mathematics and physics. Historically, the Yangian Y (gl,,) first appears in the work of Faddeev
on the inverse scattering method (see, for instance, [FT]). In his paper [D1], Drinfeld coined
the term Yangian and defined Y (g) as a canonical deformation quantization of U(g[t]), the
universal enveloping algebra of the current algebra g[t].

In this thesis, we look at a certain family of algebras called the shifted Yangians, denoted

by Y,,, parametrized by coweights ;v of g. When p = 0, Yp is the usual Yangian.

Moreover, thoughout the thesis, let us assume that we are in the simply-laced case.

1.1 Motivation and Setting

A central theme of this work is the story of quantization. The general idea is that the geometry
of symplectic resolutions is intimately related to the representation theory of their quantizations.

In this thesis, we will only deal with filtered quantizations. Let us start with a quick reminder.

1.1.1 Filtered quantization

Let A be graded algebra over a field k. An N-filtered deformation of A is an N-filtered algebra
A= U0 A,, A, C A, 1, together with an isomorphism gr(A) ~ A of graded algebras. Recall
that ng =, An/A,_1, with A_; := {0}, is the associated graded algebra of A.

If A is commutative, we refer to A as a deformation quantization of A. A filtered deformation
A of A gives rise to a Poisson structure on A via the isomorphism gr A ~ A. More precisely,

given y; € A; and Yo € /Nlj,
{y1 + Ai 1,92 + Ag‘ﬂ} = Y12 — Y21 mod Aiﬂ'—zo (1.1)

Given an affine algebraic variety X over a field k, a quantization of X is a deformation

quantization of its coordinate ring k[X].
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1.1.2 Basic motivation: The Nilpotent Cone

The basic example of interest to us involves the nilpotent cone N of a finite-dimensional semisim-
ple Lie algebra g together with its Springer resolution T*(G/B) where g is the Lie algebra of
G and B is a Borel subgroup of G. The nilpotent cone consists of elements of g which act
nilpotently on every representation of G. Identifying N with a subvariety of g* via the Killing

form, N inherits a Poisson structure coming from the Poisson-Lie structure of g*.

The nilpotent cone is quantized by a family of algebras A¢ = U(g)/Z¢ where Z¢ is a central
ideal of U(g), labelled by certain parameters £. In fact, via Beilinson-Bernstein localization
theorem, A¢ = D*(G/B), i.e., twisted differential operators on the flag variety G//B. Moreover,
the isomorphisms gr(A¢) ~ C[N] come from the PBW isomorphism gr(Ug) ~ C[g*].

1.1.3 Affine Grassmannian slices and dominantly shifted Yangians

Our story starts with the study of slices in the affine Grassmannian, initiated in [KWWY].
Let G be a complex semisimple algebraic group. Consider the affine Grassmannian Gr =
G((t™1))/G[t]. Any coweight A\ of G can be thought of as a C((t~1))-point of G. Denote
by t* the image of this point in Gr. Denote by G;[[t™!]] the kernel of the evaluation map
G[t7Y]] — G at infinity.

For a pair of dominant coweights A and g with g < X, we have the spaces Gr* = G[t]t*
and Gr, = Gi[[t7!]]t*°* where wy is the longest element of the Weyl group of G. Consider

also the slice Gri =Gr'n Gry,. Under the geometric Satake correspondence, the intersection
homology of Gr;) is identified with the u-weight space of the irreducible G'V-representation of
highest weight A\, where GV is the Langlands dual group. These slices carry natural Poisson

structures described as follows. Given z(t),y(t) € g((¢t~1)), the bilinear form

(x(t),y(t)) := Resi—o k(x(t), y(t)),

where r is the Killing form on g, is invariant and nondegenerate. The spaces g((t~1)),t 1g[[t™!]]
and g[t] form a Manin triple, which gives rise to Poisson-Lie structure on G((¢t~!)) with Poisson
subgroups G1[[t!]] and G[t]. This in turn induces a Poisson structure on the affine Grass-
mannian. By a general result about Manin triples and Poisson-Lie groups (first obtained by
Mirkovié), see [KWWY] Thm. 2.5], the subvarieties Grf; =Gr'n Gr,, are symplectic leaves.

We have a natural map G4[[t™']] — Gr,, g — gt*. Thus, C[Gr,] C C[Gy[[t7!]]]. To
quantize these spaces, [KWWY] define families of shifted Yangians Y),, and truncated shifted
Yangians Y,}. The shifted Yangians Y, are defined in [KWWY] as certain subalgebras of the
usual Yangian Yy, while Yp:\ are certain subquotients. By [KWWY], Thm. 3.12 and 4.8], Y,, and
Yu)\ quantize Gr,, and Grl’\t respectively. More precisely, similar to the nilpotent cone situation,
[KWWY] also shows that there is a family Y, (c) quantizing Gr,, and that there is a family
Y/j (c) quantizing Grg where ¢ range over a certain set of parameters. Their definition is inspired
by the work of Brundan-Kleshchev, [BK], which introduces the shifted Yangians for gl,. Now,
in order to study the geometry of slices, it is natural to study the representation theory of these
(truncated) shifted Yangians (see [KTWWYT]).
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1.1.4 Generalized affine Grassmannian slices and shifted Yangians

In this thesis, we will be working with a generalization of the setting of the last paragraph. In
[BEN], the authors introduce generalized slices Wi which makes sense even in the case where
1 is not dominant.

More explicitly, consider a pair of coweights A, i such that A is dominant and that pu < A.
Given T' C B C G where T is a torus and B is Borel, let U be the unipotent radical of B
(similarly, let B_ be the opposite Borel and U_ its unipotent radical). Consider the spaces
GG, W, = Uy ([t~ Ta ([t~ ]t Ur,—[[t Y]], and Wi = G[t]t*G[t] "' W,.. When \ and p
are dominant, one has that W, ~ Gr,, and that Grz ~ WZ\L

The space Wz is of dimension (2p, A—pu) where 2p is the sum of positive roots. The definition
given in [BEN] 2(ii)] describes W,, as a moduli space of the following data:

(a) a G-bundle P,

(b) a trivialization o : ?tri\'hf);o = (Ph@%o , where P1_ denotes a formal neighbourhood around

oo in PL.

¢) a B-structure ¢ on P of degree wou having fiber B_ C G at oo € P, with respect to the
B Pofd having fiber B_ C G P!, with h

trivialization o of P at oo € PL.

The subvariety Wﬁ is defined as being cut out by the condition that o extends as a rational
trivialization with a unique pole at 0 € P!, and the order of the pole of o at 0 € P! is < A. In
the setting of [BFNJ, the space Wz is the Coulomb branch of a 3d N = 4 SUSY gauge theory,
with the corresponding Higgs branch being the Nakajima quiver variety Mg (A, ). When A = 0,

W, is a space of based maps from P! to G/B.
As candidates for quantizations, [BEN, Appendix B] provides definitions for Y, and Y/j‘
for arbitrary p. The quantization question is addressed in [FKPRW]. Given any splitting

=11 + vy, [EKPRW| Section 5.4] defines a filtration F,, ,,Y,, for Y,,.
Theorem 1.1.4.1. [FKPRW| Thm .5.15] Suppose u = vy + vo. Then grfviv2 Y, ~ C[W,].

Note that this theorem endows W, with a Poisson structure, given by . For dominant
1, this is the same as the natural Poisson structure coming from the aforementioned Manin
triple. The above isormorphism also endows the subvariety Wi of W,, with a Poisson structure.

The BFN construction of the Coulomb branch also yields a defomation quantization A%PP.
In [BEN| Cor. B.28] for dominant p and in [We, Cor. 3.10] for general p, it has been established
that AP" ~ Y

1.2 Multiplication of generalized slices and coproducts for

shifted Yangians

1.2.1 Multiplication of slices

There is natural family of maps between slices. Given any coweights p1, 12, one defines a map

Moy g - Wm X Wltz Wlh +p2o (gla 92) = g+ po (9192)
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where 7, is the identification
m s UNU ()T U~ ((671) /U [E] — Wy

These multiplication maps are not associative (see Remark [2.6.3.11)). In the case of slices,

[BEN], 2(vi)] constructs multiplication morphisms

~=A A1+ A2

Atz L ApM L Ape .
m#huz . Wul X W/»bz WH1+#2'

A1,A2
H1,p2°

The following result was conjectured in [FKPRW| Conj. 5.20]. We will include its proof,

communicated to us by Alex Weekes, in section [2.6.3

Comparing the constructions of [BEN, 2(vi) and 2(xi)], my, ,, restricts to m

Theorem 1.2.1.1. (Thm [2.6.3.9) The map my, ., is Poisson.

1.2.2 Coproducts of shifted Yangians

Chapter 2 provides the basic information on the shifted Yangians Y, for arbitrary p. We
mention the PBW theorem for Y}, (see Theorem [2.2.0.2), which can also be found in [FKPRW].
However, most of the chapter is devoted to the generalization of the following result, stated
without proof in [KT] and proved by Guay-Nakajima-Wendlandt in [GNW|, Thm 4.1].

Theorem 1.2.2.1. [GNW. Thm 4.1] There ezists a coproduct Ao : Yo — Yo ® Yo, where Yj

is the usual Yangian.

In the paragraph before [FKPRW| Prop. 5.19], the authors explained why the coproduct

Ag o quantizes the multiplication mg o in G1[[t~!]]. Our version is the following result.

Theorem 1.2.2.2. (Thm [2.3.3.1)) For arbitrary coweights u1 and ps, there exists a coproduct
map Apy st Yii4ps — Y, ® Y.

The existence of such maps is not surprising, as there should be a non-commutative version
of the multiplication maps m,,, ,,. More precisely, using the fact that m,, ,, is Poisson, one

has the following result.

Theorem 1.2.2.3. [FKPRW, Prop. 5.21] my,, ., is the classical limit of A, ., .

Let us briefly explain our proof of the existence of A, ,,,. A typical approach when dealing
with shifted Yangians is to try to reduce the proof to the antidominant case, or to the case of
the usual Yangian Yy. A reason for this is that we have natural shift embeddings Y, — Y,/
when g/ <y and that the structure of Y, is “simpler” when p is antidominant.

Given a splitting p = w1+ pe where p, i1, po are antidominant, we write down an alternative
presentation for Y, in sectionlm This presentation generalizes the Levendorskii presentation
for the usual Yangian, with almost exactly the same proof (see [L1]). It also shows that Y}, is
finitely generated. It allows us to prove the existence of the coproduct A, ,, by checking only
finitely many relations, and by using the existence of the coproduct Ay : Yy — Yy ® Yp of

the usual Yangian.
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For arbitrary u = p1 + peo, the general case is done by embedding into the antidominant
case. The following diagram can be found in the proof of Theorem [2.3.3.1

}/ﬂ > Y:ltl ® Yltz
Ll‘vnl"l?l \L("ulnuﬁ)@(’mzﬁ,nz)
Yu+n1+nz Yuﬁm ® Yu2+n2

A=Ap 401, no+n0

where @, + 71 and s 4 72 are antidominant. The two vertical maps are shift embeddings.

1.3 A Hamiltonian reduction of W,

Denote by I the set of simple roots of g. Fix i € I. Recall that, for a Poisson variety X
equipped with a Hamiltonian G,-action together with moment map ® : X — C, the reduction
®~1(1)/G, is denoted by X //1G,. The goal of Chapter 3 is to show that one can obtain W4,

as a Hamiltonian reduction of W,,.

1.3.1 Some motivation

One of our original motivations is that such reduction would entail a relation between modules of
YMA and those of Y;f‘_kai. It could lead to some categorification result, in the spirit of [KTWWY2].

A more concrete motivation is the work Morgan, [Mor], on quantum Hamiltonian reduction
of W-algebras. Let e be a nilpotent element of g. Under the adjoint action of G on g, consider
the nilpotent orbit O, := G - e. By the Jacobson-Morozov theorem, one can complete e to
an slp-triple {e, h, f}. Corresponding to this triple, there is a natural transverse slice to O,
8. := e+ ker(ad f), known as the Slodowy slice.

Identifying g ~ g* via the Killing form, one can view O, as lying inside g*. The advantage
is that g* has a natural Poisson structure coming from the Lie bracket of g. By a result of Gan-
Ginzburg (see [GGI, [Mor), Prop. 2.3.3]), the Slodowy slice inherits a Poisson structure from g*.
The co-adjoint action of G on g* is Hamiltonian, with comoment map p* : g — Clg*],  — =.
Given a correct choice of subgroup M C G acting on g* by the co-adjoint action, the Slodowy
slice can be realized as a Hamiltonian reduction, 8. ~ u=1(e)/M (see [GGI).

Our interest comes from the following diagram, which exhibits reduction by stages for
Slodowy slices (see [Mor, Section 3.4]). Whenever O, C O/,

reduction by My = M; X K
g > 186/
7

reduction by M; ) R )
intermediate reduction by K

Se

for some groups M7, My, and K. The dotted arrow says that one can obtain 8. as a reduction
of 8.

Why should we expect a similar relation between W, and W, 1,7 This is explained in the
work of Rowe (see [Ro, Chapter 5]). Let G = GL,,. For A, dominant, there is a G,-action
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A — ot
on Gry, a-L = z;

triangular” part of G.

(a)L where :cl+ : G, — G denotes the exponential map into the "upper

Let d be the height of y where p is dominant. There is a subspace M, C gl; called
the Mirkovi¢ - Vybornov slice. Via the Mirkovié-Vybornov isomorphism, one obtains Grﬁ“1 o~
M, N Ngi,. So, we can transport the G,-action from Gri‘"1 onto M, N Ng,. To tie it in
with the work of Morgan, the coweight ;o gives rise to a Slodowy slice S, (see [Mor|, Section
3.4.2]). Moreover, [Rol Prop. 5.3.5] shows that M, ~ S,,. Additionally, by [Rol Th. 5.3.6], the
transported Gg-action on M, N Ny, is the same as the G,-action on S, N Ny, described in
[Mor]. Therefore, putting together [Ro, Thm 5.3.6] and the reduction result in [Mor], one has

that Grf; J1G, =~ Grf; 1o in the case where both p and p + a are dominant.

[e3

1.3.2 Owur Hamiltonian reduction

Section is devoted to defining a Hamiltonian Gg-action on W,,. Given r € G, and g € W,,,
the action is defined by r - g = 7, (z;(r)g).

Proposition 1.3.2.1. (Prop.[3.2.1.10). The action defined above is Hamiltonian with moment
map ®; : W, — C, uhttu_ — ASL,M* wow,e ().

* is defined by oy« = —wpa;, and

Note that wq is the longest element of the Weyl group, 4
ASZUOW,WOW (g) is the coefficient of t ™1 vy, wow,. N GUwew,« (9 € G((t71))) . To prove that the
action is a Poisson action, it is worth mentioning that we employ the same techniques used to
prove that my, ,, is Poisson. Another observation is that this action restricts to an action on

the slice W#.

In Section , we show that W, and Wi +a, can be obtained as Hamiltonian reductions
of W,, and W# respectively. Let m be the map m_q, jtaq, restricted to Wgai X Wyta,. Our
approach is to define an explicit inverse of m. Observe that Wgai ~ C x C* = T*(C*).
Under this identification, the Poisson structure on Wgai is given by {c,a} = ¢ where c is the
coordinate function of C*, and a is that of C. We define a G,-action on Wiai X Wita, by

acting only on the first factor as follows: r - (a,c) = (a + re, ¢).

Theorem 1.3.2.2. (Thm [3.2.2.6[ and Prop. [3.2.2.7) m : W(iai X Wyta, — ®;71(CX) is a

Gq-equivariant Poisson isomorphism.
Specializing at the level set <I>i_1(1) and taking reduction, we obtain
Theorem 1.3.2.3. There is a Poisson isomorphism W, [1Ga ~ W, 4, -

Corollary 1.3.2.4. There is a Poisson isomorphism Wi//lGa o~ W2+ai.

1.4 Toward quantum Hamiltonian reduction

Chapter 4 discusses the lifting of the isomorphism

m: Wga_ X Wta, — ®71(CX)

i
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of Theorem [3.2.2.6] to the Yangian level. We know that the left-hand side is quantized by
Yfai ® Yta,. It remains to make sense of the right-hand side.

In section we prove that one can localize Y, at EZ-(I).

Theorem 1.4.0.1. (Thm [4.1.0.5) The set {(El(l))k : k€ N} C Y, satisfies the right Ore

condition.

Denote the corresponding localization by Y, [(El-(l))_l]. Given any splitting p = v1+vs, recall
that we have a filtration F,, ,, onY,,. Now, following [S, 12.3], using the fact that Y, is a domain,
we can put a filtration on YM[(Ei(l))’l] as follows: given z € Y,,,s € S = {(El(l))" :n € N}, we
specify deg(xs) = deg(z) — deg(s) where deg denotes the filtered degree.

The following result is a special case of a statement on localization of filtered rings.
Proposition 1.4.0.2. ([LR} I, 3.2], [S, Thm 6.6]). grY,[(E{")~1] ~ C[®;(C*)].

For our purpose, we do not need to fully define the truncated shifted Yangians Ylf‘. For a
general definition, we refer to [BEN, Appendix B]. In our case, the algebra Yfai is generated by
elements A" (EM)%1 with relation [EY, AV] = EY. Moreover, Y9, ~ D(C*), the algebra
of differential operators on C*.

