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In 1961, FitzHugh [19] suggested a model to explain the basic properties of excitabil-

ity, namely the ability to respond to stimuli, as exhibited by the more complex Hodgkin-

Huxley equations [24]. The following year Nagumo et al. [42] introduced another version

based on FitzHugh’s model. This is the model we consider in the thesis. It is called

the FitzHugh-Nagumo model and describes the propagation of electrical signals in nerve

axons. Many features of the system have been studied in great detail in the case where

an axon is modelled as a one-dimensional object. Here we consider a more realistic ge-

ometric structure: the axons are modelled as warped cylinders and pulses propagate on

their surface, as it happens in nature.

The main results in this thesis are the stability of pulses for standard cylinders of small

constant radius, and existence and stability of near-pulse solutions for warped cylinders

whose radii are small and vary slowly along their lengths. On the standard cylinder, we

write a solution near a pulse as the superposition of a modulated pulse with a fluctuation

and prove that the fluctuation decreases exponentially over time as the solution converges

to a nearby translation of the pulse. On warped cylinders, we write a solution near a

pulse in the same way as in standard cylinders and prove bounds on the fluctuation of

near-pulse solutions.
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Most of the parts of Chapters 3 and 4 appear in [47]. This joint work with Almut
Burchard and Israel Michael Sigal has been submitted for publication, and the preprint
is available on the arxiv.
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Chapter 1

Introduction

1.1 The problem

The FitzHugh-Nagumo system [19, 42], modelling the propagation of electrical impulses
in nerve axons, is a simplified version of the Hodgkin-Huxley system [24] and is given by

∂tu1 = ∂2
xu1 + f(u1)− u2

∂tu2 = ε(u1 − γu2) .
(1.1.1)

Here, u1 and u2 are real-valued functions that depend on x ∈ R and t ≥ 0. The
parameters ε and γ are chosen to be positive and small and the reaction term f is given
by the cubic polynomial

f(u1) := −u1(u1 − α)(u1 − 1), (1.1.2)

for 0 < α < 1
2
. In this case, a nerve axon is represented by a straight line without an

internal geometric structure. The two components, u1 and u2, are evolve in two different
time scales. The first component is called the excitation variable and represents the
electrical potential across the axonal membrane. The second is called the recovery
variable and represents the current that passes through slowly adapting ion channels.
We discuss in more detail the biophysical background of the FitzHugh-Nagumo equations
in Section 1.3.

In this thesis, we take a further step in taking into account the geometry of the axon,
namely, a cylindrical cable-like fiber, with electrical signals propagating on its surface.
Thus we consider an extension of the FitzHugh-Nagumo (FHN) system on a cylindrical
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Chapter 1. Introduction 2

surface, S. The system has the form

∂tu1 = ∆Su1 + f(u1)− u2 ,

∂tu2 = ε(u1 − γu2) ,
(1.1.3)

where ∆S denotes the Laplace-Beltrami operator on the surface S and ε, γ and f are
the same as above. Taking formally S = R in Eq. (1.1.3) gives Eq. (1.1.1).

A solution to Eq. (1.1.1) which is a function of a single variable, z = x−ct, c > 0, and
vanishes at infinity is called a pulse. One of the first results on the existence of pulses
is due to Hastings [21], who showed that when S is the real line, 0 < α < 1

2
and ε, γ are

positive and sufficiently small, Eq. (1.1.1) has a pulse solution, whose speed depends on
the parameters α and ε. The pulse is obtained as a homoclinic orbit in a related system
of ordinary differential equations. We explain further the proof of the existence of the
pulse in Subsection 2.1.1.

It turns out that when ε > 0 is sufficiently small, Eq. (1.1.1) has at least two dif-
ferent pulse solutions, the fast pulse studied by Hastings, which travels with speed
cf (ε) =

√
2
2
(1 − 2α) + o(ε), and a slow pulse that travels with speed cs(ε) = O(

√
ε).

The existence of pulses has been studied by numerous authors. See, for example, the
papers by Carpenter [3], Hastings [21, 22], Langer [36], Evans [17], Krupa, Sandstede
and Szmolyan [35], Jones, Kopell and Langer [31], Arioli and Koch [1]. Langer [36]
also proved uniqueness of the fast pulse. Jones [30], and independently, Yanagida [49],
proved that the fast pulse is stable. In addition, fast pulses with oscillatory tails exist
and are stable (Carter and Sandstede [5], Carter, de Rijk and Sandstede [4]). On the
other hand, the slow pulse is always unstable (Flores [20], Evans [17], Ikeda, Mimura and
Tsujikawa [29]).

Existence and stability for fast pulses have been studied for variants of Eq. (1.1.1),
where the second equation also has a diffusion term (Cornwell and Jones [9], Chen and
Choi [6], Chen and Hu [7]). Another system that admits stable fast pulses is the discrete
analogue of Eq. (1.1.1) (Hupkes and Sandstede [27], Schouten-Straatman and Hupkes [45],
Hupkes, Morelli, Schouten-Straatman and Van Vleck [25]).

There are a few results in higher dimensions. In R2, Mikhailov and Krinskii [38] and
Keener [33] studied spiral solutions of Eq. (1.1.1). In n-dimensions, for n ≥ 2, Tsujikawa,
Nagai, Mimura, Kobayashi and Ikeda [48] proved that there exist fast pulse solutions
propagating in a one-dimensional direction. Such solutions are stable.

In this thesis we study solutions of the FHNcyl system, Eq. (1.1.3), on infinitely long,
thin cylindrical surfaces. For S a standard cylinder, the pulse solutions to Eq. (1.1.1)
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are also (angle-independent) solutions to Eq. (1.1.3) and we continue to call them the
pulses. We show that

1. on a cylinder of small constant radius, the (fast) pulses are stable under general
perturbations of the initial condition that depend on both spatial variables;

2. on a warped cylinder whose radius is small and varies slowly along its length,
solutions that are initially close to a pulse stay near the family of pulses for all
time.

In nature, there exist neurons of different types and shapes. There are also diseases
that harm healthy neurons, by damaging their axons, making them unfunctional. Our
extension of Eq. (1.1.1), namely Eq. (1.1.3), is more geometrical rather than biophysical.
By adding the appropriate diffusion coefficients in Eq. (1.1.3), the system becomes more
realistic since the second order elliptic operator describes the surface of evolution instead
of the Laplacian ∆S . The techniques we use could be modified to address such diffusion.
We also expect that our approach to the problem can be used for different equations
which provide more qualitative features than the FHN system.

1.2 The main results

In this thesis we consider Eq. (1.1.3) on a surface S of a cylinder. Let S1 denote the unit
ball. Define the standard cylinder of constant radius R centered about the x-axis in R3

as

SR :=
{
x ∈ R, θ ∈ S1

∣∣ (x,R cos θ,R sin θ)
}
. (1.2.1)

The Laplacian on this surface is defined by

∆SR
= ∂2

x +R−2∂2
θ (1.2.2)

and the Riemannian area element is Rdθdx. For S = SR, Eq. (1.1.3) is invariant under
translations. This means that if u(x, θ, t) := (u1, u2)(x, θ, t) is a solution, then so is

uh(x, θ, t) := u(x− h, θ, t), h ∈ R. (1.2.3)

Each pulse Φ on S = R defines a smooth axisymmetric traveling wave solution
u(x, θ, t) = Φ(x − ct) of Eq. (1.1.3) on SR. Its speed c is determined by the parame-
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ters α, γ, and ε. It is a consequence of translation invariance that all translates Φh of Φ
are pulses of the same speed c.

Our first result concerns the stability of M ⊂ H2,1, where H2,1 is the mixed Sobolev
space defined by

H2,1(SR) := {u ∈ L2(SR) | ∆SR
u1 ∈ L2(SR), u2 ∈ L2(SR)} (1.2.4)

We prove that solutions that are initially close to Φ converge to nearby translates of Φ
as t → ∞:

Theorem 1.2.1 (Stability of pulses, standard cylinder). Consider Eq. (1.1.3) on the
cylinder SR of constant radius R ≤ 1. Fix α ∈ (0, 1

2
), ε > 0, and γ > 0 such that the

equation has a fast pulse solution Φ(x − ct). If ε is sufficiently small, then there is a
neighborhood U of Φ in H2,1 such that for every u0 ∈ U , the mild solution u(t) with initial
value u

∣∣
t=0

= u0 exists globally in time and satisfies

‖u(t)− Φct+h∗‖2,1 ≤ C1e
−ξt‖u0 − Φ‖2,1 (t ≥ 0) (1.2.5)

for some ξ > 0 and h∗ ∈ R (determined by u0) with

|h∗| ≤ C2‖u0 − Φ‖2,1 .

Here, C1 and C2 are positive constants.

Theorem 1.2.1 will be proved in Section 3.3. We show that the conclusion will be estab-
lished for any decay rate ξ < min{α, β, εγ}, where β is the exponent from Lemma 3.2.9.

The translates of Φ form a one-dimensional manifold of pulses

M := {Φh | h ∈ R} . (1.2.6)

Denote by dist (v,M) := infh ‖v−Φh‖2,1 the distance of v ∈ H2,1 from the manifold. By
translation invariance, the conclusion of Theorem 1.2.1 yields a tubular neighborhood
W = {w ∈ H2,1 | dist (w,M) < η} such that

dist (u(t),M) ≤ C1e
−ξtdist (u0,M)

for all mild solutions with initial values in M. As t → ∞, each solution converges to a
particular traveling pulse Φ(x− ct− h∗).

Turning to warped cylinders we define them as graphs over the standard one deter-
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mined by a positive function ρ(x):

Sρ :=
{
x ∈ R, θ ∈ S1

∣∣ (x, ρ(x) cos θ, ρ(x) sin θ)} . (1.2.7)

On Sρ, the Laplace-Beltrami operator is given by

∆Sρ :=
1√
g(x)

∂x

(
ρ(x)√

1 + ρ′(x)2
∂x

)
+ ρ−2(x)∂2

θ , (1.2.8)

with g(x) := ρ(x)2(1 + ρ′(x)2).
When ρ is non-constant, Eq. (1.1.3) has no pulse solutions. Our second result is

that pulse-like solutions persist, if ρ is sufficiently close to a constant. These pulse-like
solutions remain close to the manifold M, while moving along M over time. For a
function v ∈ H2,1, denote the distance from the manifold of pulses by

dist (v,M) := inf
h∈R

‖v − Φh‖2,1.