Consider the following composite map

Y, — Y. o, @Yo, — Y2, ®@Yuia,
where the first map is the comultiplication map A_,, ,+«, and the second map is the projection
in the first component. Since A(Ei(l)) = Ei(l) ®1, by universal property of localization, we obtain
amap A : Y, [(EM)1)] — VP, ®Y,1q, extending the composite map.

In Section[4.2] we discuss our partial result at lifting the isomorphism of Theorem [3.2.2.6] to
the Yangian level. In other words, we want to show that A is an isomorphism. We have some
partial results in this direction.

Our approach involves working with filtrations of Y),, as defined in [FKPRW| Section 5.4].

We would like to invoke the following lemma.

Lemma 1.4.0.3. Let ¢ : A — B be a map of Z-filtered algebras with increasing filtrations.
Assume that all involved filtrations are exhaustive, i.e., A=1J, A and B = J,, Bn. Addition-
ally, assume that (,, A, = {0}. Denote by gr¢ : gr A — gr B the induced map on associated
graded level.

(1) If gr ¢ is injective, so is ¢.
(2) Suppose that A, = {0} for alln < 0. If gr¢ is surjective, so is ¢.

By the previous lemma, A is injective. The main obstacle for surjectivity is that filtrations

on Y, are not bounded below in general. However, we have the following partial result.

Theorem 1.4.0.4. (Thm.[4.2.0.6)) If there exists a coweight v such that the filtrations F,, ,—,)Y,,,
Fl/ 7o¢i7uyo

—Q )

and Fo, 1y —y are non-negative, then A 1Y, — YBM ® Yuta, 15 an isomor-

phism.
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It is worth noting that the previous theorem implies that Ais an isomorphism for sufficiently
dominant . We can push the argument a little bit further with the following commutative
diagram:

Y,

0
ptn > Yfai ® Y;H-n-i-ai

L/Hrn,O,nl lld@Ll"+n+aivov_"

YN - Y—Oal ® Yll+ai

One can pick a dominant 7 such that the top arrow is an isomorphism. The advantage of this
is that the vertical maps can be quite easily described. These maps, called shift embeddings,
will fix EJ(-T) and shift Fj(r) to Fj(THn’aj)). In fact, in the case of sly, using this idea and the

description of the coproduct in the antidominant case, we have the following.
Proposition 1.4.0.5. (Prop. 4.2.0.9) If g = sl,, then A is an isomorphism.
We also believe that the following conjecture holds.

Conjecture 1.4.0.6. For all g and for any coweight u of g, A : Y, — YBM ® Yita, s an

isomorphism.

1.5 Some notations

We write down some more frequently used notation. Let G be a simply-laced algebraic group.

For a simple root a;, we write a;« = —wgay; where wy is the longest element of the Weyl
group. For any weight w, we write w* = —wow.

Denote by ¢; : SL2((t71)) — G((¢t7!)) the map induced by the inclusion SLy — G
corresponding to the root a;. Let z; : C((t71)) — G((¢t™!)) be the exponential map into the
“lower triangular” part of ¢; (SL2((t7!))). Likewise, let z;7 be the corresponding map into the
“upper triangular” part.

Let V be a representation of G, let v € V, and let 8 € V*. The “matrix coeflicient” Dg ,, is a
function on G defined by D ,(g9) = (B, gv). Let W be the Weyl group of G. With the standard
Chevalley generators e;, h;, f; of g, we define a lift of W by 5; = exp(f;) exp(—e;) exp(f;). For
a dominant weight w and for wq,ws € W, define Dy, wow = (W1V—_w, Wav,,) Where v, is the
highest weight vector for the highest weight representation V(w) and v_,, is the lowest weight
vector for the lowest weight dual representation V (w)*. We extend these definitions to G((¢t71)).
More precisely, for g € G((t71)),

Dsw(g) = > DY) (g)t.
SEZ

For f € C((t7')), denote by f the principal part of f, ie., for f = >, fut™, [ =
Zn<0 fntn



Chapter 2

Shifted Yangians and their

classical limits

The majority of results in this chapter can be found in [FKPRW]. There are a few exceptions,
notably the results in [2.6.3] communicated to us by Alex Weekes.

2.1 Basic definition

Following [BEN|, Appendix B], we introduce a family of algebras known as the shifted Yangians.
These algebras are our main objects of study.
Let g be a simply-laced simple Lie algebra of finite type. Denote by {a; };cs the simple roots

of g. We write o; - o; for the usual inner product of these simple roots.

Definition 2.1.0.1. The Cartan doubled Yangian Yoo := Yoo (g) is defined to be the C—algebra
with generators Ei(Q), Fi(q), Hi(p) fori € I, ¢ > 0 and p € Z, with relations

(») grla)y _

(=", H?] =0, (2.1)

[EP) P@] = 5, HPH, (2:2)
HH, B~ (1P, BT = S H B 4+ B HT), (23)
[HE, FO) - [H®, F) = 2 '20‘7' (HPFD + FOHP), (2.4)
BP0 - (B, B = 2 (EP B + BV EP), (25)

1 1 Q- Oy

[Fi(p+ ),Fj(q)] _ [Fi(p)7Fj(q+ )] == J (Fi(p)Fj(q) + Fj(p)FZ_(Q)), (2.6)
i#§,N=1-0a; a;=sym[EX) [EP) .. [EP) EY]. ) =0, (2.7)
i# 5, N =1-0; a; = sym[F") [FFP . [FPY) F9). ) =0, (2.8)

We denote by Y2, Y2 the subalgebras of Y., generated by the Ei(Q) (resp. Ei(Q) and Hi(p)).
Similarly, we denote by Y5, Y.S the subalgebras generated by the FZ-(Q) (resp. Fi(q)7 H i(p )). Also,
denote by Y the subalgebra generated by the H. i(p ),
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Definition 2.1.0.2. For any coweight p, the shifted Yangian Y, is defined to be the quotient
of Y, by the relations Hi(p) =0 for all p < —(u, ;) and Hi(_w’ai)) =1.

Remark 2.1.0.3. When p = 0, the algebra Y = Yj is the usual Yangian. The above generators

and the above relations correspond to the Drinfeld presentation of Y.

We can relate these algebras in a natural way, via “shift homomorphisms”.

Proposition 2.1.0.4. [FKPRW| Prop 3.8] Let p be a coweight, and pi, s be antidominant
coweights. Then there exists a homomorphism vy ;i 1o 2 Yy — Yjq 4. defined by

HZ(T) N [{Z_(T*(Mﬁruz,%?)7 EZ_(T) N EZ_(T*(MLOM)) Fi(T) N FZ_(T*<M2>%>)_ (2.9)

)

Proof. This is immediate from the definition of shifted Yangians. O

Remark 2.1.0.5. In [KWWY], for ;1 dominant, the shifted Yangian Y), is realized as a subalgebra
of the usual Yangian Yy and not as a quotient of Y. In our setting, the shift map ¢, —,.0

corresponds to the natural inclusion Y,, — Y; in [KWWY].

Next, let us introduce the following elements of the shifted Yangians, similar to certain

elements of the usual Yangian considered by Levendorskii in [LI].
Definition 2.1.0.6. Set S£7<”’ai>+1) = Hi(7<#’ai>+1) and

— (e77 — (K0 — K, 2
51'( (1, >+2)=H¢( (n >+2)_%(H( (p >+1)) (2.10)

K2

For r > 1, it is not hard to check that

[Si~ ¥ B = (- )BT

z J J ’

—(p,00)+2 1
[y ¥ P = —(ay - ay)FTY.

Note that these elements play the role of “raising operators”, allowing us to obtain higher E™

K]
and F\" from E" and FV.

Lemma 2.1.0.7. [FKPRW| Lem 3.11] Let u be an antidominant coweight. As a unital as-

sociative algebra, Y, is generated by Efl),F‘i(l),Szg*(“’o‘i)H) = Hi(7<“’ai>+1)7SZ.(%“’D‘”H) =

Hi(_w’m’)”) — %(H§_<“’a”>+1))2, Alternatively, Y, is also generated by Efl),Fi(l),Hi(_w’a"'Hk)
(k=1,2). In particular, Y, is finitely generated.

Proof. For the first assertion, it is enough to show that Ei(r),Fi(T)Hi(s) lie in the subalgebra
generated by Efl),Fi(l),S§7<#’ai>+k) (k=1,2) for all » > 1,8 > —(u, ;) + 1. This is clear

SZ»(_<“’%>+2)7E§T_1)}, Fi(r) = [Si(_w"a”“),Fi(r_l)] for all r > 2 and since

since Efr) = 1]
Hi(s) = [Elgl),Fi(s)} for all s > —(u, a;) + 1.

The second assertion follows immediately from the first since the subalgebra generated by
Ei(l), Fi(l), SZ(_(“’ain) (k = 1,2) is contained in the subalgebra generated by the Ei(l), Fi(l) and

HT e th) (o — 1 9y, O

_1
2
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2.2 PBW theorem

In this section, we describe the PBW theorem for shifted Yangians, generalizing the case of
ordinary Yangian (due to Levendorskii in [L2]), and the case of dominantly shifted Yangians
KWWY, Prop 3.11].

Definition 2.2.0.1. Let 8 be a positive root, and pick any decomposition 8 = «a;, + ...+ o,
into simple roots so that the element [e;,, [€sy,---,[€i_,,€i,] -] is a non-zero element of the
root space gg. Consider also ¢ > 0 and a decomposition ¢ +1 —1 = ¢; + ... + ¢ into positive

integers. Then we define a corresponding element of Y:

i—1 i

EY = B [E . B@Y B, (2.11)

This element Eg”, called a PBW wariable, depends on the choices above. However, we will fix
such a choice for each 8 and q.

Similarly, we define PBW variable F’ ﬁ(q) for each positive root S and each g > 0.

For each positive root 8 and ¢ > 0, consider elements EéQ),F éq) € Y, defined as images
under Y, — Y, of the elements of Y., in Definition Choose a total order on the set of
PBW variables

(-0 an5 o} u{E0 peatas b {aP e nps e} @

In the case p = 0, by [L2], ordered monomials in these PBW variables form a basis of
Y =Y,.
For simplicity we will assume that we have chosen a block order with respect to the three

subsets above, i.e. ordered monomials have the form FFH.

Theorem 2.2.0.2. [FKPRW| Cor. 3.15] For p arbitrary, the set of ordered monomials in PBW
variables form a PBW basis for Y, over C.

2.3 Coproducts of shifted Yangians

In this section, we describe a family of coproducts for shifted Yangians. Namely, for any

decomposition p = pq + pe2, we establish the existence of a homomorphism

AM,Nz : YN — YMI ® Yuz' (2'13)

This generalizes the coproduct for the ordinary Yangian Y = Yj.

2.3.1 Levendorskii presentation

Let p be an antidominant coweight. We follow Levendorskii’s approach in [L1] for the ordinary
Yangian to define a new presentation for Y,.

Fix a decomposition p = p1 + pe where the p;’s are antidominant coweights.
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(wad+l) | gl-ma+d  pr) (1 <, <

1 —

Denote by Y, ., the algebra generated by: S
— (1, 04) +2), Fi(r) (1 <r < —(u2,0q) +2) for all i € I, with the following relations:

[S(k) S(l)] (2.14)
ERERARN O B (az o) B 1< < (o) + 1 (2.15)
[Sz( (p,05)+1) F(T)] — ( Oéj)Fj(r), 1<r< <M2704j> + 1; (2.16)
[SZ( (1,003)+2) E(T ] ( J)E§7+1), 1 S r S <vaO‘j> + 17 (217)
5 tman+®) F(”] —(ai )P 1< < (g a) + 15 (2.18)

0 i FJ
0 i=gr+s<—(ua)+1
[Ei(r)’ FJ(S)] — 1 1= ]77* + s = _<M’ OC»L> + ]_ (219)
CARA i=jyr+s=—(u ) +2
ST+ | 1 (S( ”“’”1)) i:j,r+s=—<u,0¢z>+3
r+1 s T s+1 T s T
[Fi(TJFl)’ Fj(s)] — [Fi(r)7Fj(S+1)] Q@ - (F(T)F(S) + F(S)F(T)) 291

(
ad(E;)' () (E]Y) = 0; (22
ad(F V)t (FM) = o; (2.23
[S_(*<H7!li>+2) [E_(7<l"1’ai>+2) F'(*<M2,az‘>+2)u = 0. (2.2

K3

For r > 2 and s > 1, set

r 1 —(p,a5)+2 r—1
B = s+, gy

)

o e .
F = - Lsloned s plrob,

HY = [EV F9).
Remark 2.3.1.1. Note that Hi(s) =0if s < —(u, ;) and Hl-(7<“’o”>) =1

We sketch the proof of the following theorem.

Theorem 2.3.1.2. There exists an isomorphism Y,, — Y, ., of unital associative algebras

given by
B s B ED 1 B0 5O 1y 1)
forr>1and s > —{(u,a;) + 1.

Sketch of proof. One can check directly with finitely many computations that the relations of
s S0, One has to show that the elements E”, F") and H® of
Y, ., satisfy the relations introduced by Definitions [2.1.0.1{and [2.1.0.2]

Using S§_<’L’ai>+2) together with relations (2.22) and (2.23)), one can show relations (2.22))
and (2.23)) with Ei(l) and Fi(l) replaced by Ei(_w’ai”l) and Fi(_<“’ai>+1) respectively. In fact,

Y,, imply the relations of Y,
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more generally, relations ([2.7) and (2.8) can be proved using the Levendorskii relations in the
same way as in [L1, page 11].
Then, note that the subalgebra ¥ = (El-(7<“1’ai>+r),51(7(“’0"'”7’)7Fi(7<”’ai>+r) i e Ir =

1,2) of Y, 4, has precisely the relations given by Levendorskii in [LI], meaning that it is
isomorphic to the usual Yangian. So, all relations hold for high enough E, H and F. Most
importantly, relation holds.

Omitting relations (2.19) and (2:24), the subagebras (Hfs),EZ(l) 1 s > —(u,a;) + 1) and
(HZ.(S),FZ-(I) i 8 > —(u,a;) + 1), with the remaining relations, are isomorphic to the positive
(resp. negative) Borel Yangians, which means that all relations (except ) hold.

Now, we know that holds for high enough E and F' (by existence of the usual Yangian
Y in Y, 4,), it also holds for low enough E and F' by . We can approach the case
where we have a low E and a high F' by induction as follows. Suppose that r < —(u, «;) and
s = —(u, oj) + 3, we have that

— () +2 r s—1 r+1 s—1 s T
0 =[5y~ (B, BV = ay B BTV 42 F) Y, B
= a6 H Y —2[B0 FY)

Thus, [Ei(T)7 Fj(s)] = 6ini(T+S_1), as desired. Using the same argument, the result follows
by induction on s. For high F and low F, we swap r and s and use the same induction

argument. O

Remark 2.3.1.3. Via the isomorphism of the previous theorem, the generators S£7<”’ai>+1),

Si(_w’a")”) of Y, ., correspond precisely to the elements of Y}, introduced in Definition|2.1.0.6

2.3.2 Coproduct in the antidominant case

Let u, 1, and po be antidominant coweights. We wish to define a map
Aﬂl,#z =A: YIL — YI—LI ®YM2'

When p; = ps = 0, the existence of a coproduct is stated without proof in [KT] and proved by
Guay-Nakajima-Wendlandt in [GNW|, Thm 4.1].

Theorem 2.3.2.1. [GNW| Thm 4.1] There exists a coproduct Do : Yo — Yo ® Y.

We define A, ., on generators as follows.

A(Ei(r)) Ei(r) ®1, 1<r<—(u,q);
A(EZ(*(NLCH%LU) _ Ei(*Wl,Ozi)Jrl) Q1+1® Ei(l);

A(E§—<u1,ari>+2)) _ Ei(_<ﬂl70411)+2) Q1+1® Ei(Q) + S§—<u1,ai>+1) ® Ei(l)
1
-y FV e [EY, BV

v>0
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A(F) =18 F7, 1 <7 < — (g, a0);
A(F_(*(Mz,ai)Jrl)) —1® Fi(*<ﬂ2’ai>+1) + Fz’(l) @1;

K2

A(Fi(—(uz,ai>+2)) =1® Fi(—</i2:0¢i>+2) + Fi(z) Q1+ Fi(l) ® S£—<M27ai)+1)
+ 3 [FY, FO 0 BD;

>0

A(Si(*wﬁoéi)Jrl)) _ S§*<H1»ai)+1) R1+1® SZ_(*OLz,ai)Jrl);

A(Si(*wxai)Jr?)) _ S§*<u1,ai>+2) R1+1® SZ_(*<IL270¢1'>+2) _ Z<ai77>F»§l) ® E’(Yl)'
¥>0

Remark 2.3.2.2. When p = p1 = po = 0, it is not hard to see that Ag o agrees with the usual

coproduct, and hence is well-defined.

For any antidominant coweights 1, 2, recall the shift maps ¢, ,0 and ¢,0,,, from Propo-
sition [2.1.0.4] It is not hard to see that, for &k = 1,2,

A(Si(—mvaz')-&-k))
A E(-(M»Oﬂi)-"k))

(L07#170 ® L070»#2)A070(Si(k))7
(10,110 @ 10,0,) D00 (B,
(40,110 @ 10,0,2) D00 (FL).