Theorem 1.2.2 (Near-pulse solutions, warped cylinder). Consider the FHN system on a
cylinder Sρ of variable radius, as in Eq. (1.2.7), and let α, ε and γ be as in Theorem 1.2.1.
There are a constant δ∗ > 0 and a tubular neighborhood W of M in H2,1, with the
following properties: If R ≤ 1 and δ := R−1‖ρ− R‖C2 ≤ δ∗, then for every u0 ∈ W, the
unique mild solution u(t) with initial value u

∣∣
t=0

= u0 exists globally in time, and satisfies

dist (u(t),M) ≤ C1e
−ξtdist (u0,M) + C2δ , (t ≥ 0) (1.2.9)

for some positive constants C1, C2, and ξ.

1.3 Biological interpretation of the model
In this section we give a basic introduction to neural communication and discuss the
origin of the FitzHugh-Nagumo system. The discussion is based on the books of Keener
and Sneyd [34] and Murray [40, 41]. For further details we refer the reader to the books
of Scott [46], Müller and Kuttler [39], and Ermetrout and Terman [13].

A typical neuron consists of three principal parts: the dendrites, the soma, and
the axon. Dendrites are the input stage of a neuron and receive synaptic input form
other neurons. The soma contains the necessary cellular machinery such as nucleous and
mitochondria. The axon is a long thin cylindrical tube which extends from the soma
and electrical signals propagate along its outer membrane. At the end of the axon are
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synapses, which are cellular junctions specialized for transmission of signals. Therefore, a
single neuron may receive input along its dendrites from a large number of other neurons,
and may similarly transmit a signal along its axon to other neurons.

The classical work by Hodgkin and Huxley [24] on the propagation of electrical signals
on nerve membranes was on the nerve axon of the giant squid. They received the 1963
Nobel Prize in Physiology or Medicine for this work. The electrical pulses arise because
the membrane is preferentially permeable to various chemical ions with permeabilities
affected by the currents and potentials present. The key elements in the system are
potassium (K+) ions and sodium (Na+) ions. In the rest state there is a transmembrane
potential difference of about −70mV due to the higher concentration of K+ ions within
the axon as compared with the surrounding medium. The membrane permeability prop-
erties change when subjected to a stimulating electrical current, I. Such a current can
be generated, for example, by a local depolarisation relative to the rest state.

Next we derive the Hodgkin-Huxley model [24] and the reduced analytically tractable
FitzHugh-Nagumo model [19, 42] which captures the key phenomena. Assume the posi-
tive direction for the membrane current, I, is outwards from the axon. The current I(t)

is made up of the current due to the individual ions which pass through the membrane
and the contribution from the time variation in the transmembrane potential, that is,
the membrane capacitance contribution. Thus we have

I(t) = C
dV

dt
+ Ii , (1.3.1)

where C is the capacitance and Ii is the current contribution from the ion movement
across the membrane. Based on experimental observations Hodgkin and Huxley [24]
took

Ii = INa + IK + IL

= gNam
3h(V − VNa) + gKn

4(V − VK) + gL(V − VL) ,

where V denotes the potential and INa, IK and IL denote respectively the sodium, potas-
sium and “leakage” currents; IL is the contribution from all the other ions which con-
tribute constant equilibrium potentials. The m, n and h are variables, bounded by 0 and
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1, which are determined by the following differential equations

dm

dt
= αm(V )(1−m)− βm(V )m

dn

dt
= αn(V )(1− n)− βn(V )n

dh

dt
= αh(V )(1− h)− βh(V )h ,

(1.3.2)

where the α∗ and β∗ are given functions of the potential V . More specifically, αn and
αm are behave like (1 + tanh(V ))/2 while αh is behave like (1− tanh(V ))/2. The values
empirically determined by fitting the results to the data. For the explicit representations
of the functions α∗ and β∗ we refer the interesting reader to Chapter 5 of [34].

Imposing an applying current Iapp(t), Eq. (1.3.1) becomes

C
dV

dt
= −gNam

3h(V − VNa)− gKn
4(V − VK)− gL(V − VL) + Iapp . (1.3.3)

To summarize, the Hodgin-Huxley system consists of the four ordinary differential equa-
tions given by Eqs. (1.3.3) and (1.3.2).

Setting Iapp = 0, the rest state of the Hodgkin-Huxley system is linearly stable but
is excitable. This means that, if the perturbation from the steady state is sufficiently
large there is a large excursion of the variables in their phase space before returning to
the steady state. On the other hand, if Iapp 6= 0 there is a range of values where regular
repetitive firing occurs; that is, the mechanism displays limit cycle characteristics. Both
types have been observed experimentally. Because of the complexity of the Hodgkin-
Huxley system (1.3.2)-(1.3.3) various simpler mathematical models, which capture the
key features of the full system, have been proposed, the best known is the FitzHugh-
Nagumo system [19, 42], which we now derive.

In Eq. (1.3.2) the time scale for m is much faster than n and h, so it is reasonable
to assume that m is sufficiently fast that it relaxes immediately to its value determined
by setting dm

dt
= 0 in Eq. (1.3.2). If we also set h = h0, where h0 is a constant, the

system still retains many of the features experimentally observed. The resulting model is
a system of two equations that can be qualitatively approximated by the dimensionless
system

du1

dt
= f(u1)− u2 + Iapp

du2

dt
= ε(u1 − γu2) ,

(1.3.4)
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where f(u1) = −u1(u1 − α)(u1 − 1), 0 < α < 1
2

(same as in Eq. (1.1.2)), and ε, γ are
positive constants. In this system, u1 is like the membrane potential V , and u2 plays the
role of all three variables m, n and h in Eq. (1.3.2).