2

(
A(F_(*Wz,ai)Jrk))

K2

Theorem 2.3.2.3. A:Y, — Y, ®Y,, is a well-defined map.

Proof. We have to check that A preserves the defining relations. By Theorem [2:3.1.2]it suffices
to check the relations (2.14) — (2.24)).

First, we check relation (2.14)). For 1 < k,1 <2,

[A(Si(—(u,wi)-&-k))’ A(S§_<“’aj>+l))] _
= [(20,12,0 ® 0,0,2) 20,0(S), (t0,01,0 © 10,0,412) Do (SS7)] = 0.

We check relation (2.15)). For 1 <r < —(u1, o),
[A(ST Bty ABD)] = (5T HD EDT @1 = (0 ay) AED).
For r = —(u1, o) + 1,

[ 7 [
= (a; - Olj)(LO,ul,O ® L0707H2)A070(Ej ))
= (a; - ay) A(BL et D),

AT ), A = (10,0 © 10.0,) B[] B3]
(1

The proof of relation (2.16|) is similar to that of relation (2.15]).
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We check relation (2.17)). For 1 <r < —(u1, o),

AT AED)] = 5T BP9 14+ Y (e IE", FV) @ B
v>0

= (0 a)) BV @14 > (i, MEY, FV @ BV,
v>0

Note that if r < —(pu1, a;), then [E](»r),Fl(l)] = 0 for all [. Then, by induction, [E§r),F7(1)] =0
for all 7 > 0. The result follows in this case. If r = —(u1, ), then [E\", F\"] = §;;1. Then, by
induction, [EJ(-T)7 ngl)] = 0 for all v of height greater than or equal to 2. The second summand
becomes (a; - ;)1 ® EJ(-l). Hence, the result follows.

For r = —(u1, o) + 1,

[A(ST ety AT TN = (1400 ® 10,0,5) oo (1S, BV))
= (i - ) (0,12,0 ® 10,0, ) Do,0 (B

= (a - aj)A(EJ(*(#lva_i)ﬂLz)).

Similarly, A preserves relation ([2.18).
Next, we check relation (2.19). If 1 <7 < —(u1, ;) and 1 < s < —(u9, @), then

(r) () — 1) () _
[A(E;), A(F;7)] = [E; " © 1,10 F;7] = 0.

For r = —</141,C¥i> +1 and 1 S S S —</J,2,0éj>,

AES e A =10 (B, FY) =610 H.

The result follows for this case.
The case where 1 > r < —(u3, ;) and s = —(ug, ;) + 1 is similar.

Consider the case where r = —(u1, ;) +2 and 1 < s < —(u9, o),

(~{p1,01)+2) (5)y] —
[AE™ ), A(F;)] =

2 s — ,ai)+1 1 s 1 s
=108 F)+ 57 e (B B -3 FV o (B, B, B
v>0

=01 @ M 46,80 et @ g N ED @ (B, BV] FP).
v>0

Note that
ED, EW),FO) = [ED, [ED, FO) + [EW, [F), BV,

Since s < —(u2, ), by induction, [EA(,D,FJ.(S)] € C1. Hence, [Ei(l), [En(yl),Fj(s)]] = 0. Again,
since s < —(u9, aj), [F;S),Egl)] = 5inj(.s) € CI1. So, [Egl), [Fj(s),Ei(l)]} = 0. Hence, the last
sum is 0. Moreover, it is straightforward to check that the first two summands are consistent
with the relation.

The case where 1 <7 < —(u1, ;) and s = — (g, ;) + 2 is similar.
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Next, for 1 < k,I < 2 not both equal to 2, we have that

[A(El‘(_(m,m)-&-k)), A(Fj(_<uz,aj)+l))] = (LO,,ul,O ® LOvOa#Q)AO,o([EZ(k)7 Fj(l)])
=08 (t0.1 0 ® L0’07M2>A0’0(Hi(k+l71))

_ 5ijA(H~(_<M’ai>+k+l_l)).

Next, we check relation (2.20]).
First, consider the case where 1 <r < —(u1, ;) and 1 < s < —(u1, ;). Then, we have

AET), AED) = BV EY @1 =
) 7 T J
= (1B, BC )+ 2 (BOEY + BV E)) 91

(67 eY

=B 0 L, EfY 1)+ =2 (B o NE 0 1) + (5] o 1)(E @ 1)).

Consider the case where 1 <r < —(u1,05) and s = —(p1, o).

B, A )] — [AE), Ayt

J

(D) (= (ag)) (1) (= (i) +1)
= ([B{*Y, B ) - (B B @1

%
Q;

_ %((Ei(r) ® 1)(E](f<u1,aj>) ©1)+ (Ej(*(“l’af)) ® 1)(EJ(-T) ®1)).

The case where r = — (i1, ;) and 1 < s < —(u1, ;) is similar

Next, consider the case 1 <r < —(u1, ;) and s = —(u1, a5) + 1.

T — ,Qj 1 T — o) +2
AETTD), AE D) (AED), ALt
_ [E'l'(r+1)7E_;_<#17aj>+l)} ®1— [E§T)7E§—(/L1,aj>+2)] ®1— [Ez(r),s§—(/t1,aj)+1)] ® E]('l)
+ > (B FV e (B, B

v>0
06 QG () (= () +1) (=(p1,05)+1) 12(r) (r) (1)
*T(Ei I +E; TVVTUET) @14 (0 ap) B @ E;
r 1
+3 B, FM e B, ED).
v>0

Since r < —(u1, @;), by induction, [E(T), F,sl)] =0 for all ¥ > 0. The current case follows. The

g

proof for r = —(u1, ;) + 1 and s < —(u1, ;) is similar.

Next, let us look at the case where r = —(u1, ;) and s = —(u1, ;).

(—(u1,04)+1) (—(p1,05)) (—(u1,04))
[A(E; ), A(E; )] = [A(E; ), A(E

_ ([Ei(—(m,m))’E](f(ltl,a]'))] _ [Ei(—<lt1,az'>)’E](—<M170‘j)+1)]) ® 1
Q5 ) ®

_ '20‘j ((Ei(*(ul,ai)) ® 1)(EJ(_—<#1,041>) ®1)+ (Ej(—<#17a_7 ) 1)(Ei(*<#1,ai>) ® 1))

*(Hhaj)Jrl))}
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Next, for r = —(u1, ;) and s = —(u1, a;) + 1.

[A(B eI T) A(E D] A(E ), AT )] =

J

7

— (M1, —(p1,05)+1 1 —(p1,05 1
f[El( (t a>)’SJ( (p1say) )]®EJ( )+Z[Ei( (n a»»F»sl)]@[EJ(‘ )’E'(yl)]
~¥>0

_ (e +1) (= (pnag)+1) 10 @) (=(p1,0a))  pal=(p1,a;)+2)
=[E " B @1+l B, B =[BT B @1

_ % '20@' (EZ(*(Mlxoéi>)E]f<H1,aj>+1)
- , 0 1 1 1 — (1,0 1
+2B e @ BV + 19 BN, EY] + 3 B e (B, BV

>0

® 1 + E](_7<iu'17aj>+1)Ei(7<Nl’ai>+1) ® 1

Note that [EZ(*(“lv“i))J,—vl(l)] € C1. So, if v is of height greater than or equal to 2, then
[Ei(_w"a")), FA(,U] = 0 by induction. Hence, the only term that survives in the last summand is

1® [E](l), Ei(l)], and we are done. The case where r = —(u1, ;) +1 and s = —(pq, o) is totally
analogous.

Lastly, consider the case r = —(u1,04) +1 and s = —(u1, o) + 1.

[A(El(—<u1,ocri)+2))’A(Ej(*(Nhaj))Jrl)] _ [A(Ei(—(m,awﬁ-l))’A(E](*<M17aj>+2))] _
= (10,010 ® 0.0, B0 (B, B}V = [E;VE)

Q; - O
= =5 10,400 ® t0.0,) B0 (BN EJY + EVED)
Qg -

_ (A(EZ_(*OM,ai>+1))A(Ej(_*(M1,aj>+1)) + A(Ej(f(MlﬂjHU)A(Ei(*(m,ai)Jrl))).

2

Relation (2.21)) can be checked in the same fashion.

We now check relation (2.22). Set N =1—q;-«;. First, if 1 < —(pq,04) and 1 < —(u1, a5),
then

ad(AEM)N(AED)) = ad(BY @ DY (EY ©1) = (ad BNV (EW)) @1 = 0.

For 1 < —(u1,0;) and 1 = —(u1, o) + 1,

J J

= (ad EMYN(EM)) @1 =0,

ad(AEM )N (AED)) = ad(B @ WV (EY @1+ 10 EY)
(

since Ei(l) ® 1 commutes with 1 ® Ej(-l).
Next, suppose 1 = —(u1, ;) + 1. Since [Ei(l) ®1,1® Ei(l)] =0,

(ad(AEDN)N = (ad(ED @ 1) + ad(1 @ ED)N
N

N . ,
- ( z > ad(EM @ 1) ad(1 @ EW)N .
=0
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Now, if 1 < —(u1, ¢j), then

(ad(A(B NN (AES) = i (N) ad(EL ©1)i ad(1 ® EV)V (BN ©1)

If 1 = —(u1, ;) + 1, then

N
ad(AEM )N (AEM) =3 (7) AED @1y ad1 @ BNV (EV @ 1+10 BY)
=0

ad(E{")N(EMY) @1+ 1@ adEM)N(EN) = 0.

The proof for is similar to that of .

Finally, we check relation .

A(Si(—w,az'H?))’ [A(Ei(—whaiwr?))’ A(Fi(_<ﬂ27ai)+2))]]
= (Lo,m,o & LO,O,,LLQ)AO,O([Si(z)v [E'L(Q)’ Fi(z)]) =0.

—

This proves that A is well-defined. O

By Lemma we have the next result.

Lemma 2.3.2.4. The coproduct A :Y, — Y, ®Y,, is uniquely determined by the following

AEM) = EP @14 60, 001 @ BV
(F(l)) 5(#2,% OF(l) ®1+1 ®F(1)
A(S( (k00 +1)) S( (#170¢7>+1)®1+1®5( (p2, sz>+1)

A(Sl( (1,00 +2)) Sz( (11,00)+2) R1+1® S( (H2,0)+2) Z<ai’7>F§1) ® Egl)_
v>0

Proposition 2.3.2.5. Let p = p1 + po + p3 where the p;’s are antidominant coweights. Then,

we have the following commutative diagram

Apyuatug
Y# Y#l ® YHQ-HLS
Au1+u2,u3l \Ll‘g’Auz,us
Yy tpe @ Vg Al Vi @Yy, @Y,

Proof. By Lemma [2.3.2.4] it is enough to check the commutativity on Si(*(”’ain) (k=1,2),
EM and FY.

1 1 1
(1 ® A#27H3)AM11H2+H3 (Ev( )) = Ev( ) ®lel+ 6(#1,%),01 ® Ez( ) ®1
+ 6(:“11‘)‘1')106(/‘2’0‘1')’01 ® 1 ® Ei(l)7
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1 1 1
(Am,;m ® 1)AM1+/12,M3 (Ev( )) = Ev( ) o 5(#1,041'),01 ® Ez( ) ®1
+ 6(H1+u2,04i)1 ®1® Ez(l)

O(u1,0:),00(us,c;),0- Lhe computation for Fl-(l) is

The result follows for EZ-(l) since 6, 4pus,00),0 =
(poci)+1)

totally analogous. The computation for .S; is straightforward.
Finally, we have that
— e 71 2
(1 ® AM2,N3)AH17M2+M3 (Sz( ot )) =
=1® S§*<M2,ai)+2) R1+101Q SZ(*(MS,Oéi)+2) - Z<ai7/8>1 Q Fﬁ(l) ® Eél))
B>0
- Qg 2
57T @101 =Y (a0 NEM © Ay (BL)
¥>0
(Am,,uz ® 1)A#1+#27#3 (Sz'(_<#7ai>+2)) =
_ SZ(*(#LO%)JF?) R11+1® S£*<#27ai>+2) ®1— Z<ai7ﬁ>Fﬁ(31) ® Eél) ®1
B>0
+191® Si(*<#3,ozi>+2) _ Z(O‘ivauwz (Fv(l)) ® Egn.
~+>0

9

For a positive root v = . n;c;, we can show by induction that A, ., (Egl)) = E»(Yl) ®1+
Cy1® Eﬂ(yl) and that AM,M(FW(”) =1® FA(,l) + CA,FA(,U ®1 where Cy =[[; & . o The result

follows. O

2.3.3 The coproduct in the general case

Theorem 2.3.3.1. Let u = w1 + po where w, u1, pa are arbitrary coweights. There exists
a coproduct Ay, 4, 0 Y, — Y, @Y, such that, for all antidominant coweights 11,72, the

following diagram is commutative

IAVIRIS
YM Y#l ® YM2
Lu,mﬂizl \L(leﬂlvo)@’(bﬂz»omz)
Y#+n1+n2 Yu1+m ® Yu2+n2

Au1 +n1,n2+n2

Proof. First, we need to define the map A, ,,. Let 11,72 be antidominant coweights such that
w1 +m1 and po + 1o are also antidominant. We see that p + 1 + 12 is also antidominant.
Consider the diagram

Yu YMl ® Yuz
LM”II«*IZ\L J/(L#1=W1’O)®(L#270v772)
Yu-&-m +n2 Ym +m ® Yu2+n2

A=Ay 4y 4

In order to define A, ,,,, we need to show that

A(LH77I17772 (}/lt)) - (LM1777170 ® LH2707712)(YH1 ® }/ﬂz)'
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< >
Note that V>, @Y= C i 0.0 ® by 0. (Y, @ Y,).

First, for » > 1, we claim that

A(Ei(r)) € Ez'(r) ®1+ YuSlHu ® Yoty

r T >
A(Fi( )) el ®Fi( ) + Yu<1+n1 D g

We prove the claim for F, the proof for F' is similar. We proceed by induction.
If 1 < —{u1 +m1,q;), then it is clear since A(Efl)) = Ei(l) ® 1.
If 0 = (u1 + m, ), then it is also clear since A(Ei(l)) = EZ-(I) ®1+1® Ei(l) and since
1) <
1®E;" € Yu1+n1 ® Yu>z+nz'
The induction step follows from the fact that A is a homomorphism and the fact that
[S§_<”+m+n2’a">+2), Ei(r)] = 2Ei(7"+1). This proves the claim.

Note that ¢y, 5, 5, (Y,) is generated by Ezm (r>—(n1, aq)), Fi(s)(s > —(n2,a;)) and Hi(t) (t >
=+ +n2; 06)).

Applying the claim for r > —(n1, a;), we get A(EZ-(T)) € (bprm,0 @ tps,0,ms ) (Y, ®Y),,) since
B @1 = (a0 ® b 0) (BT @1,

Similarly, we obtain A(Fi(r)) € (b1 1,0 @ tus.0ms) Y, @Y,,) for s > —(n2, o).

Finally, for ¢t > —(u + 1 + 12, ),

A@Ey = [AE), AFEM)]

e[BY ®1,Y,5,, ® Yu22+nz} + [Y/E—Hh @Y 4n1® FV]

p1t+m
< >
< Y#H—m ® Yu2+n2'

Therefore, we have a coproduct A, ,, : Y, — Y, ®Y,,.
Next, we show that A, ,,, is independent of the choice of 11,132, i.e., for all n1,7, such that
1 +m1, o + 12 are antidominant, the diagram in the statement of the theorem is commutative.

To see this, let 1}, n) be another such pair of coweights. Consider the diagram

Y# Y#l & Yltz
Lu,m,nzl i(ml,nl,o)@)(buz,o,m)
Yor Yorim @ Yo
HTn Ayt ngta H1TmM H2TN2
Lutn.ng b l i(Lu1+'rl1,"1’1,0)®(Lu2+n2,0,né)
Yitn+n A Y,u1+v71+n’1 ® Yu2+nz+n§

p1+n1+n] not+na+ng

One has that ¢ypym0m; © bumime = Lumbnlmenys A4 Luyfny im0 © Ly im0 = Lumugl,0, and
Uitz 0 © Lpin,012 = Lug,0,ma+ny- Moreover, it is not hard to check, on generators, that the

lower square commutes.

Therefore, the choice of A, ,, is the same for the pairs of coweights (71,72) and (1 +
N1, m2 + n5). By swapping the roles of n and 7’ in the above, the choice of A, ,, is also the
same for the pairs (n},n5) and (1 + 1}, n2 + 15).
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Finally, we check that the diagram in the statement of the theorem commutes for any pair
of antidominant coweights 71, n2. Let 1}, n5 be antidominant coweights such that ps, + 1 + 1),
(k =1,2) are antidominant. Consider the diagram

Al»"ln“Q
}/lf« Ym ® )/IQ
L“'le’ml i(%bﬂl,o)@@u%omz)
Y. Yo @ Yo
HTn Au1+711»u2+n2 H1TM1 H2TN2
Lu+n,n’1,n’2l i(L”1+"1’"/1*0)®(L“2+"2’0*"§)
Yitnty A ] Y/t1+771+?7i ® Ylt2+772+?7§
w1tn1+ny,p2tn2+ng
One has that ¢4y 00 © tumine = tum+n)matnss A0 Ly pn im0 © Luimi,0 = Lupytng,0 and

Ltz 0 © Lpn0s = b 0,m0+ny- Lhe outer square and the lower square are commutative.