For Iapp = 0, Eq. (1.3.4) is the system FitzHugh [19] originally considered. This
system is a two-variable phase plane system. The excitability characteristic, discussed
above for the Hodgkin-Huxley system. For example, a perturbation from 0 to a point on
the u1-axis with u1 > α, undergoes a large phase trajectory excursion before returning
to 0.

A couple of years later, Nagumo et al [42] introduced another version based on
FitzHugh’s model, a reaction-diffusion partial differential equation given by Eq. (1.1.1).
With the diffusion term added, the system admits traveling waves along the axon, that
depend on space x and time t.

1.4 Organization of the thesis
We will use the classical semigroup theory and known spectral results to prove the above
two theorems. We now describe the structure of the thesis and state the basic assumptions
regarding the parameters of the FHN system.

Chapter 2 is a review of existing results about the existence and stability of pulses
of the FHN system. We include results on the real line (Section 2.1) as well as in higher
dimensions (Section 2.2). In Section 2.3 we give a motivation of our work and a more
concrete outline of the proofs of the main results.

Chapter 3 starts with the local well-posedness of Eq. (1.1.3) on the surface of SR. The
remaining sections of that chapter are devoted to the stability result of Theorem 1.2.1.
Specifically, in Section 3.2 we develop linear semigroup estimates and in Section 3.3
we prove the nonlinear stability. In Section 3.4 we include numerical simulations to
complement our theoretical results.

In Chapter 4 we show that pulse-like solutions persist on the surface of warped cylin-
ders Sρ of slowly varying radius, and remain close to the manifold M. The key ingredient
is a perturbation result of the linearization, which we prove in Section 4.2. In Section 4.3
we complete the proof of Theorem 1.2.2, and in Section 4.4 we develop numerical simu-
lations to illustrate the result of this theorem.

We assume that the parameters ε and γ are positive and small enough that the FHN
system (1.1.3) admits a fast pulse solution, Φ. Furthermore, we assume that ε is small
enough so that the spectral results of Jones [30] and Yanagida [49] apply. For the warped
cylinders Sρ we assume that the function ρ is of class C2, and is also positive, bounded,
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and bounded away from zero.
In our estimates, we will denote by either M or C any positive constant whose value,

which may change from line to line, is dependent of any fixed parameter α, γ, or ε of
Eq. (1.1.3). We frequently use the notation . and & for the respective inequalities up
to such constants. Dependence on any other parameters, including R, ρ and u0 will be
made explicit.



Chapter 2

Background of the
FitzHugh-Nagumo equations

2.1 The real line

The system of reaction-diffusion equations in Eq.(1.1.1) is the FitzHugh-Nagumo system
defined in one spatial dimension. We have mentioned at the beginning of Section 1.2 that
the pulse Φ is a stationary solution to Eq. (1.1.1). It is a function of the single variable,
z = x− ct, where c > 0 denotes its speed, and it vanishes for large values of z. In other
words, the pair of solutions (ϕ1(z), ϕ2(z)) satisfies the system

−c∂zϕ1 = ∂2
zϕ1 + f(ϕ1)− ϕ2

−c∂zϕ2 = ε(ϕ1 − γϕ2) ,
(2.1.1)

and (ϕ1(z), ϕ2(z)) → (0, 0) as z → ±∞. In Subsection 2.1.1 we briefly describe Langer’s
approach [36] about the existence of the pulse. The proof is based on the geometric sin-
gular perturbation theory [18]. Langer was not the first who proved existence of solutions
to Eq. (1.1.1). Earlier existence results are coming from Carpenter [3], Hastings [21], and
Conley [8] where the authors used topological and fixed point arguments. The advantage
is that Langer’s proof answered the question of uniqueness of the pulse for fixed ε.

Jones [30] and, independently, Yanagida [49] studied the stability of pulse solutions of
Eq. (1.1.1). Both proofs are based on the Evans function. In Subsection 2.1.2 we sketch
the proof of Yanagida’s paper [49] as it is more elementary and easy to follow.

10
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2.1.1 Existence and uniqueness of pulses

We begin with the sketch of the proof of existence proposed by Langer [36]. Rewrite
Eq. (2.1.1) as a system of three ordinary differential equations

∂zu1 = u3

∂zu2 = −ε

c
(u1 − γu3)

∂zu3 = −cu3 − f(u1) + u2 .

(2.1.2)

In the (u1, u2, u3) phase plane the above system has a critical point at the origin (0, 0, 0).
Langer constructed a pulse as a homoclinic orbit to the origin. A pulse is said to be
homoclinic if

lim
z→−∞

(u1(z), u2(z), u3(z)) = lim
z→+∞

(u1(z), u2(z), u3(z)) .