Since Ly 1y 00,0 ® Lug 0,0, 1 injective, we see that the upper square is also commutative. [

Proposition 2.3.3.2. Suppose that p = p1 + po + ps where pg is antidominant. Then, the

following diagram is commutative:

Au11#2+u3

Y# Y,ul ® Y#2+#3
Au1+u2xu3l J/1®AM2M3
Y/A1+/L2 ® YMS Ay o ®1 YMI ® YMz ® Y/J«3

Proof. Let n1,n3 be antidominant coweights such that pj = p; + 1 and uph = pg + 13 are

antidominant. Consider the diagram

A
Yu’1+uz+u’3 Yu’l ® Yu2+u§
Y, N Y, @Y 18A
© = w1 w2t ®
A®1
A }/,u'1+u2 @ }/,U.é A }/,u'l & Y/LQ & }//Lé

T+n2,m1,0@0ug,0,03 71.n1,001®¢u3,0,m3

Y;L1-HL2 X Y,us Y,Ltl Y Y#Q ® Y#:s

A®1

We have the commutativity of all faces of this cube except for that of the front face

Alq sH2tps

YH Yu«l ® Yﬂz-‘ru?’
AM tr2.p3 l \L1®Au2yu3

Yo s ® Yy, A ®1; Yi, @Yy, @Y,
H1,p2
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Using the commutativity of the other faces and injectivity of shift maps, we see that the above

square also commutes. O

Remark 2.3.3.3. In general, the coproducts are not coassociative. More precisely, when pso
is not antidominant, the diagram from Proposition [2.3.3.2] does not commute. We delay the
argument of this fact until Remark [2.6.3.11

2.4 Filtrations of shifted Yangians

We begin with some generalities on filtrations, which can be found in [FKPRW] 5.1].

Given a C-algebra A with an increasing Z-filtration F'®* A, A is said to be almost commutative
if its associated graded gr’ A = @, F"A/F" 'A is commutative. Note that we use the
notations A, and F™A interchangeably if the filtration in question is clear.

The filtration F*A is said to be ezhaustive if A = |J, F™A, is said to be separated if
N, F"A = {0}, and is said to admit an expansion if there exists a filtered vector space isomor-
phism grf” A ~ A.

Given filtered algebras F*A and F*B, one can define a filtration on A ® B as follows,
F'(A® B) = @,_, FFA® F'B. If F*A and F*B admit expansions, then gr(4 ® B) ~
gr A® grB.

Returning to our setting, given a splitting u = v1 + v, define a filtration F,, ,,Y,, as follows
deg B = (v, 0) +q, deg F{Y = (v, 8) +q, deg H” = (i, ) +p (2.25)

Define the filtered piece FF¥ Y, to be the span of all ordered monomials in PBW variables

vi,v2

with total degree at most k.

Proposition 2.4.0.1. [EKPRW, Prop 5.7] The filtration F,, ,,Y,, is an algebra filtration, is
independent of the choice of PBW variables, and is independent of the order of the variables used
to form monomials. The algebra Y,, is almost commutative, i.e., grivive Y, is a commutative

(polynomial) algebra.

Proposition 2.4.0.2. For any splitting i = v1 + va, F,, ,,Y, is evhaustive, separated, and

admits an expansion.

Proof. These follow from the fact that Y, admits a PBW basis, by Theorem [2.2.0.2] The
expansion map is given by grY,, — Y},, m — m, where m is a monomial of degree k¥ in PBW

variables. This map is well-defined by degree consideration. O

Proposition 2.4.0.3. Let u, ug,vi (k = 1,2) be such that p = py + po = v1 + vo. Then the
map A Y, — Y, ®Y,, respects the filtrations Fy,, 1, Y., Foy jy—v Y, and Fiuy_py 0.V,

Proof. First, consider the case where p, p1, p2 are antidominant. Consider the definition of A
on the Levendorskii presentation. One can check that A respects filtrations on Levendorskii

generators by inspecting degrees. For example, we have that

A(B{ ety _ gt g 41 g g® 4 gt g g0 _$™ O g [ B0,
~¥>0
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deg(E( W02y — ) = (peay) +2 = (1 — s ag) + 2,
M1, > <N17aj>+2:<ylflulaaj>+2a

dog(E o+ g ) 2
(2 —vo,05) +2 = (v1 — p1,05) + 2,
(
(
=

)=
) =
deg(1® E)
)
) =

deg(Sj( (p,a)+l) o E(l)

deg(FV @ [B{Y, B

pas o) — (i, o) + 14+ (v — pn, o) + 1= (v — pa, a5) + 2,
Nll*V177>+1+<M27V277+aj>+1
p1— v ) 1+ (v —p,y o) + 1= (01— pr,a ) + 2.

Since these filtrations admit expansions, we have that gr(Y,, ®Y,,,) ~ grY,, ®grY,,. Hence,
by Theorem[2.6.2.1 Y,,, ®Y),, is almost commutative. The higher E§T)7 Fj(r)7 Hjm and the PBW
variables Eg ,Fﬁr are all obtained from commutators. Thus, A respects their degrees since

Y, ®Y,, is almost commutative. To be more precise,

deg A(EJ(.*WI’“J')”)) degA([S( () +2) E( <u1,a]>+2)])
fdegA(S Hocj>+2)) +degA(E( <m7ag>+2)) 1
=2+ (v — p,05) +2 -1
= (1 — 1, 05) +3,

where the second equality uses the almost commutativity of Y,,, ® Y),,. The degrees of the
higher E ()5 are obtained by induction. Similarly, one can show that A respects the degrees of
Fj(r), H(T) E(T) ( . Hence, A respects filtrations in the case where p, p11, 12 are antidominant.

For the general case, let n be dominant such that pu — n is antidominant. Let 11,72 be

coweights such that n = 77 + 72. There is a commutative diagram

FVl;V2YM FVl;M1*V1YP«1 ® Fl~b2 Vz,V2YH2
Lumlmzi lbm,nl,oéﬁbw,o,nz
FVl —U17V2—U2Y FVl —Ni,H1—r YMl—”h & FM2—V2,V2—772YH2—772
Since the vertical maps and the bottom maps respect filtrations, so is the top map. O

2.5 GLKO generators

In some situations, it is more convenient to work with the series

Hj (t) — t(#,aj) + ZHJ(7<M’aj>+T)t<H’aj>7T, Ej (t) _ ZEJ(‘T)t7Ta Fj (t) _ ZFJ‘(T)tir'

r>1 r>1 r>1

(2.26)
Following |[GLKO], [KWWY], and [ETs], we can change the Cartan generators of Y}, as follows.
For j € I, define A;(t) by the following equation

H’f?fj At — W)ia’k
Ay () A (t — 2ol

=) H (1) = (2.27)

Remark 2.5.0.1. The existence of the A;’s follows from the same proof as [GLKOl Lemma 2.1].
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Moreover, the series A;’s all start at 1.
Remark 2.5.0.2. Alternatively, one can define the A;’s with a slightly different convention.

Ty Ax(t — ortgeoedy e

1O = o )

Under this definition, the series A; starts at t{wows=) - Tt would give a “nicer” (unshifted)
version of Theorem However, to be consistent with the literature, we will not use this

convention.

Similarly to [GLKO], we can also define some other elements of Y, as follows.

Bj(t) = E;(1)A;(t),  C;(t) = Fj(£)A;(?). (2.28)

[A;(s), A(t)] = 0 (2.29)
[4;(s), Be(t)] = [A4;(s), Ce ()] =0, j #F, (2.30)
[Bj(s), Be(t)] = [C;(s),Ck(t)] = 0, ajx=0,2 (2.31)
(s —1)[A;(s), Bj(t)] = B;(s)A;(t) — Bj(t)A;(s), (2.32)
(s = 1)[A;(s), C; ()] = A;(s)C5(t) — A;(£)C5(s). (2.33)

Proof. These relations take place only in the upper (or lower) Borel Yangians. So they follow

from the same argument as in [GLKO]. O

Remark 2.5.0.4. In [ETs], we can find other relations like in [GLKO], and more. In their work,

it is worth noting that relations between B;’s and C}’s only hold in the antidominant case.

2.6 Relation to geometry

2.6.1 The variety W,

Let G be a simply-laced algebraic group with Lie algebra g. Let T be a maximal torus of G, B
a Borel subgroup, and B~ the opposite Borel subgroup. Consider U (resp. U~) the unipotent
radical of B (resp. B™).

For any algebraic group H, denote by H; [[t~!]] the kernel of the evaluation H((¢7')) — H
at t=1 =0.

Let uu: G,, — T be any coweight. Any coweight can be thought of as a C((¢t~1))-point.

Denote by t* its image in G((t~1)). The space of our interest is the infinite type scheme
Wy = O[T oy () (2.34)

The inclusion Ui [[t~1]] — U((t71)) gives rise to the isomorphism Ui [[t71]] ~ U((t71))/UJt].
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So, there is an isomorphism
ma UENU(E )Tt 0~ () /U] — W

Remark 2.6.1.1. There is a family of related spaces, called generalized slices. Given a dominant
coweight A of G, consider the space G[t]t*G[t]. For any coweight u, the corresponding general-
ized slice is Wi =W, N G[t]t*Gt]. A useful fact about these slices that we will need later is
that | J, Wi is dense in W,,, we will prove this in Proposition

Remark 2.6.1.2. We shall briefly discuss the topic of loop spaces. Consider the C-algebra
A =Clz1,...,2z5]/{f1,..., fm) where the f;’s are polynomials in z;’s. Let X = Spec A. Let
d > 0. The formal loop spaces X[t], X[t]<q4 and X][[t]] are defined in terms of their functor of
points. For any C-algebra R,

X[t](R) = X (R[t]) = home (A, R[t]) = {(z1(t), ..., zn(t)) € C[t]" : fi(w;(t)) = O},
X[t]<a(R) = {(z1(t), .., zn(t)) € Clt]" : fi(x;(t)) = 0, deg(z;(t)) < d} C X[t](R),
X[[H](R) = X (R[[t]]) = home (A, R[[t]]) = {(z1(t), ..., zn(t)) € C[[H]]" : fi(z;(t)) = 0}.

We write z;(t) =, xg.r)tr. Consider the polynomial ring (C[xg.r) :1<j <n,r>0]. Following
[Erl, 3.4.2], define a derivation T on this polynomial ring by T(my)) = rx?url). For 1 <i<m,
let fl € C[xy) :1 < j < n,r > 0] be the same polynomials as f;, with x; replaced by xgl).
Next, set

B=Clz{" :1<n<jr>0/(T"f;:1<i<mk>0).
Lemma 2.6.1.3. [Fr] 3.4.2] X[[t]] = Spec B.

Remark 2.6.1.4. Let I; = <x§-r) :r>d) C B. Then

X[ﬂgd = Spec B/Id, and X[t] = h_H)lX[t]Sd.

Lemma 2.6.1.5. For any affine variety X, X[t] is dense in X|[t]].

Proof. We need to show that (), Iq = {0}. Note that B is a graded ring by setting deg(xy)) =
r, and that I; is homogeneous and lies in degree greater than d. Therefore, (1,1 is also

homegeneous and lies in degree greater than d for all d. Therefore, (), 14 = {0}. O
Proposition 2.6.1.6. |J, WZ is dense in 'W,,.

Proof. We have that |J, G[t|t*G[t] = G[t,t~!]. Thus, U, Wz =W, NG[t,t . We see that
union contains WEo' = Uy [t~ T3 [t |¢# U [t71], the polynomial version of W,,.

We know that W, is isomorphic to Uy [[t~1]] x Ty [[t7*]] x Uy [[t™']] via the map uhttu™ —
(u, h,u™"). Similarly, Wee! is isomorphic to Uy [t1] x Ty [t~'] x Uy [t~ !]. The inclusion WEe! C
'W,, is compatible with that of the corresponding products. Our claim then follows from the

previous lemma. 0

2.6.2 Poisson structure of W, and quantizations

Consider a splitting u = v1 + v». Consider the filtration F),, ,,Y,, of Y, defined earlier.
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Theorem 2.6.2.1. [FKPRW| Thm 5.15] . There exists an isomorphism of graded algebras
grfvive Y, ~ C[W,]. Moreover, in terms of the GLKO generators, the isomorphism is given by

Aj () o 700Dy g (1)
Bj (t) = t_<u’w0wj*>®s]'wowj* ,WoW j* (t)
Cj (t) — t_<”7wi)‘*’j*>Dwowj*,sjwowj* (t)

Recall that the functions D, ., were defined in the introduction. While we will not ex-
plain the proof of the above theorem, we can have a closer look to see that the generators
E](»T), F j(r), H ](-T) of Y,, are closely related to the Gauss decomposition of W,,. By abuse of nota-

tion, let us denote the images of these generators in C[W,,] by the same names.

Remark 2.6.2.2. Let g = uht*u_ € W,,. Then, under the isomorphism of Theorem [2.6.2.1

E;(g)

S WOW j* ,WoW ;% (u)a

>
S
TR
S ]

WoWj* 485 WoW,j* (U,),

Oéj(ht“),

<
—~
)
~
I

where the last line means that we take the projection with respect to the simple root «;.

The next lemma contains some useful relations analogous to the ones found in [GLKO] and
IKTWWY1], Section 5.3]. In fact, these relations follow from the definition of GLKO generators

and Theorem [2.6.2.1] However, we provide explicit computations on commutative level.

Lemma 2.6.2.3. In W, we have the following: for j € I, 'Ds]-wowj*,wowj* = Dwnwj*’wowj*Ej

Dwowj*,s_jwowj* = gwowj*,wowj* Fj; ‘Ds_jwowj*j,Sjwowj* = ‘:Dwowj*,wowj* Hj + Eijwowj*,wowj* Fj;
D . ) , ) C
and Hj = —=S55—0=k202k yhere k ~ j means that k is connected to j on the Dynkin diagram.

WOW j* WO W j*

Proof. Write g = uhttu_ € W,,.
For the E case,

Wht"u_ vy, = u(wow;- (h)t<“’w°w-7'*>vw0wj*)

= Wow,* (h)t<*"'”°°"j*>(vw0wj* + Duwgs v wym swowye (W Vwgsjuawjn + 0+ )-
We see that Dygw,. wow,« (9) = (wowj« (h)tHwows=)  Hence,
Ds jwowsn wowse (9) = Duvgw; e ,wowsn (9)Ds jwow; e swows= (U) = (Dwow; swow;= E5)(9)-
For the F' case, we have that

Wht'u_ s wow, = Wt (Vs wow,e + Dwguw, v s wow,« (U—)Vuwgw; - )
— u((sjwowj*)(h)t(/lquwowj*>vsjw0wj* +

+ (wowj*)(h)t<#7w0wj*>‘Duzgwj* 1S5 WowW % (u—)vwow]»* ))

Hence, Duygo;n ,s5wo0w;+ (9) = Dwow;« swowsw (9) Puvguwsw s jwowyn (U=) = Duwgu; v wow ;o F5(9)-
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Next, for the H case,

Hj(g) = a;(ht") = (> _(—a;x)wowp-) (ht*) = | [(wow+) (ht*)

k k
_ H ®w0wk* wowss (g)iaj’“ _ kaj Dwowk*,wowk* (g) )
L ’ 'DIUOUJJ'* WO W j* (9)2

where a;j; = (a;, o) is an entry of the Cartan matrix.

Lastly, we have that

Ut UV g = WA (Vs wpw;e + Duwpw, s wowy« (U—)Vuwgu;s )
= u((sjwow; ) (R)EHI00 Dy o+
+ (wow; ) (0“5 Doy g (=) Vg, )
= (sjwow;e ) (R)EHS300%5 by 4o
+ D jupwoy e wow;« (W) (Wowj ) (AYEH 05Dy o (U Vs iy ) +
D wow e s wou,e = (sjwowj*)(h)t<ﬂ:3jw0‘*’j*>+
+ D wowye swowye (W) (Wowsi ) (RYEH S5 D i (U)

= Dwowj* JWowW ;% (Q)Hj (9) + E; (g)D'LUOUJj* L WOW 5% (Q)Fj(g)-
This concludes the proof. O

Lemma 2.6.2.4. In C[W,], we have that

(B, A1)} = Bi(t) (2.35)
(B, Bi(1)} = D wpioe +arwpye (£, aij = —1. (2.36)

Proof. The first equation follows Proposition [2.5.0.3] The second equation takes place in the
positive Borel Yangian, so it follows from [KTWWY1 Section 5.2]. O

Proposition 2.6.2.5. [FKPRW| Lemma 5.17]. Let pu be an antidominant coweight. Then the
classical shifted Yangian grY,, ~ C[W,] is generated by Ei(l)7 Fl-(l)7 HZ-(%“’ai)H), and H e +2)

?

as a Poisson algebra.

To compare to [KWWY], recall that g((t~1)), g[t] and t~'g[[t~!]] form a Manin triple, which
gives rise to a Poisson structure on G((¢71))) with G[t] and G1[[t~!]] as Poisson subgroups. In
our case, Theorem endows W,, with a Poisson structure via equation .

Comparing [KWWY] Thm 3.9] and the proof of [FKPRW| Thm 5.15], one has the following.

Theorem 2.6.2.6. [KWWY, Thm 3.9] The Poisson structure on Wy = G1[[t™1]] given by
Theorem [2.6.2.1] is the same as the structure given by the Manin triple.

2.6.3 Multiplication maps between the varieties W,

In this section, we look at some natural maps between the varieties W, namely the multipli-

cation maps and the shift maps. We will show that these maps are Poisson with respect to the
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Poisson structure given by Theorem [2.6.2.1] The employed method is also going to be useful

in the next chapter where we will show that a certain G,-action on W, is Poisson.
Definition 2.6.3.1. Let p1, po be antidominant coweights. We define the shift maps ¢, u, :
Wt 4ps — Wy, g = m(tH1gt=H2).

As i1, pp are antidominant, t=#1 Uy [[t~1]]¢#1 C Uy[[t~1]] and t#2U; _[[t= 1))t #2 C Uy _[[tY]).
Hence, the shift map ¢, ,,, ., is well-defined. The following lemma is part of [FKPRW, Thm 5.15].

Lemma 2.6.3.2. [FKPRW| Thm 5.15] The isomorphism of Theorem|2.6.2.1|is compatible with
shift maps on both sides.

Remark 2.6.3.3. In the context of the previous lemma, the shift map between the grY),’s comes
from the shift homomorphism of Proposition Moreover, both types of shift maps are
denoted ¢y, 1, 4, to emphasize the fact that they are compatible with each other by the previous

lemma.

Definition 2.6.3.4. For any coweights 11 and ug, we define the multiplication map my, ., :
Wiy X Wy, — Wy, 88 (91, 92) = Ty, (9192) where 7, is as in Section 2.6.1}

For this definition to make sense, one has to check that g1g2 € U((t~ 1)) T [[t71]t* U~ ((t71)).
Write g1 = uihit"uy, g2 = ughot"2uy . Since hyuj ushe € Gi[[t™1]], hiul usha = ughsus
where u; € U [[t™1]], hy € Ty[[t71]], and u; € Uy [[t}]]. So,

9192 = wt" (hyuy ughs)t*>uy
= u1t”1u3h3u§t“2u5

= uq (M ugt™H ) hat! (t7H2ug t4? )uy

which lies in U((t= )Ty [[t~trU—((t71)).

Lemma 2.6.3.5. [FKPRW| Lemma 5.11] Let p11, 1o be any coweights and let vy, vo be antidom-

inant coweights. The following diagram commutes.

Mpyt+vy+potre

WN1+V1 X W/J«2+V2 WM1+M2+V1+V2
LH11V1w0Xl’/—L2:011’2\L i%1+u2w1w2
W, X W, Wi 4o

Mpy+nz

i.e., the shift maps and the multiplications maps are compatible.

Proposition 2.6.3.6. The shift homomorphisms are Poisson and are compatible with the shift

homomorphisms of Proposition [2.1.0.4) If X is dominant such that A > p and A+ p1 + po is
oA+ o

— W, . The

dominant, then the shift homomorphism v i, u, restricts to a map W, > L

restriction map is Poisson and birational.

Proof. The first claim follows Lemma|2.6.3.2|and the fact that shift maps between the associated
A

graded algebras are Poisson. Since —pu; and —ps are dominant, for any g € W“ijﬁiﬁz,

that

we have

i gtie ¢ Gt-mGlE) - Gt Gl - G2 Gl € GG
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Now, since G[t]t*G[t] is invariant under multiplication by U [t], we see that ¢, ,,, ., restricts

eI SR AR P

toamap W, ., — W,. This restriction is also Poisson.

For birationality, the result follows from [BEN, Rem. 3. 11]. O

Next, we want to show the multiplication is Poisson. We will use the following lemma several

times.

Lemma 2.6.3.7. Let X;,Y; (i =1,2) be irreducible affine Poisson varieties. Suppose that we
have a commutative diagram
f1

X ————Y

] I

2

such that the vertical maps are birational and Poisson. Then the top arrow is Poisson if and

only if the bottom arrow is Poisson.

Proof. Since i is birational, there exist open sets U; C X; and Uy C X5 such that U; ~ Us.
By commutativity of the diagram, we see that fa|y, = jo f1 o (i7!|y,). If f1 is Poisson, we see
that fa|y, is Poisson. Consider the following commutative diagram

Clva] — 2 c[x,)

ey

C[Us]

We see that the vertical map is injective and the diagonal map is Poisson. Thus, fs is also
Poisson.

Since j is birational, there exist open sets V; C Y; and Vo C Y5 such that V3 ~ V5. Let
U; = fi1(V1). By commutativity of the diagram, (fy 0 i)(U;) € Va. We see that filoy =
jlofyo (ily). Thus, if f; is Poisson, so is fi|y;. Therefore, f; is also Poisson by the same
reasoning as above. O

Proposition 2.6.3.8. The multiplication map my,, .., : W

oAl AaoA2 AL A2
map WM X Wltz - WH1+H2

i X Wy, — Wy, 1, restricts to a

. Moreover, the restricted map is Poisson.

Proof. The first claim follows from comparing the constructions of [BEN| 2(vi) and 2(xi)]. For
the second claim, first consider the case where p; = s = 0. We know that Wy = G1[[t7!]]
is a Poisson algebraic group. The map my g is precisely the group multiplication in Gy[[t~1]].

Hence, it is Poisson, and so are its restrictions.

First, suppose that pi, s are dominant. If Ay > py and Ao > po, consider vy = —puq,
vo = —uso. We have the following slice version of Lemma [2.6.3.5
— A\ — —Ao— — A+ Aa—p1—
W01 1251 XW02 K2 Wol 21— M2
‘MlvttleXszU«le lbuﬁrug,ul»uz
—X\1 ==X — A1+
W 1 <« W 2 W 1+ A2

5% n2 p1tp2
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By Proposition [2.6.3.6] the two vertical arrows are Poisson and birational. Since the top arrow
is Poisson, by Lemma [2.6.3.7] the bottom arrow is also Poisson, proving this case.
Next, suppose that pq and uo are arbitrary. We can choose choose 1, 5 antidominant such

that py — v1, o — v2 are dominant. Now we have the following slice version of Lemma

—)\1 7}\2 7>\1+)\2
W, X Wuz Wm-‘ruz
L“1V11V1v0><l’/42”210v“2l \L’*uli»p,gulug,ul,ug
AOAL VL Aar2— 2 Ao A2 —v1—v2
_—
Wul—ul X W,ug—ug W,LL1+,U2—V1—V2

The bottom arrow is Poisson by our previous case. Therefore, by Lemma [2.6.3.7] the top arrow
is also Poisson. O

Theorem 2.6.3.9. [FKPRW, Conjecture 5.20] m, u, : Wy, X Wy, — W, 4,4, is Poisson.

M1

Proof. Let f,g € C[Wy,4,,]. Let A be the corresponding comultiplication. We need to show
that h := A({f,g}) — {A(f),A(g)} = 0. By Proposition [2.6.1.6] it suffices to show that the

.. oA A2 .
restriction of h on each \/\7#1 X W#2 is zero.

Let I be the ideal of Wiiiiz and let J be the ideal of Wii X Wiz We see that these are

Poisson ideals. Since A(I) C J and since the restriction maps are Poisson,

0+J=A{f+Lg+1})—{A(f+ 1), Alg+ D} +J

=A({f,91) —{A(). Alg)} +J
=h+J

Therefore, the multiplication is Poisson. O

As a natural next step, we discuss how the coproduct map A, ,, quantizes the multiplica-
tion map My, u,-

For any coweights pi1, p2, the multiplication my, ,, : Wy, x W, — W, 1, gives rise to

M1

a comultiplication map A}, . : C[W,, 1,,] — C[W,,] ® C[W,,].

On the other hand, the coproduct Y, +,, — Y, ®Y,,, is compatible with the filtrations of
Proposition|2.4.0.3| It gives rise to a map grY,,, y,, — grY,, ®grY,,. Under the isomorphism
of Theorem [2.6.2.1] we obtain a map A% : C/W,, 4] — C[W,,] @ CIW,,].

M1, 42

Assuming the result of Theorem [2.6.3.9) [FKPRW] proves the following:

Theorem 2.6.3.10. [FKPRW|, Prop. 5.21] For arbitrary coweights 1, pa, the two maps A}“,M

2
and A}, agree.

The next remark shows that multiplication between the W,,’s are not associative. By the
previous theorem, it will also justify Remark [2.3.3.3

Remark 2.6.3.11. Multiplications between the W,’s are not associative, i.e.

My +po,ps © (mM17H2’ 1) # My puo+ps © (17 muzﬁli3>'
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Consider the case where G = PGLsy. Let p; = o = /2 and puz = 0. Let

t 0 1 0
= cEwW
v (0 1) <t1 1) -

We will show that 74 (7o (2y)2) # To(xma (y2)).

Cft 0N [ 1 0\ 1 '\ [t 0) [t 0\[1 ! t 0
o )\ )\ 1) o o1) T o 1) e 1) o

ot 0\ (1 A4+ [ 4T 0 1 0\ [t O

~\o 1/ \o 1 0 1+t72 ) \t7' @+t~ 1) \0 1

I e R W A SO 0 1 0

~\o 1 0 1+t72) \ Q@+t 1

I G ) I N A € B ) I 1 0

\o 1 0 1) \Q+t2)"1 1

where the last equality follows from the fact that we are in PGLo((t!)). Therefore, since
1+t72 = Enzo(_l)nt_znv

( ) _ 1 Z7L21(71)nt72n t2(1 + t72)72 0 1 0
Tl = o 1 0 1)\ (D72 1)

On the other hand,

e [ e B P T I R [

Thus, 74 /2(y2) = .

We have to show that 7, (7o (2y)2) # Ta(27a/2(y2)) = ma(2y). By uniqueness of Gauss
decomposition, it is sufficient to compare the lower triangular part. We need to compute the

lower triangular part of 7, (7 (2y)z). For brevity, denote p = 37 - (—=1)"t~>".

1 o\ (r ¢t (1 ¢!
p 1/\o 1) \p 1+t 1p

(1 At (L4t 0 1 0
—\o 1 0 1+t 1p) \p(l+t1p)t 1

We see that p(1 +t~1p)~1 € t71C[[t!]]. The result follows since p(1 +t~1p)~! # p.



Chapter 3

On a certain Hamiltonian

reduction: the commutative level

3.1 Some generalities on Hamiltonian G,-actions

Let X be an affine Poisson variety together with a (left) G,-action p : G, x X — X, preserving

the Poisson structure (i.e., a Poisson action).

For any affine algebraic group G, a G-action on an affine variety X is equivalent to a
comodule structure C[X]|] — C[G] ® C[X]. So, in our case where G = G,, we may consider
the coaction p* : C[X] — Cly] @ C[X], f—= >, y" fn-

Definition 3.1.0.1. The G,-action p is said to be Hamiltonian if there exists g € C[X] such
that {g, f} = f1. This function g € C[X] is called the moment map of the action p.

Recall that the algebra C[y] is a coalgebra with comultiplication Ay, : Cly] — Clu]®@C[v],
y—u®1l+1®wv and counit € : Cly] — C, y — 0.

Lemma 3.1.0.2. Let A be a C-algebra. Let g € A be such that {g,—} is locally nilpotent. The
map pa : A — Clyl ® A, a = 32 5, Ly"{g,—}"(a) gives A a comodule structure over the
coalgebra Cly].

Proof. First, let us check that (Acp,) ® Ida) o pa = (Ida ®pa) o pa. For a € A,

(Bcty) @ 1d4) 0 pa(@) = (144 BAcy) (Y 1™ g, ~)"(a)

n>0
— Z Z <Z) %ukvn—k{g7 _}n(a)
n>0 k=0
= Z muk”n%{g, —}"(a),
n>0 k=0

32
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(Ida ®pa) 0 pa(a) = (Ida @pa)(Y %y’“{g, —}*(a))

n>0

=3 uall, 1 (@)

k>0
- Z Z | k Z{97 {ga _}k(a))

k>0 1>O
-y Wu’%ﬂ{g, ~PetiGa)

k>0 13>0

= Z Z ]C' kUn_k{Q? _}n(a)a

where the last equality is obtained by reindexing n = k 4+ ¢. By reordering the sum, we see that
(A(c[y] ® IdA) 0pA = (IdA ®pA) o pA.
Next, let us check that (¢ ® Ids) o p =1da. Fora € A,

(e ®Ida) o p)(a) = (e @Tda) (> %y”{g, —}"(a)) = a.

n>0
Therefore, ps gives A a comodule structure over Cly]. O
Remark 3.1.0.3. In the case where A = C[X], if ¢ € C[X] is such that {g, —} is locally nilpotent,

then the (co)action defined in Lemma [3.1.0.2| is Hamiltonian.
For the coaction of Lemma [3.1.0.2] we see that the higher terms a,, = {g, —}"(a) depend

closely on a; = {g,a}. In general, this must indeed be the case. We have the following

proposition.

Proposition 3.1.0.4. Let A be an algebra. Let p : A — A®Cly], a — > ~qany™ be a
comodule structure. Then, for a € A, aj41 = l_%l(al)l. Consider the function ¢ : A — A,a —
a. Fora € A, ¢"(a) = nla, forn € N. In other words., p is uniquely determined by ¢.

Proof. The coidentity condition, (Id ®¢) o p = Id, tells us that ag = a. Thus, ag is completely

independent of the rest. For the other a;’s, we use the cocompatibility condition.

(010 p)(a) = 3 plany” = ¥ X (anuabo™,

n>0 n>0 k>0
(ld@Acy) o p)(a) = Z (n) apuiv™ Tt
n>0 =0

For all [ > 0, we see that a;41 = l%(al)l'
It follows that ¢(x), = (I + 1)z;41 for all x € A. Let a € A. For x = ¢*(a), we have that
PF(a) = (1 + 1)@ (a)i41-

©"(a) = ¢" M (a)1 = 20" (a)2 = 319" 3(a)s = -+ = nlp" " (a)n = nla,.

This concludes the proof. O

Theorem 3.1.0.5. The following are equivalent:
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(1) a Hamiltonian Gq-action p on X with moment map g € C[X],
(2) g € C[X] with {g,—} locally nilpotent.

Proof. The (2)=(1) direction is simply Lemma For (1)=-(2), we need to show that
{g,—} is locally nilpotent. For any f € C[X], write p*(f) = >, y"fn € Cly] ® C[X]. By
definition of a Hamiltonian action, {g, f} = f1. Hence, by the previous lemma, {g,—}"(f) =
n!f,. Since f, = 0 for large enough n, we conclude that {g, —} is locally nilpotent. O

3.2 On a certain Hamiltonian reduction for W,

3.2.1 The action

Let u be any coweight. Fix ¢ € I. Define an action of G, on W, by r- g = 7, (z;(r)g), where z;
is defined in [[.5] and 7, is as in Section 2.6.1} We need to make sense of this by showing that
zi(r)g € Ut ))Ta[[t It U-((t71)).

From now on, unless stated otherwise, we write D for D, wgw, wow; -

Lemma 3.2.1.1. Let g € G((t71)). Then g € U((t=1))Tu[[t~]t*rU~((t71)) if and only if, for
all dominant weights w of G, Dwpw.wew (g) € t800WH) 4 tlwow)=1C[[t=1]].

Proof. Let g = uhttu_ € U((t™H))T1[[t 7 Jt*U~((t1)). For a dominant weight w,

Dw0w7w0w(g) = <U1t10w’ uht#u—v’wow> = <U;0w7u}7“t#vwow>

Since htfvy,, = (wow)(h)twow g, , and since (wow)(h) € 14+t C[[t7Y], Duwgw.wow(9) €
tlwowsp) 4 glwow ) =1C[[t=1]).

On the other hand, suppose that D .. wow(g) € tE00@ ) 4 ¢wows)=1C[[t~1]] for all w. Since
it is nonzero, this means that g has a Gauss decomposition, i.e., g € U((t =) T((t=))U_((t71)).
From the assumption on Dy wow(g) for highest weights w, we see that the Cartan part has
to lie in Ty [[t~1]]t*. O

Remark 3.2.1.2. In Lemma(3.2.1.1] instead of working with all dominant weights w, it is enough

to work with the fundamental weights w.
Lemma 3.2.1.3. Let g € W,,, 7 € G,. Then x;(r)g € U((t~ )Ty [t JtHU_((t71)).
Proof. Write g = uht*u_. We have that

Dwowj,wow]' (zi(r)g) = <U;0wj ) xi(T)Uhtuu—Uwowj>

= (Viguw;» i (r)u(t oD wow; (h)vwow,))-

If j #i*, we see that Doy, wew, (Ti(1)g) = tlrwowi) g (h).

If j =", write uvww,. = Vwow,» +D(U)Vs,wow,. + - - . Thus, we have that Dygw,. wow,- (2i(1)g) =
(1 + 7D (u))tHwowid o, (h).
From both cases and Lemma zi(r)g € U Y))Tu[[t 1t U— ((t71)). O

We have a useful lemma, which tells us more about the product x;(r)g.
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Lemma 3.2.1.4. Let g € W,,, 7 € G,. Let n € Ult],n_ € U_]t] be such that m,(z;(r)g) =

nx;(r)gn_. Then, n = 1.