In Langer’s proof this homoclinic orbit is constructed as ε → 0. Reducing the number
of differential equations to two in Eq. (2.1.2), by taking ε = 0 (the second equation
degenerates to u2 = const.), we observe that there exist wmin < 0 and wmax > 0, such
that if wmin < w < wmax then the system

∂zu1 = u3

∂zu3 = −cu3 − f(u1) + u2

(2.1.3)

has three critical points. One critical point is the origin (0, 0, 0), another is at (1, 0, 0)

and the third is between those two. Take u2 = 0 in Eq. (2.1.3). Then there exists a
nonzero constant cf for which there is a heteroclinic orbit joining the origin (0, 0, 0) to
the critical point (1, 0, 0). We denote this heteroclinic orbit by J+. Similarly, for the
same constant cf there is a u∗

2 for which a heteroclinic orbit exists to Eq. (2.1.3) joining
the critical point (1, 0, 0) to the origin (0, 0, 0). This orbit is denoted by J−.

Setting u3 = 0, the second equation in (2.1.3) becomes

u2 = f(u1) . (2.1.4)

For u2 ∈ [0, u∗
2] and u1 being the largest root of Eq. (2.1.4) there exists an orbit denoted

by E∗
r . For u2 ∈ [0, u∗

2] and u1 being the smallest root of u2 = f(u1) there exists another
orbit denoted by E∗

l . Therefore, the orbit in R3 is given by the union of the four pieces
constructed above, i.e., by J+ ∪ E∗

r ∪ J− ∪ E∗
l . The orbit is singular as for ε → 0 the u2

equation degenerates.
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Langer’s existence result states that, given any neighborhood N of the singular orbit,
there is an ε0 so that there exists a solution to Eq. (2.1.2) for some c = c(ε), with
0 < ε < ε0, which is homoclinic to the origin (0, 0, 0) and lies entirely in the neighborhood
N . The wavespeed c(ε) converges to cf as ε → 0. Moreover, if the neighborhood N is
small enough, the solution is unique for each ε.

This type of geometric singular perturbation method has been further developed by
many authors [4, 5, 9, 10, 25, 26, 27].

2.1.2 Stability of pulses

Consider the space of bounded continuous functions. For the change of variables z =

x− ct, the linearization of Eq. (1.1.1) around the pulse Φ(z) = (ϕ1(z), ϕ2(z)) is given by

L =

(
∂2
z + c∂z + f ′(ϕ1(z)) −1

ε c∂z − εγ

)
. (2.1.5)

The domain of L is the space of bounded continuous functions. Yanagida [49] proved
that there exists a positive constant β such that

specdisc(L) ∩ {λ ∈ C | Re λ ≥ −β} = {0}. (2.1.6)

Moreover, the eigenvalue λ = 0 is simple. This implies linear stability. The nonlinear
stability follows directly by a result in Evans [14].

Let λ ∈ C, u ∈ (u1, u2) and L be the linear operator of Eq. (2.1.5). Consider the
eigenvalue problem

λu = Lu . (2.1.7)

By definition a number λ ∈ C is an eigenvalue of Eq. (2.1.7) if there is a nontrivial
solution to this equation satisfying

sup
z∈R

|u1(z)| < ∞

sup
z∈R

|u2(z)| < ∞ .

To solve the eigenvalue problem (2.1.7) Yanagida split the complex plane C into three
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subdomains. Assume 0 < r1 < r2 are constants that do not depend on ε. Then, define

S1 := {λ ∈ C | |λ| < r1, Re λ ≥ −β}

S2 := {λ ∈ C | |λ| > r2, Re λ ≥ −β}

S3 := {λ ∈ C | r1 ≤ |λ| ≤ r2, Re λ ≥ −β} .

(2.1.8)

Eq. (2.1.6) is verified by showing that there are no eigenvalues of Eq. (2.1.7) in the
set S2 ∪S3, and that λ = 0 is the unique eigenvalue in the subdomain S1. The main tool
used here is the Evans function, E(λ; ε) (Lemma 5.1, [49]). Yanagida constructed the
Evans function, E(λ; ε), with the following properties (Lemma 4.3, [49]):

1. it is a complex analytic function of λ, and is real-valued for real λ

2. for λ = 0, E(0; ε) = 0

3. for λ = 0, d
dλ
E(0; ε) > 0.

Specifically the author proved that there exist no eigenvalues in S2, if r2 is sufficiently
large. Similarly, no eigenvalues exist in S1 ∪ S3 \ {0}. The fact that λ = 0 is a simple
eigenvalue in S1 follows by showing that the equation

∂zΦ = Lu

has no bounded solutions as z → ±∞ (Section 5, [49]).

2.2 Higher-dimensional domains

In n-dimensions, an extension of the FHN system is given by the differential equations
in (1.1.3) with

∆S :=
n∑

j=1

∂2
xj

(2.2.1)

for n ≥ 2. Tsujikawa, Nagai, Mimura, Kobayashi and Ikeda [48] proved that, under small
perturbations, there exist fast pulse solutions propagating in a one-dimensional direction.
In addition, the authors showed numerically that under larger perturbations the pulse is
unstable and demonstrated how spiral waves can evolve. In the following subsection we
explain the method they used to prove stability of the pulse.
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2.2.1 Stability of pulses

Consider the FHN system (1.1.3), with ∆S given by Eq. (2.2.1), and assume that u1, u2

satisfy periodic boundary conditions. Let Sn be the strip defined as

Sn := {x = (x1, . . . , xn) ∈ Rn | x1 ∈ R, xj ∈ (−lj, lj), j = 2, . . . , n} .

The pulse traveling with wavespeed c = cf in the x1-direction is defined as

(ϕ1(x, t), ϕ2(x, t)) = (ϕ1(x1 + cf t), ϕ2(x1 + cf t)) ,

and is uniformly in the directions x2, . . . , xn. As in the one-dimensional case the pulse
satisfies the property

(ϕ1(±∞, x2, . . . , xn, t), ϕ2(±∞, x2, . . . , xn, t)) = (0, 0) .

Tsujikawa et. al. [48] studied the stability of such a pulse in Sn. They derived a general
theorem for semilinear evolution equations and they applied this theorem to the given
FHN system. In what follows we briefly discuss their theorem.

Let X be a Banach space, T > 0 be a fixed time and u : [0, T ] → X. Consider a
semilinear evolution equation of the form

∂tu = Lu+N(u) (2.2.2)

for t ∈ [0, T ], with initial condition

u|t=0 = u0 .

The operator L is the infinitesimal generator of a strongly continuous semigroup etL on
the space X and N ∈ C1(X;X) is the nonlinearity. It is assumed that the flow is locally
well-posed in X. This means that for each initial value u0 ∈ X there is a time T > 0 for
which there exists a unique solution u(t) ∈ X of the initial value problem for t ∈ [0, T ].
This solution satisfies the integral equation

u(t) = etLu0 +

∫ t

0

e(t−s)LN(u(s)) ds (2.2.3)

for t ∈ [0, T ].

To obtain stability of the pulse to perturbations of initial data, the following assump-
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tions regarding the linear operator L are required. Rewrite L as

L = L0 +K

such that L0 is the infinitesimal generator of a strongly continuous semigroup etL0 on the
Banach space X satisfying Dom(L0) = Dom(L), and K : X → X is a bounded linear
operator. The assumptions about L are stated next:

1. The operator K(λ− L0)
−1 : X → X is compact for some λ in the resolvent set of

L0.

2. (a) Denote by ‖·‖X the norm in the Banach space X. There are positive constants
ω and C such that

‖etL0‖X ≤ Ce−ωt (2.2.4)

for all t > 0.

(b) Moreover, KetL0 ∈ C((0,∞); B(X)), where B(X) denotes the space of bounded
linear operators form X to X.

3. (a) The eigenvalue at 0 is an isolated eigenvalue of L and the nullspace of L has
a basis

∂h1Φ, . . . , ∂hnΦ .

Here, Φ = Φ(h) with h = h1, . . . , hn.

(b) Let Null(L) denote the nullspace of L and Ran (L) denote the range of L.
Then Ran (L) ∩ Null(L) = {0} .

4. There exists a constant ω1 ∈ (0, ω) such that the set

{λ ∈ C | Re λ ≥ −ω1} \ {0}

is contained in the resolvent set of L.

For the nonlinearity, N , assume that

N ′(Φ(0)) = 0 , (2.2.5)

where ′ denotes the derivative of N . The theorem is stated next:

Theorem 2.2.1 (Tsujikawa et al. [48]). Consider the linear problem (2.2.2) and suppose
that the linearization L satisfies the assumptions (1) − (4). Then there exist constants
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a > 0, b > 0 and M > 0 such that for any u0 ∈ X with ‖u0−Φ(0)‖X ≤ b there is h ∈ Rn

with |h| ≤ M‖u0 − Φ(0)‖X satisfying

‖u(t)− Φ(h)‖X ≤ Me−at‖u0 − Φ(0)‖X (2.2.6)

for t > 0, where u is a unique global solution of Eq. (2.2.2).

Theorem 2.2.1 is an abstract version of the result in Evans [14, 16] for a more general
class of systems including Eq. (1.1.1). The proof of Theorem 2.2.1 is given in Section 4
of [48]. Here we briefly discuss the assumptions of the theorem.

Assumption 2(a) implies that

{λ ∈ C | Re λ > −ω}

is contained in the resolvent set of L0. Moreover, it gives estimates on the resolvent
operator of L0. Specifically, there is a constant C > 0 such that for λ ∈ C with Re λ > −ω

and n = 1, 2, . . .,
‖(λ− L0)

−n‖X ≤ C

(Reλ+ ω)n
.

Assumptions 3 and 4 imply that L is a Fredholm operator with index zero and the
nullspace of L has algebraic and geometric multiplicity n. The assumption on the non-
linearity, Eq. (2.2.5), implies that

N(u)−N(Φ) = o(‖u− Φ‖X) . (2.2.7)

Consider the special case where the Banach space is a Hilbert space, denoted by H,
with norm ‖ · ‖H . The above assumptions (1)-(4) about the linearization L appear to
be the same with those in Theorem 4.3.5 of [32]. However, the assumption about the
nonlinearity is different. In Theorem 4.3.5 of [32] the nonlinearity N is assumed to be
quadratic in ‖ · ‖H near zero, in other words there exist a positive constant M such that

‖N(u)‖H ≤ M‖u‖2H . (2.2.8)

Eq. (2.2.8) is stronger than Eq. (2.2.7).
Our proof of Theorem 1.2.1 could be slightly shortened by appealing to the general

Theorem 4.3.5 of [32]. However, we provide a self-contained proof which uses well-known
results from the linear semigroup theory as well as a spectral result of [30] and [49]. The
sketch of the proof of Theorem 1.2.1 and that of Theorem 1.2.2 is discussed in the next
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subsection.