Proof. Write g = uht*u_. For j € I, we have that

o (r)ubttu_vygw,. = ; (r)ut(“’wo“’f*> (wow;= ) (h) Vg, «

= xi(r)tw,wowg‘*)(wowj*)(h)(vwowj* + Z D)\7w0wj* (u)vy)

)\>wOLUj*

= t<#,w0wj*>(w0(.dj*)(h)(1}wowj* + Z Dxwow;« (W) (v +T0r-0;))

>\>'LU0<.0J-*

= t(M,wowj*>Aj (g)(vwowj* + Z D wow;« (w)(vx + T0r—q;)),

AS>wow

where vy_,, = 0 if A — «; is not a weight of the irreducible representation of lowest weight

WoWj*.
On the other hand, let us write ;9 = aht*a_ where 44 € UL ((¢1)). Then,

ZiGVugwye = (Wow;=) ()L (Vg + > Dy e, (@)03).

AS>wow =

Comparing the two different forms of z;gvuyw,., we obtain

R wowi+ (h _ B
D () = 0 1y ) 4 1D () € L)
wow;- (h)
for A > wow;-. Therefore, n = 1. O

Lemma 3.2.1.5. Foru e U((t™')), D(u) = =Dy, 5,0, (1).

Proof. First, since w is upper triangular, uvs,q, = Vs;w; + Duw; siw; (W) V0, We have a similar
equation for =t € U((t1)). Now, applying u~! on both sides of the above equation, u=1v,,,, =
VUsiw; — gwi,sq,wq‘, (u)vwi' We obtain Dwivsiwi (u) = 7‘Dwivsiwi (uil)'

On the other hand, since wow;» = —w;,
D(1) = (V_s1mw0m,0 s Wangwye ) = (Vs W—;) = (U 0,015 V) = Do 10 ().
The result follows from comparing the two equations. O
Proposition 3.2.1.6. The expression r - g = m,(x;(r)g) defines an action of G, on W,,.
Proof. Let a,r € C, let g = uhttu_ ¢ W,,.

a-(r-g) =mu(zi(a)m,(z:(r)g)) = nx;(a)nx;(r)gn_n_.

for some 7,7 € Ult], n—,n_ € U_[t]. It suffices to show that z;(a)nz;(—a) € U[t], i.e., we can
commute x;(a) and 7.
Let w; be a fundamental weight. If ¢ # j, then z;(a)nz;(—a)v,, = v,,. If i = j, then we

have that
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zi(a)nz;(—a)vy, = zi(a)n(ve, — avs,y,)
= xi(a) (1 - a’Dwi;SiUJi (ﬁ))ij - avsiwi)
- a’.DW'iasiWi (ﬁ))vuh + a(l - aDSiwi,Wi (ﬁ))vé1wz) — AVs;w;

1
1- aDwiasiwi (ﬁ))vwi - aszi,Siwi (fl’)vsiwi'

By Lemma|3.2.1.5] we only need to show that D(n) = 0, which is true by Lemma(3.2.1.4, O
Fix r € G,, denote by ¢, the map W, — W,,, g — 7, (z;(r)g).
Proposition 3.2.1.7. For g € Wy = Gy[[t71]], ¢r(9) = zs(r)gz:(r)~L.

Proof. Since G1[[t™!]] is a normal subgroup of G[[t™1]], we see that z;(r)gz;(r)~* € Gy[[t71]].

By definition of 7y and by uniqueness of Gauss decomposition, we see that ¢,.(g) = z;(r)gz;(r) = .

O

For antidominant coweights v, v, recall the shift map ¢y, 0, * Wogvi 40 — Wy, g —
Tt gtT2).

Lemma 3.2.1.8. For v antidominant, the following diagram is commutative

Pr
Wuﬂf W/Hrv
Wu Wu

r

. - A ) . .
Moreover, ¢, restricts to a map W,, — W, , the corresponding diagram of slices also commutes.

A v Pr A+v
e
Wi Wit
Lu,o,ui lbu,o,u
A A
WA — WA

Proof. Let g € W,,1,. Then, there are appropriate elements n,n,n’,n"” € Ult], n_,n_,n"_,n” €

U_][t] such that

Lu0.w © #r(g) = nmai(r)gn-t="n_,
0r oy 00(9) =n"z;(r)n'gt7"n"_n"
We note that n’ =1 as the element is shifted from the right. Since t*U_[t]t™" € U_[t] as v is
antidominant, we see that both of the above equalities compute 7, (z;(r)gt™").

For the second claim, note that W* is invariant under multiplication by U*[t]. The result

follows. O

Proposition 3.2.1.9. The map ¢, : W, — W,,, g = m,(x;(r)g)), is Poisson, i.e., G, acts

on W, by Poisson automorphisms.
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Proof. We begin by showing that the restricted maps ¢, : Wﬁ — W;\L are Poisson. Since
G((t™1)) is a Poisson algebraic group, conjugation by a group element is Poisson. By Proposition
@ : Wy — Wy and its restricted maps are Poisson.

First, suppose that p is dominant. For A > p, by Lemma the following diagram is

commutative.

AN H Pr AN H
W, § ——mm=W,
Luﬂ»ul lLu,Oyu
—A —A
W, - W,

Since the top arrow is Poisson, by Lemma [2.6.3.7} so is the bottom. If yx is arbitrary, let v be

dominant such that ¢ — v and A — v are dominant. The following lemma is commutative.

—A ©r —A
Wu Wu
oAV AV
—_—

W, . - W, .

Since the bottom arrow is Poisson by the dominant case, so is the top arrow.

Next, to show that ¢, is Poisson, we need to show that, for f,g € C[W,], h == ¢,.({f,g}) —
{o+(f),or(9)} = 0. By Proposition [2.6.1.6] it suffices to show that the restriction of h on each

Wi is zero. This is indeed the case following the same computation of Theorem [2.6.3.9

. . [ 2 N . .
More precisely, let I be the ideal of W,. Since ¢y (I) C I and since the restricted maps are
Poisson by the first part,

0+1=D{f+1g+I})—{D(f+1),D(g+ID)}+1

=D({f,9}) —{D(f),D(9)} + 1
=h+1.

Thus, hlg» = 0. Therefore, h = 0. O

Recall the C((¢t7!))-valued functions Ej, F; and H; defined after statement of Theorem
2.6.2.1] For g = uht*u_ € W,,,

Ej(g) =
Fi(g) =

S WoW j* ,WoW (U)

S

WOWj* 485 WOW % (’U,,>

Qi (ht'u),

<
—
)
~—
I

where the right-hand side of last equation means the projection corresponding to the root «;.
Consider the element Ei(l) € C[W,]. Denote by {—,—} the Poisson bracket on W,. From
the structure theory of grY),, the operator {El-(l), —1} is locally nilpotent. Hence, by Lemma

the comodule structure C(W,| — Cly] @ CIW,.|, f — >, y"{Ei(l), —}™(f) defines a

Hamiltonian G,-action on W,,.
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)

In the next proposition, we will show that this action given by EZ-(1 is the same as the action

given in Proposition [3.2.1.6]

Proposition 3.2.1.10. The action of Proposition [3.2.1.6] coincides with that of Lemma [3.1.0.2]
In particular, it is Hamiltonian with moment map ®; : W, — C, uhttu_ — ﬂ)(l)(u).

Proof. Since the action of Proposition [3.2.1.6] is Poisson by Proposition [3.2.1.9] it is enough
to show that the action by ¢, agrees with the action of Lemma on Poisson generators.
More precisely, for a generator S of C[W,], we would like to show that ¢} (S) = {Ei(l), S}. We
will use the generators Bj, A; and F; of C[W,,].

For g = uht*u_ € W,,, we write ¢,(g9) = nz;(r)gn_ for n € U[t],n_ € U_[t]. By Lemma
B:2.1.4] we already have that n = 1. In fact, let us repeat the computation of Lemma [3.2.1.4]
here. For j € I, we have that

T (r)uht" u_ vy, = T; (r)ut<”’w0“’f* ) (wowj* ) () Vwow,

= 2; ()t ) (wow;= ) (B) (Vwpwye + D Dawguy- (W)2)

)\>wgwj*
= t<“’“)0wj*>(w0wj*)(h) (Vwow,« + Z Dixwowy- () (vx + T0x—a,))
AS>wow ;=
= t(ﬂ,wowj*>Aj (g)(vwowj* + Z @)\7w0wj* (u)(vx + T0r—q;)),

A>wow =

where vy_o, = 0 if A — «; is not a weight of the irreducible representation of lowest weight

U)OOJ]‘* .

We see that 5 (A;(t)) = A;(9)(1+76ijDs wpw,« wow,« (u)). For j # i, the coefficient of  is
0. For j =1, the coefficient of r is A;(t)E;(g) = Bi(g).

Also, @:(Bj)(g) = A;j (g)(DSijWj* JWowW % (u) + TQSjUJOwJ-*+a¢,UJowJ-* (u)).

If j =4, then s;wow;~ is a weight, s;wow;+ + ¢ is not. The r-coefficient of ¢ (B;)(g) is 0.

If (a;, ) = 0, then sjwowj~ + ¢y is not a weight. Hence, the r-coefficient of ¢} (B;)(g) is 0.

If (o, ;) = —1, then sjwow;- + o is a weight. So, the r-coefficient of ¢} (B;)(g) is

D wow;s +as,wow,;« (1), agreeing with Lemma [2.6.2.4

Next, we wish to compute ¢} (C;)(g).

mi(r)uht”u,n,vsjwowj*
= xi(r)u(wowj*(h)tm,wowj*)Dwowj*7sijwj* (u_n_)vwowj* + Sjwowj*(h,)t(#,sjwowj*)vsjwowj*)

- xi(r)(wowj*(h)tm,wowj*)@wowj*7Sjw0wj* (u_n_)(vwowj* + Z D xwow;» (u)v,\)—i-

)\>w0wj*

o (sjwoey ) (AP0 (Vg e+ D Doy (1))

Y>Sjwowjx

= t{mwows) A (g)F; (u—n-)(Vwow,« + Z D wow;« (W) (v +T0x—0,)

)\>w0wj*

+ t<'u’w0wj* >A] (g)HJ (g) (vsjwowj* + rvsj-woon* —o + Z ®’Y>5jw0wj* (U) (v’Y + TU'Y_O‘i)) .

Y>Sjwowj*
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Thus,
e (C5)(9) = A;j(9)Fj(u—n_) (L + 7Dugw,« +-a,wow,- (1)) + Aj () Hj (g)dijr

Again, by the relations of Lemma [2.6.2.3]

Fj (u,n,)(l + TDwowj*+oci7wowj* (u)) + Hj (‘g)éijr
(1 + T(Sij.DSjIUOUJ]‘* ;WO W j* (U))

er(Fi)(9) =
If j # 14, wowj+ + ; is not a weight,
er(F5)(9) = Fj(u-n_).
Hence, its r-coefficient is 0. If j =i,
03 (Fi)(9) = Fi(u-) + Fi(n-) +rHi(9)(1 + rEi(9) ™"

We see that the coefficient of r is H;(g) since n_ is chosen to satisfy, in particular, that

07 (Fi)(g) € t7IClIE]). =

3.2.2 How to relate W, to W1,

Our goal of this section is to construct an isomorphism <I>;1(CX) o~ ng X Wita;-

Consider the slice W‘im. This space is quite nice, it is isomorphic to C x C* with Poisson
structure given by {c,a} = ¢ where a is the C-coordinate function and ¢ is the C*-coordinate
function. There is a Hamiltonian G,-action on it given by r - g = x;(r)g for g € W(iai, or

r-(a,c) = (a+rc,c) for (a,c) € C x C*.

= 0
Lemma 3.2.2.1. G = SLo, W(ia = {< L ¢
—c t+a

1 E -1 1
g= ht 0 0 cW
0 1 0 hrlt)\F 1

thenc=EWY t+a=EWE"'=h't and F = —(EW)2E.

) :c€eC* aeC}~CxC*. Moreover,

if

Proof. This can be proved by a straightforward computation. O

Lemma 3.2.2.2. The elements of W(iai are precisely the elements of G((t™1)) of the form
ai(c)zi(c(t +a))s;t where c € C*.

Proof. We know that the result is true for the case G = SLa((t1)). More precisely,

0 ¢\ (¢ 0 1 o0\[o0 1
— ' t4a) \0 ) \et+a) 1)\=1 0/

Recall the map ¢; introduced in Section We want to show that @i(W(lQ) =W

50
Since ¢; is a homomorphism, ¢;(W_,) CW_,, .
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—0
Let g = uht™*u_ € W_, . Consider the lowest weight vector vy, for a representation V.
GUwor = wht ™ u_vyn = (wo) ()N YDy, § € V]H]

If \ = —wow; where j # 4, then t(*oA~%) = 1. But since woA(h) € 1 + ¢~ 'C[[t~!]] and
uvwer € VA[[t7Y]], we have that woA(h) = 1 and uvy, s = vwer. Thus, h € ¢;(SLa((t71)). Since
u leaves vy, invariant where A = —wow; for all j # 1, it lies in each of the parabolic subgroups
P; ={g € G((t™")) : gV—wow; = V—wouw, } for j # i. We know that Ny £ N U(t1) =
GiSLa((t1)) N U((E1)). Thus, u € wi(SLa((t))),

Now, by a symmetric argument on g~!, we see that u_ € ¢;(SLa((t71))). Therefore,
g€ pi(W2,). O

Lemma 3.2.2.3. Let g1 € W‘iai and go € Wyya,. Then, ®;(m_a, yta,;(91,92)) = ®i(g1)-
Consequently, m_a; jta; (W(iai X Wta,) € ®;71H(CX).

Proof. Let uit~%hjuy € W(iai, ushot" T iuy € W, yq, where u; € Up[[t™1]], h; € Tu[[t71]],

and u; € Uy [[t71]]. Write hyuj ughe = uhu~. The product becomes
wy (E @t )tk (B ey

We see that D(t~*ut®) € t=2C[[t~1]]. Thus, DD (uyt=*ut®) = D (uy) + DM (¢~ iyut®) =
DM (uy) # 0. Therefore, the product lies in ®; ' (C*). O

~=0

Thus, we may write the map m = m_q, yta; : W_go, X Wiia, — ;7 H(CX).

Next, we wish to define the inverse to m. First, consider the map

(23

E:07HC) — W, g =uht"u s ay(®i(w))zi (@i () (D(u) ™ — D(w)~H))s; L

3

We define a candidate for the inverse as follows,
_ ~50 _ _
¥ @7 CX) — W, x G(tTY), g+ (€(9), Turai (E(9) 1 9))-

Lemma 3.2.2.4. The image of ¥ lies in W(lai X Witai-

Proof. Write g = uhttu_ € ®;1(C*). We will use Lemma in order to show that, for
g€ @7 (CY),
£(9) 7 g = siwi(=Pi(w)*(D(w) ™ — D(u)~"))ai(®i(u)) g

lies in U((¢t 1)) T [[t~ ]t U~ ((¢t71)). Let w; be a fundamental weight.

WoW;j ,WoW (Slml(_

D
=D

S{WoW;,WoWj (xl(_ 1(”

v (—P;(u “uhttu_ v, )

)
() o) (B )

J— * .
*< Sjwow;? T
*

_<vsiw0wj y Lg
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Consider the case where 7 = i*. We have that

UVywow;» = Vwow, = + D(u)vsiwowi* + -

D)) (®:(1) ™ (Vugars + D +--)
o WW )™ D)) (@i (1) + i)~ D) )
D(u)D(u)” 1'Uw0w1 D;(u)” 1D(u)vsbwow7 N

So, the coefficient of Vs, yquw,. is ®; (1) ™D (u)(wow;= ) (h)t w01 Hence, since g € ®; ' (C*),
Davgwore swowr- (€(9) 1 9) 1 of the form wowitan 4 plwowiwteas) “1C[[E1]].

Consider the case where j # i*. So, s;wow; = wow;. Also,

(U, » i (= @i (w)*(D(u) ™" = D(w) )i ((w)) ™ (Vugo, + ) =1

Hence, in this case, we also get the desired result. O

Therefore, we may write the map 1 : ®; ' (C*) — W(iai X Wita, -

Lemma 3.2.2.5. Fory = myya, (5i2:(—®i(9)?(D(w) ' = D(u) 1))y (®i(9)) tg). Letn € Ult]
and n_ € U~ [t] be such that

y = n(sizi(—2i(9)*(D(u) ™" = D(u)~))ai(Pi(g)) "' g)n-

Then D(n) =

Proof. This immediately follows from the computations in the previous lemma. O

Theorem 3.2.2.6. The maps b and m are inverses of each other.

Proof. First, we show that m o1 = Id. Let g = uht*u_ € ®;*(C*). Let n,n_ be the same
as in the previous lemma. We need to show that 7, (£(g)né(g) 'gn—) = g. To do so, we prove
that £(g)né(g)~t € U[t]. Write y = ®;(u)?(D(u)~! — D(u)~?t) for simplicity.