2.3 Thin cylindrical surfaces

Although Eq. (1.1.3) with ∆S given by Eq. (2.2.1) is of a great interest from the math-
ematical point of view, it has no biological meaning. As mentioned in Section 1.3, the
motivation of the FHN system was to isolate the mathematical properties of excitation
from the electrochemical properties of K+ and Na+ ion flow in nerve axons. But a nerve
axon has roughly the shape of a long thin cylinder. Therefore, it comes naturally to
study the FHN equations on cylindrical surfaces. We will consider two different cases:
the case of a standard cylinder SR, and that of warped cylinders Sρ.

In the next subsection we briefly describe our results, namely Theorems 1.2.1 and
1.2.2, and we give some key features of the proofs of these theorems.

2.3.1 Our approach

We analyze the FHN system defined in Eq. (1.1.3) with ∆S given either by Eq. (1.2.2) or
(1.2.8) in a neighborhood of the one-dimensional manifold M. On the standard cylinder
SR, the manifold M consists of stationary solutions. This means that a solution of
Eq. (1.1.3), with S = SR, that starts on the manifold remains on it. While a solution
of the same equation that starts close to the manifold is decomposed into a modulated
pulse and a fluctuation. Under suitable values of the parameters α, γ and ε of Eq. (1.1.3),
the fluctuation decreases exponentially fast over time, while the solution stays close to
a nearby translate of the pulse Φ. This is the conclusion of Theorem 1.2.1. On warped
cylinders Sρ, that is not the case. Even if a solution of Eq. (1.1.3), with S = Sρ, starts on
the manifold M, the dynamics push this solution off the manifold. However, the solution
always stays in a neighborhood of M. Theorem 1.2.2 provides bounds on the fluctuation
of near-pulse solutions in terms of the distance of the variable radius ρ from the constant
radius R.

Next we discuss the two theorems in a bit more detail. In Theorem 1.2.1 we consider
the Laplacian on the surface of the standard cylinder SR. The proof consists of two parts:
we first establish the linearized stability, and then prove the nonlinear stability by using
a fixed point argument (Sections 3.2 and 3.3, respectively). Fix a (fast) pulse Φ that is
moving with speed c. Changing the variables to z = x− ct we construct a moving frame.
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In this frame the FHN system (1.1.3) has the form

∂tu1 = ∆SR
u1 + c∂zu1 + f(u1)− u2

∂tu2 = c∂zu2 + ε(u1 − γu2).
(2.3.1)

Notice that the pulse Φ is a stationary solution of Eq. (2.3.1). This is due to the fact
that Φ does not depend on the angle θ, i.e., 1

R2∂
2
θΦ, and so Eq. (2.3.1) is reduced to

Eq. (2.1.1).

We start with linear estimates. Let L denote the linearized operator of Eq. (2.3.1)
about the stationary solution Φ, and etL, t ≥ 0, be the linear semigroup generated
by L. The operator L is neither self-adjoint nor sectorial, making the study of the
linear estimates more difficult. We show in Section 3.2 that the semigroup etL decays
exponentially to the manifold M. That is,

‖etL(1− P )‖2,1 . e−σt

for t ≥ 0, and for some positive constant σ. In the above estimate, P is the projection
onto the tangent space of M at the pint Φ that commutes with L, and ‖ ·‖2,1 denotes the
operator norm on the Sobolev space H2,1. The projection P is not orthogonal, because
L is not a self-adjoint operator. We construct P as the spectral projection associated
with the zero eigenvalue of L. In Subsection 3.2.2 we prove that the remainder of the
spectrum of L lies in the left half-plane, implying the decay of the above estimate. The
proof of this estimate is the most challenging part of Theorem 1.2.1.

Section 3.3 is devoted to the nonlinear stability of the pulse Φ. In particular, we
show that every mild solution of Eq. (2.3.1) that starts sufficiently close to the pulse Φ

converges exponentially to a translated pulse Φh∗ . For a suitable choice of h, write a
solution of Eq. (2.3.1) as

u = Φh + v (2.3.2)

where Φh is a modulated pulse moving on the manifold M and v is a fluctuation that is
transversal to M (Subsection 3.3.1). This decomposition transforms Eq. (2.3.1) into an
equation for v(t):

∂tv = Lv +N(v, h) ,

coupled to an ordinary differential equation for the evolution of h. In Eq. (2.3.1), N(v, h)

is the nonlinearity and is of order (|h| + ‖v‖2,1)‖v‖2,1. Using the decay estimate of the
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linear semigroup from Section 3.2, we prove that

‖v(t)‖2,1 . e−ξt‖v0‖2,1 ,

i.e., the fluctuation decays exponentially, and

|h(t)− h(0)| . e−ξt‖v0‖22,1

for t ≥ 0, and for any ξ with ξ < σ. Theorem 1.2.1 follows since ‖v0‖2,1 . ‖u0 − Φ‖2,1
and |h0| . ‖u0 − Φ‖2,1.