E(g)né(g) ™" =ai(®i(w)z;(y)s; nsizi(—y)o (Bi(u) ™"
=a; (Ps(w))s; ol (—y)na (y)sio (@i(u) ™"

Now, as D(n) = 0 by the previous lemma, we claim that
s;taf (—y)naf (y)si € U[t].

3 K2

To prove the claim, write y = ®;(u)?(D(u)~1 —D(u)~!) for simplicity. Consider the highest
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weight vector v,,,

s{lx;r(—y)nxj(y)swwi = Siilxz{r(_y)n‘rj(y)vsiwi
= 5;1$:r(_y)n(vs1-wi + Yvu,)
= S:ll‘j_(—y) (USiwi + vai)
= Si_l Usiw;) = Ve,
where the third equality uses the fact that D, 5,0, (n) = —D(n) = 0. We also see that

s;txf (—y)na; (y)siv,, fixes the other highest weight vectors v, for j #i. Thus, £(g)né(g) ™" €
Ult]. Hence, m o1 =1d.

Now, we show that 1) om = Id. Let (ay(c)z;(c(t + a))s; ', g) € Wga, X Wita, where

g = uht*t®y_. Consider the Gauss decomposition 7(c;(c)z;(c(t + a))s; 'g) = aht*i_. We
claim that
D) = c(—c ' D(u) + (t +a)) "t

Let n € U[t], n— € U_[t] be such that m(cv;(c)z;(c(t +a))s; g) = nai(c)z;(c(t +a))s;  gn_.

On one hand,
D(ahtti_) = (wows-)(h) D (@)t wow .
On the other hand,

D(nay(c)zi(c(t + a))s; luht' ¥ u_n_) =

_ (c +D(n)(— ¢ 'D(u) + (t + a)))t<w°‘”i*’“+o‘i>(wowi*(h))
which lies in ¢(wowisntei) 4 plwowisptai)=1C[[¢=1]]. Thus, we have
D(nai(c)zi(c(t + a))s; fuhtt+oiu_n_) = ct{wowr 1o (o, (h)).

Therefore, we deduce that

@(ﬁ) _ ct{wow; ,HJrai)(wOwi*A(h)) _ thl(wowi*gh))’
t{wow;x ) (wowi*)(h) (wowi*)(h)
since (wow;+, ;) = {(wiw;+, a«) = —1. To prove the claim, it remains to find the relationship

between (wowi+)(h) and (wow;=)(h).

Write the Gauss decomposition a;(c)x;(c(t + a))s;* = wkt~*w_ € W_,,. Note that the
product wkt~%w_u lies in U((¢t~1))Ty[[t Lt~ > U~ ((¢t71)) since u € Up[[t~1]] € Wy. Thus, we
may consider the decomposition wkt™%w_u = w'k't~%w’ . The Gauss decomposition of the

product a;(c)z;(c(t + a))s; 'g is computed as follows.
Q (C)mi(c(t + CL))s._lg — (U)ktiaiw_u)htlH’aiu*

K2
= w k't~ % w' httTYiy~

= w'k'httw” u,
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where the last step is obtained by moving w’_ pass h, i.e., w’_h = hw” . By uniqueness of Gauss
decomposition, we see that h = k'h, and so (wowi+)(h) = (wow;= ) (k") (wow;= ) (R).

Lastly, let us compute (wow;~)(k’). On one hand, we have that
Dasgwoso cwowse (i ()ai(c(t + a))si 'u) = = D(u) + (¢ + a).
On the other hand,

Do, w swowye (Wt %w' ) = (wowi*)(k’)tmo‘”i*’_ai) = (wow;+ ) (K')t.

Hence, (wow;+)(k') = w. Therefore,
Q) = et~ H(wow;+ (h)) B et~ H(wow;+ (h)) =~ e(—e=1D(y Q-1
P = () w1 + et ¢ PO
as claimed.

This means that ®;(4) = c¢. So, the Wgai—component of Y(m(ai(e)w;(c(t + a))s; 'g)) is

precisely a;(c)z;(c(t + a))s; . We have that

sizi(—c(t + a))ai(c) " m(e(c)zi(c(t + a))s; ' g)

::L'j' (c(t+ a))si_lai(c)*lnai(c)sixj(fc(t +a))gn_

Since D(n) = 0, the above product lies in U[t] by similar arguments as before. Therefore,
Yom=Id. O
Next, consider the G,-action on Wgai X W, ta, acting solely on the first component by

r -z := x;(r)z. Under the identification W(iai ~ C x C*, the action is 7 - (a,¢) = (a + re, ¢).
Proposition 3.2.2.7. m is G, -equivariant.
Proof. Let (z,g) € Wo_m X Wta,. For r € G,, we have to show that

Tu(xi(r)zg) = mu(zi(r)mu(zg)).
In other words, there exist n,n_,n,n_,n,n_ € NJ[t] such that

nx;(r)xgn_ = nx;(r)negn_n_.

It suffices to show that x;(r)nz;(—r) € N[t]. For this, it is enough to prove that D(7) = 0.
Write § = zg = @ht"i_ = zuht*u_. We wish to compute D(w). This is the same as in the

proof of the previous theorem. More precisely, from the two descriptions of g,

>

D( ) — t(wowi* ,u+ai>w0wi* (h)c
D(G) = Vi, » WA T Vg ) = 0P gy (h)D(40).
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Thus, since (wow;, ;) = —1,
t(wow;x ,utas) i« (h
D(i) = wowic (h)e ¢ 1 gqpp-1).
t(wowi* ) Wi (h)
This means that D(7) = 0, concluding the proof. O

In fact, in the proof of the previous proposition, D(@) = c(—c 'D(u) + (t + a))~!, as
computed previously.

. 30 _ .
Having the equivariant isomorphism m : W_, x W, 1, — ®; L(C*), we also obtain an

isomorphism on the level of slices.

Corollary 3.2.2.8. Given a dominant coweight X\, m restricts to a G, -equivariant isomorphism

my : ®; 1 (CX) N GIPGH — W, x Wy

Proof. This follows from the fact that the maps m and 7,4, preserve slices. O

We arrive at the desired reduction result.
Theorem 3.2.2.9. &' (C*)/G, ~ C* x W 1q,.

Proof. Recall that the G,-action on the right-hand side only acts on the first factor. The action
on the first factor is given by 7 - (a,¢) = (a + r¢, ¢). So W[la /G, = C*. O

i

A

Corollary 3.2.2.10. (®;'(C*) NG G[t])/Gq — C* x W, .

3.2.3 An explicit computational example

For G = SL,, the result of Theorem [3.2:2.6| can be done by explicit matrix computations. In

this section, we provide some calculations to illustrate Theorem [3.2.2.6|in the case of G = SLo

Let u be an arbitrary coweight. An element g of W, is of the form

(1 e\ [(h O 10
9=Vo 1) \o n1)\s 1
Then, we see that

0 o) L (et — ey e
g(g) = <_(€(1))_1 6(1)(6_1 —6_1)> ’ £<g) = ( (6(1))_1 0 )



CHAPTER 3. ON A CERTAIN HAMILTONIAN REDUCTION: THE COMMUTATIVE LEVEL 45

-1

For ease of notation, let us write e(!) = u. We would like to compute 7,44 (£(g)"1g).

ule ™t —el) —u) (1 e _ u(e’l—Q) —ue”lte
ut 0 0 1 ule
1 ue™ ! 0 1 0
0 0 ule e”t 1

h
e 1h h~
h 1 0
0 e~ th? 1
If h € t" + " IC[[t7 Y]], we see that ue™'h € t"*1 + "C[[t"!]]. Hence, £(g)~lg €
U(E )Tyt )t#rU_((t71)). Therefore,

1 —u?e”! ~1h 0 1 0
mra(€(9)'9) = (O “f) (“60 uh) <€1h2+ ; 1) (31)

Next, we compute w#(f(g)wu+a(f(g)7lg))-

0 U 1 —u2e ! _ 0 U
—u~t u(emt—e=t)) \0O 1 C\—ut et

Thus,

1. _ (L e\ [h O 1 0
@) rna € (0) g)_<0 1) (0 h—1> (—e—1h2+e—1h2+f 1)

Since —e~*h? + e"'h? € C[t], we see that 7, (£(9)Tut+a((9)"'g)) = g. This shows that
mo = Id.

Next, we would like to show that 1) o m = Id. Consider

0 u 1 e h O 1 0
= ewl, = eW,ia.
Y <u1 t+a> g (0 1) (0 h1> <f 1) e
We have that
0 u 1 e _ 0 U
—u~t t4a 0 1) \—ut —ute+t+a

For ease of notation, let us write p =t 4+ a — u~'e. Thus,
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1 0\ (b 0O\ (h O 1 0
—u"lpt 1 0o ') \o a!? —u"p~ih? 1

If h e t™ +t"1C[[t7']], we see that p~th € ¢t"~! +¢"~2C[[t~]]. Thus,

m(y,g) € Ut ) Dllt™ MU (™).

(1 up~?! p~ih 0 1 0
mie,g) = (0 1 )( 0 ph_1> (—u—lp—1h2+f 1) (3:2)

Now, we see that (up~)) = u. Since u(u™'p—u~lp)=p—p="t+a, {(m(y,g)) =y. We
compute £(m(y, g)) ' m(y, g)-
=1
p—p up °p
w1 p!

(1 —up)(p O 1 0

o 1 0 p ') \ulp 1
1 0\ (p~th 0 _ p~th 0 1 0
ulp 1 0 ph~! B 0 ph~! uip~th? 1

Since —up = —u(—u"'e) = e, we have that

. (1 e\ (h O 1 0
ﬁ(m(y,g)) m(yag) - <0 1) (0 h_1> <u_1p_1h2 —u_lp_1h2—|—f 1) ’

Since u~!'p~th? —u~tp~th? € C[t], we see that ¥(m(y,g)) = (v, g), and that ¢ o m = Id.

Therefore

/-~
g’U
I
bt
\
S o2
N———
N
S =
<
_ S
N———
Il

Next, we will show that m is G,-equivariant. Consider

1 h 1
y=( ° Yolewr,, g= ¢ ’ ) € Wy
—u ' tta o 1)\o ) \s 1

We need to show that, for r € G, - m(y,g) = m(r - (y,9)). In other words,

Tu(@a(r)mu(y9)) = mu(T—a(za(r)y)g) = mu(za(r)yg),
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where the second equality is clear since

1 0 0 U _ 0 U
r 1 —u~l t4a o\t t+a+ru)’

We already have part of the computation done in (3.2)). We first compute the left-hand side.

1 0 1 up? (1 up~!

r 1 0 1 \r rup” !t +1
1 w(ru+p)t\ [((rupTt+ 1) 0 1 0
—\o 1 0 rupt +1) \r(rup=t +1)71 1

Hence, writing ¢ = rup~' + 1, we obtain

() () 1 up~ ¢ '\ (¢ pth 0 1 0
ZTa(r)m, =
w\Yg 0 1 0 gph~1 rg ip2h? —upT 2+ f 1

Additionally,

r) 1 up~tq! g 'p~th 0 1 0
2o (r)yg =
v 0 1 0 gph™ ) \r¢ 'p2R® —u " p W2+ f 1

Since f+g = f+g forall f,g € C((t7!)), we see that z,7,(xg) and z,xg have the same

image under 7. Therefore, m is G,-equivariant.

An alternate description for ¥ in the sl,-case
Write © = ma. An alternate description for W, is
d b m m—1 —1
{ ca €t M Cl[E ], val(b), val(c) < m,ad — be = 1}.
c a

where val(f) denotes the largest interger n such that the coefficient of ¢ in f is nonzero.

Write a(t) = t™ 4+ aMtm™=1 4 ... p(t) = bWt £ p@pm=2 L. c(t) = M 4
c@pm=2 4 ... We would like to describe ¥(g) in terms of a,b,c,d. The Gauss form in this

description is
(1 b/a)\ [at O 1 0
9= 0 1 0 a)\c/a 1)

We see that (b/a)P) = b, For g € ®~1(C*), recall that ) # 0.

(0 b0 L (B0~ ) o
g(g)<—<b<1>>1 b<1><<b/a>1—<b/a>1>>’ “ ( o)t o)
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Replacing e by b/a, h by a=!, and f by ¢/a in (3.1)), we obtain

L[ —(b(l))2a7/b pMp—1 0 1 0
Tuta(§(9) 9)—<0 1 )( 0 (b<1>)1b> ((ab)1+c/a 1)

bWb=1 — bW (a/b)b((ab)~! +c/a)  —b")(a/b)b
(bM)~*b((ab) " + ¢/a) M~ )

48



Chapter 4
Quantum Hamiltonian reduction

In this chapter, we discuss the lifting of the isomorphism ®;*(C*) ~ W(iai X Wytq, to the
Yangian level. This should be expected since the multiplication of the right-hand side is Poisson,
and we would anticipate a quantization at the Yangian level. We know that a quantization of
the right-hand side is Y°, ® Y, 14,. So, our first task is to find a quantization of C[®; *(C*)].

—

It corresponds to a localization of Y,.

4.1 A localization for Y,

Recall that, if S is a multiplicative set of a ring A, then S is said to satisfy the right Ore
condition if aSNsA# @ foralla € Aand s € S.

Lemma 4.1.0.1. [S| Lem. 6.6]. Let A be a ring. Fizr € A, set S = {r" : n > 0}. Let
{z; : j € J} be a generating set for A. Suppose that, for alln >0 and j € J, ;S Nr"A # (.
Then, for alla € A andn € N, aSNr"A # (.

Proof. Let us start the proof with the additional assumption that the Ore condition holds for
monomials in x;’s. Every element a € A is of the form 22:1 ar, where each a; is a monomial
in x;’s. By our assumption, for 1 < k <[ and n > 0, there exist my € N,b, € A such that
apr™ = r"b;,. Let M = max{my,...,m;}. We have that ar™ = r» Yok borM—mu

Thus, we need to justify our assumption by proving that the right Ore condition holds for
monomials in z;’s. By the assumption of the lemma, for all n > 0,5 € J, ;S Nr"A # (. A
monomial in the z;’s is of the form x ---xy. Let n > 0, there exist m; > 0 and y; € A such

that ™y, = x1r™:. Now, according to the condition on x5 and my, there exist ms > 0,y € A

such that r™1ys = xor™2. Repeating this process until we have obtained mq,...,m, and
Y1, - ., Y satisfying the conditions "7y 1 = x;117™+1. We see that

LA fEkT’mk =21 '$k717'mk71ym = .= rnyl Y,
Therefore, x1 - - xS Nr"A # (. O

Let S = {(Ei(l))’c : k € N} CY),. Let us start with proving that a subset of the Yangian

generators satisfies the equation of the right Ore condition.

49
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Lemma 4.1.0.2. We have the following formulas.
(a) For alln > 1, E?(ED) = (EM)nnEM + EP),

(b) If ai; = —1, for all v > 1 and n > 1, BS(BEM) 1 = (B ((n + 1)EVED —
nEMEM)
i g

(c) If a;j =0, then E;T)(Egl))" — (Ei(l))”EJ(-T),

(d) For all j € I andn>1, Hi~ " (ED) = (B) (nag; + H” "),

(¢) Forall j# i andr > 1, Fy(E{")» = (B )" F",

(f) For alln > 1 and r > 1, FV (B = (BV) R — o0 Zg (B0 eH (B{V)n=1 -k,

Proof. (a) When n = 1, [E(Q) E(l)] [Ei(l),Ei(z)] = 2(Ei(1))2. Thus, rearranging the equation,
we obtain E(Z)E(l) E(l)(E(2) + E(l)) Assuming the result for some n > 1, we want to show
the case n + 1.

EX (M) = B (ED) Y = (B mE[) + EF) B
= (B (BN + EPED)
= (B (n+1)(ED) + BN EP)
= ED) (4 DEY + BY).

(b) We fix r and proceed by induction on n. When n = 1, using the Serre’s relation,

_ g () g™y g p0) g (1) ) )
0=I[E (BB = B (B B = By B E,

— (Efl))2EJ(T) _ ZEfl)Ej(T)E(l) E(T) (E(l))
Thus, we have that
E(EM)? = BV 2BV EY ~ EMNED),
proving the base case. We proceed onto the induction step.
(M) pWyn+2 _ () p(Dyn+1 (1) _ (1) (r) (1) (1) ga(r)y (1)
E; (B, )" = E; (B )" E; = (£;7)"((n+ 1)Ej E; " —nE;E; )E;
= (EM)"((n+ I)E(T) (B2 —nEMN BV EM)
))”( 2(n+ l)E(l)E(T)E(l) —(n+ 1)(E§1))2E](T) — nEZ(l)E](-T)Ei(l))
)™ (
)

"(n+2) B EY — (n+ 1)EVE)

= (E"
= EY
B (n+ BV E]EY — (n+ )(EVVED).

(c) This is clear since [Ej(.r)7 EM] =o0.
(d) We also proceed by induction on n. When n = 1. [H](_w’aj”l),Ei(l)] = a,-jEZ(l).
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Rearranging the equation, we obtain H]G(“’O‘jHl)Ei(l) = Ei(l)(aij + H](-7<’L’aj>+1)).

(={m05)+1) (1 1 (={m05)+1)\ (1
Hj 5 (E( ))n+1 _ (E( ))n<naij +Hj W )E( )

[ [ %

= (ED) (nay BN + ag BN + BM H ety

K2

= (EMY™ Y (n 4 Vg + H#o0w0)y,

K3

(e) This part is clear since Fj(r) commutes with Ei(l).

(f) Let r be arbitrary. We proceed by induction on n. Since [EV, F("] = H™ the base
case n = 1 is clear. Assuming the result for n, consider the case n + 1.
n—1
r D\n D\n r 1 r )\n—1— 1
FOE) = () = S (B D () B
k=0
n—1
yn T Dyn gp(r 1 r 1) \n—
= (B E — (B = Y (B ()
k=0
1)\n T 1 D\n—
= (B =3 )
k=0

Remark 4.1.0.3. According to the previous lemma, by proving some simple formulas, we see that
Ei(l),Ei(z),EJ(»r) (j #i,r > 1),H;_<”’aj>+1),FJ(T) (j # i,r > 1) satisfy the equation of the right
Ore condition with respect to S. Moreover, by Lemma the elements of the subalgebra
generated by these generators also satisfy the right Ore condition with respect to S. Using this,

we will prove the Ore condition for the other generators.
Lemma 4.1.0.4. We have the following

(a) For r > 2, there exists x, = x. + Egr)(Efl))T_3 where x]. € <El(k) 21 <k <r—1) such
that
EMED) 2 = EWy,. (4.1)

(b) Forr > 1, there exists y, — yHHj(;w,amr) (EDY =1 wherey € <E§1)7E§2)7H;7<u,aj>+z) :
1 <i<r—1) such that
H](—(/t7aj)+f’)(E(1))r — Ei(l)yr- (4.2)

)

Proof. (a) We prove this claim by induction on r. The base case r = 2 is clearly true. Assume
the claim holds for some r > 2. For the case r + 1, consider the relation [E£T+1),EZ(1)] -
[EZ(T), Ei@)] = Ei(T)EZ.(l) + Ei(l)EZ-(T). Rearranging the equation, we obtain

Ei(rJrl)Ei(l) _ (Ei(r)Ei(l) + Ei(l)Ei(T)) + El-(l)EZ-(TJrl) + Ei(r)Ei(Q) . E§2)E£T)~
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Multiplying both sides of the above equation by (Ei(l))’"_2 on the right gives

EU(ED)y -t = EO(EM) 4 EVED (EW)y-2 4 EVEC T (EW)r-2
—|—E( )EZ(Q)(EZ(U) E(2) (7") (E(l))r—Q
2 E(l)E(T+1)(E(1))r 2

E(l)er(l) + (B 1) )
1) r— 2 (1 1 2
f) + (BN 2B - EOED + EP)e,
>

+E"((r—2)(B
= BV, BV + (BEM)2x, + BV BT (B2
1

+ =BV BV 4 EWVg BD _ (W 2p, — EV B,
= (r+1)EN e, BN + EVETT(ED) 2 4 EV (e, EP).

Set x| = (r+ 1)eri(1) + [z, E ( )] We see that y,41 € (E(k) 1 <k <r), proving (a).
(b) We proceed by induction on . When r = 1, the result follows from part (d) of Lemma
4.1.0.2] Assuming that the result holds for some r > 1. For the r+ 1 case, consider the relation

(=(mag)+r+1) (1) (=) +r) (27 _ Qg (o pp(=(may)+r) (1) (1) gy (=(mseg)+1)
[Hj WOp ]—[Hj ’ B ]—7(Hj ’ E;7+E;"H,; )

Rearranging the equation and multiply both sides on the right by (Ei(l))’", we obtain

H;*(H»aﬂﬂLT‘H)(Ei(l))rJrl — Ei(l)HJ(.*Wxaﬂ‘”*l)(Ei(l))r + [HJ(‘*W,O%)JFT)’ EZ(2)](EZ(1))T

+ %(HJ(_*WMJ)M“) (Ei(l))r-&-l + Ei(l)H](thaj)Jr’“)(Ei(l))r)
1 —(p,05)+r+1 I)\r — (o) +r 2 )\r

(Z]l

(BB + (5P
Now, we have that

(={p,05)+7) =2(2) (D yr (=) +r) (D7 (1) (2)

Hj E;7(E;) _Hj (B;)"(rE + E;7)
_ By B 4 EP)

BE e (1) = EP BNy, = BO (B + EP)y,

Setting /., = % (xTE.(l) + E.(l)xr) + yr(rEZ-(l) + Ei(z)) - (EZ.(U + Efz))yT. Since yr+1 €
(E(l),E§2),H](_< >+l) :1 <1 <r), we are done. O

K3

Theorem 4.1.0.5. The set S = {(Efl))” :n >0} CY, satisfies the right Ore condition.

Proof. By Lemma it remains to show the right Ore condition for the remaining gener-
ators E(T)(r > 3), H( G O‘7>+s)( €l,s>2), F(t)(t > 1), i.e., for a generator z, for all n > 0,
there exist m > 0 and y € Y, such that

p(EM)™ = By, (4.3)

For each n > 1, we prove the existence of equation (4.3)) for El-(r)7 r > 2. We prove this by
induction on r and on n. The strategy to prove our statement is to prove for a fixed r and all

n, before moving onto r + 1 and all n.
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More precisely, we claim that, for 7 > 2, and for n > 0, there exist a,, € <Ei(l) 1 << r—1),
My, k, > 0 such that

BB = (B) (a0 + B (E)). (4.4)

Consider the base case r = 2. For all n > 0, the existence of equation (4.4]) follows from
part (a) of Lemma 4.1.0.2] Assume our new claim holds for numbers between 1 and r and all
n > 0. Consider the case r + 1. We prove existence of equation (4.4)) by induction on n. The

base case n = 0 is clear. Assume the existence of (4.4) for r + 1 and some n > 1, i.e.,
B EN ) = (BV) (an + BV (BD)), (4.5)

for some a,, € (E-(l) : 1 <1 <r). Consider the case n + 1.

Now, a,, € (E(l) 1<1<r)and Ei(l)(l <1 < r) satisfy the right Ore condition by induction
hypothesis. By Lemma applied to the subalgebra (Ei(l) : 1 <1 <7y, a, satisfies the
right Ore condition equation, i.e., equation holds for x = a, and all natural numbers.
Thus, there exist p > 0 and a), € (EZ-(Z) : 1 <1 < r) such that an(Ei(l))p = Ei(l)a’n. Set
M = max{p,r — 2}.

Multiply both sides of equation (4.5)) on the right by (Ei(l))M, we obtain

EZ'(T+1)(E7;(1))mn+M (E(l)) ( (E,L(l )p(E 1))M p+E(T+1)( ())T*l(E(I))Mf(T71)+kn)
= (B (@ (BYDM TP 4 (@l + BT (ED )2 (B )M,

where the second equality uses part (a) of Lemma |4.1.0.4
¢

Set apy1 = a;(Ei(l))M_p + a1 (E; ))M (r=D+kn " Since 2/, € <Ei(l) 11 <1 <r), we are

done.

Next, we work with the H’s in the exact same manner. We claim that, for » > 1 and n > 0,
there exists a,, € <Ei(1), Ei(z), HJ(_W’O”)'H) :1 <1 <r—1), my,k, > 0 such that

H-](—<H7aj)+r)(E7:(1))mn _ (Ei(l))n(an +H](-_<M’aj>+r)(Ei(l))k"). (4.6)

Consider the case » = 1. For all n > 0, the result follows from part (d) of Lemma
Assume the result holds for numbers between 1 and r. Consider the case r + 1, we prove the
existence of equation by induction on n. The case n = 0 is clear. For our induction
hypothesis, for some n > 0,

H(*(#vaj>+7“+1)(E_(1))mn _ (Ez_(l))nmn + HJ(_*(M»Oéj>+T+1)(EZ_(I))kn)’ (4.7)

J K2

where a,, € (Ei(l),Ei(Z),HJ(-_m’aj)H) 1<i<r).

By induction hypothesis, the set S = {(El(l))" :n > 0} satisfies the right Ore condition in
the subalgebra a,, € (El-(l), El-(Q), H;7<”’a'j>+l) :1<1<r). So, equation holds for a,, and all
natural numbers. Thus, there exists p > 0 and a, € (Ez(l),Ez»(Q),H](_(”’aj g <1 <) such
that a,(EM)? = EMal,.
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Set M = max{p,r + 1}. Multiply both sides of (4.7)) on the right by (EZ-(I))M7 we obtain

HJ(_—<#7‘1.7’>+T)(Eil))mn—kM _ (Ei(l))n(an(Ei(l))p-&-M—p + H](—(#7aj>+r+1)(Ei(l))r+1+M—r—1+kn)
1)\n 1 — —(p,j)+r+1 1)\r 1 —r— n

= (B ay (B 4 (g + HY” O () (B MR

where the second equality uses part (b) of Lemma [4.1.0.4]
Set an1 = ap (B{DYMP 4 yp (BY)M ke Since yf € (B, BP, HT

1 <1<r), we are done.

Next, let us work on F, By part (f) of Lemma 4.1.0.2} for n > 1,

i
n—1

RO = (B RO - SOy 49
k=0

Now, by what we have shown for the H;’s, there exists p and z such that Hi(T)(EZ-(l))p =
(Ev(l))"z. Using this property, we get the desired result by mutiplying both sides of (4.8) on

K2

the right by (E)P. O

Therefore, it makes sense to talk about YM[(Ei(l))*l}. Given any splitting p = v1 + v2, we
have a filtration F,, ,, on Y,. Now, following [S| 12.3], we can put a filtration on Y#[(Egl))’l]
as follows. Since Y, is a domain (by PBW theorem), given z € Y),,s € S = {(Efl))" :n € N},
we specify the degree deg(zs) = deg(z) — deg(s).

Proposition 4.1.0.6. grY,,[(E")~1] ~ C[®;(C¥)].
Proof. This is a special case of a general statement on localization of filtered rings (see [LR]
11,3.2], [S, Prop. 12.5]). O

Recall from the introduction that the algebra Ygai is generated by elements Az(-l), (Elv(l))jEl
with the relation [Ei(l), Agl)} = Ei(l).

Proposition 4.1.0.7. There exists a map A : Yu[(Ei(l))*l] — Y%, ®Y,iq,.

Proof. Consider A :Y, — Y%, ®Y,1q,. We see that A(El(l)) = El(l) ® 1. Since Efl) is

invertible in Y?°

2, A exists by universal property of localization. O

4.2 Lifting the isomorphism

We discuss our attempt at lifting the isomorphism of Theorem [3.2.2.6] to the Yangian level.
The crux of our approach involves filtrations of Y),.

Recall that, for coweights 11,5 such that u = vy + vy, there exists a filtration F,, ,,Y),
(@) — (q) _ (p) _ .
degEa - <1/17a>+Q7 degF5 - <V2aﬁ>+Qa deng - <M,O[Z>+p

Lemma 4.2.0.1. Consider the filtrations F, ;,—,Y,, Fl,,,oéi,l,Y0

O s FastvpmvYuta,. Then A
YH[(Ei(l))fl] — YO, ®Y, q, respect these filtrations

Proof. This follows from Proposition [2.4.0.3] O
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We would like to use the following lemma.

Lemma 4.2.0.2. Let ¢ : A — B be a map of Z-filtered algebras with increasing filtrations. As-
sume that all involved filtrations are exhaustive, i.e., A =], A and B = J,, B,. Additionally,
assume that the filtration on A is separated, i.e., (), An = {0}. Denote by gr¢: grA — gr B

the induced map on the associated graded level.
(1) If gr ¢ is injective, so is ¢.
(2) Suppose that A, = {0} for alln < 0. If gr ¢ is surjective, so is ¢.

Proof. (1) Assume that gr ¢ is surjective. Suppose that ¢(a) = 0. Assume that a # 0. Since
N, An = {0}, there exists d such that a € Ay, and a ¢ Ag_,. Fora € Ag/Aq_1, since ¢(a) =0,
gro(a) = ¢(a) = 0. Since gr ¢ is injective, @ = 0. This means that a € Ag_;, a contradiction.
Hence, a = 0.

(2) Assume that A, = {0} for all n < 0. We prove by induction on d that ¢ : Ay — By
is surjective. Suppose that b € By. Since gr ¢ is surjective, there exists € gr(A) such that
(gr¢)(z) = b. Since gr¢ is a map of graded spaces and b € By, z lies in the graded piece of
degree 0, which is Ag.

Suppose the result holds for all b € By. Suppose that b € Byyi. There exists a + Ag €
Agy1/Aq such that m = b. Thus, ¢(a) — b € By, i.e., ¢(a) — b = by for some by € By. By
induction hypothesis, there exists aq € A4 such that by = ¢(ay). Therefore, b = ¢(a — aq). O

Remark 4.2.0.3. By Theorem [3.2.2.6, the previous lemma shows that Ais injective.

The obstacle for surjectivity of A is that filtrations for Y,, are not bounded below in general.
However, if one can find v (in the context of Lemma [4.2.0.1)) such that all of the involved
filtrations are non-negative, then we can lift the isomorphism of Theorem [3.2.2.6|to the Yangian

level. This leads us to the next result.

Lemma 4.2.0.4. Suppose that there exists a coweight v such that
(i) (v+w;a;) =0,
(i) for all positive roots 8, (v,8) > —1,

(iii) for all positive roots B, (u—v,B) > —1,

Then, the filtrations F, ,,_,Y,,, F,,y,ai,,,YBai,Faﬁy’ﬂ,yY#Jrai are non-negative. Moreover, Ei(l)

has filtered degree zero.

Proof. We inspect the degrees of Hj(-r)7 E[(;), Flgr) in these algebras. In the case of F, ;,_,Y),

deg(H\") = (p, o) + 1> (u,a5) — (uaz) +1> 1,

deg(Eg)) =By +r>r—-1>0,
deg(Flgr)) =(u—v,B)+r>r—1>0.
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In the case of Y°,_ , since Agl), (Ei(l))jEl generate the algebra, it is enough to look at the

—a?

case 0 = q;.

M= ,a) +1=(—w;+v,0:) +1=—-1+1=0,
deg(A[") = deg(H]") = (~ai,ai) + 3 = 1.

In the case of Y, 1q,, we have that

deg(H\") = (u+ s, o) +7 > (u+ s a5) — (p+ aga;) + 1> 1,
deg(FlgT)) ={u—v,f)+r>r—12>0,
deg(EY)) = (i + v, B) + 1 = (si(v), B) + 7 = (v, 5(8)) +.

If 8 = «, then (v, s;(5)) = —1. If § # «, then s;(B) is a positive root not equal to «;, and so

(v,5:(8)) > —1. Thus, deg(Eg)) > 0. ]
Remark 4.2.0.5. Suppose that p is dominant, we see that v = —w; satisfies the conditions of

the previous lemma. So, corresponding filtrations are non-negative.

Proposition 4.2.0.6. If the conditions of Lemma |4.2.0.4| hold, then A : YM[(Efl))’l] —

YO, ®@Y,qq, is an isomorphism.
Now, we can push the argument a little further with the following lemma.
Lemma 4.2.0.7. For a dominant coweight n, the following diagram is commutative.

0
Yipn —————>Y_,, ®Yiinta,
L/Hrn,O,nl \le ®tlptnta;,0,—n

Y, — Yfai ® Yita;

Proof. This is a consequence of Theorem [2.3.3.1 O

One can always choose a sufficiently dominant 7 such that the conditions of Lemma [.2.0.4]

hold for p + n and some v. Thus, we have the following corollary.
Corollary 4.2.0.8. The image of A : Y#[(Ei(l))*l] — YO, ®Y,iq, contains the subalgebra
- k
YBM ® <EéT),HJ(S),FB( Vir>1,5> —(p+ a4, aj),s > Ng),
where Ng is a sufficiently large positive integer.

Proof. Let us choose n such that u + n is dominant. By Remark with v = —w;, the

filtrations

0
Fu,u-&-n—va FVa_OCi_VY—Oti ) Fa¢+v7u+n—vyu+n+ar
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are non-negative. Consider the commutative diagram

0
Yty —————>Y20, @ Yurntas

LLHrn,U,nl lld@bﬂ+"+<"ivo~n

By Proposition {.2.0.6 the top arrow is an isomorphism. The result follows from inspecting
the image of the map Id ®ty4y+a,,0,—n- O

Proposition 4.2.0.9. Let g = sly. For any coweight p, A : YM[(EZ-(U)A] — Y%, @Yt is

an isomorphism.

Proof. If p > —a, then taking v = —w, we see that the conditions of Lemmal4.2.0.4] are satisfied,

and we are done. Consider the case where yp < —a. Set n = —a — p. Consider the commutative
diagram
Y., Y0 @Yy
Loc,(J,nl lld@Lo’O'_n
Y# Yga ® YMJra

Since —a is antidominant, we have an explicit description of Y_, — Y%, ®Y; on Levendorskii
generators. For 1 <r < —(u+ a,a), A(F") =1® F"). Since LO,O,—a—,u,(F(S)) — s+ {ptaa)
for s > 1. So, 1 ® F(") lies in the image of A Y, — Yo, @ Y, o forallr>1. O

Conjecture 4.2.0.10. For all g and for any coweight u of g, A Y, — Ygai ® Yita; 95 an

isomorphism.
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