In Chapter 4 we prove Theorem 1.2.2. Here the Laplace-Beltrami operator is given by
Eq. (1.2.8). We consider the variable radius ρ(x) of a warped cylinder as a perturbation
of the constant radius R. The basis for the argument is an estimate for the linearized
evolution on Sρ. Transforming the FHN system in the moving frame as we do on the
standard cylinder SR, the operator ∆Sρ(x)

becomes ∆Sρ(z+ct)
, in other words the principal

part is time-dependent. This leads to an evolution system associated with the family of
time-dependent linear operators of Eq. (1.1.3) (Section 5, [43]). But too less theory is
known about evolution systems. So, to avoid this issue, we study the perturbation in the
static frame, and linearize the FHN system about the zero solution instead of the pulse.
The advantage is that the time-independent linearized operator, Aρ, is sectorial. There-
fore, we can represent the semigroup etAρ by an absolutely convergent contour integral,
and control the perturbation via resolvent estimates. We use Grönwall’s inequality to
extend these perturbation estimates to the nonlinear evolution generated by the FHNcyl
system on Sρ. In combination with the exponential decay of fluctuations for near-pulse
solutions on SR that was proved in Theorem 1.2.1, this yields Theorem 1.2.2.



Chapter 3

Pulses on standard cylinders

Consider the case of the standard cylinder S = SR, where the radius R is fixed. On
the surface of SR fix a pulse Φ, and let M be the manifold of its translates defined in
Eq. (1.2.6). By definition, Φ is an axisymmetric traveling wave solution of

∂tu1 = ∆SR
u1 + f(u1)− u2

∂tu2 = ε(u1 − γu2) .
(3.0.1)

In the moving frame, let G(u) be the right hand side of Eq. (2.3.1) given explicitly
by

G(u) :=

(
∆SR

u1 + c∂zu1 + f(u1)− u2

c∂zu2 + ε(u1 − γu2)

)
. (3.0.2)

Set u = Φ + v. Since Φ is a stationary solution, G(Φ) = 0. Taylor expanding about Φ

yields, for v, the equation

∂tv = G(Φ + v)

= Lv +N(v) ,
(3.0.3)

where the linearization L is given by the Gâteaux derivative of G about Φ:

L := dG(Φ) =

(
∆SR

+ c∂z + f ′(ϕ1) −1

ε c∂z − εγ

)
, (3.0.4)

and N(v) is defined as

N(v) :=

(
v21(α + 1− 3ϕ1 − v1)

0

)
. (3.0.5)

20
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We call N(v) the nonlinearity.

The linearization in Eq. (3.0.4) defines a closed, linear operator on the Hilbert space
L2 := L2(SR,C2) of two-component square integrable functions, with inner product

〈u,w〉 :=
∫
SR

(
u1w̄1 + ε−1u2w̄2

)
Rdθdz , (3.0.6)

and the corresponding norm ‖ · ‖. The domain of L is the dense subspace

H2,1(SR) := {u ∈ L2(SR) | ∆SR
u1 ∈ L2(SR), u2 ∈ L2(SR)} (3.0.7)

with norm
‖u‖2,1 :=

∑
0≤i≤1

‖(∆SR
)iu1‖+

∑
0≤j≤1

ε−1‖∂j
zu2‖ . (3.0.8)

We will prove in Lemma 3.2.16 that the norm ‖u‖2,1 is equivalent to the graph norm of
the operator L.

First we verify that the solution v of Eq. (3.0.3) is locally well-posed in time under
suitable initial conditions (Section 3.1), and then we prove stability of the pulse Φ.

3.1 Local well-posedness

Consider the initial value problem

∂tv = Lv +N(v)

v|t=0 = v0
(3.1.1)

on the mixed Sobolev space H2,1, where L and N(·) are given by Eqs. (3.0.4) and (3.0.5),
respectively. By Duhamel’s formula, a classical solution v(t) of Eq. (3.1.1) also solves the
integral equation

v(t) = etLv0 +

∫ t

0

e(t−s)LN(v(s)) ds . (3.1.2)

Denote by FR(v)(t) the right hand side of Eq. (3.1.2), i.e.,

FR(v)(t) := etLv0 +

∫ t

0

e(t−s)LN(v(s)) ds . (3.1.3)

By definition, a mild solution of the initial value problem (3.1.1) is a strongly continuous
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function v(t), taking values in the space H2,1, that solves the fixed point problem

v = FR(v) (3.1.4)

in the space C([0, T ];H2,1) for some T > 0.

Proposition 3.1.1 (Local well-posedness). Assume R is fixed. Then for each v0 ∈
H2,1(SR), there exists T = T (‖v0‖2,1) > 0 such that Eq. (3.1.1) on SR has a unique mild
solution v in C([0, T ], H2,1(SR)) with initial condition v|t=0 = v0. The solution depends
continuously on v0 ∈ H2,1(SR).

Given an initial value v0 ∈ H2,1, fix η > 0 and T > 0, and define the ball

B :=
{
v ∈ C([0, T ]; H2,1)

∣∣ ‖v(t)‖2,1 ≤ η for all 0 ≤ t ≤ T
}
. (3.1.5)

The ball B is a complete metric space equipped with the norm ‖v‖T := sup0≤t≤T ‖v(t)‖2,1.
We prove Proposition 3.1.1 using the contraction mapping principle, which states
that if the map FR of Eq. (3.1.3) is a strict contraction in B, then FR has a unique fixed
point in B. The proof requires bounds on the nonlinearity N .

Lemma 3.1.2 (Nonlinearity). Let η be a positive constant. Then there exists a constant
Cη > 0 (depending on α, γ, ε and η) such that N , defined in Eq. (3.0.5), is locally
Lipschitz in H2,1. I.e., the nonlinearity N(v) satisfies

‖N(v)−N(w)‖2,1 ≤ Cη‖v − w‖2,1 (3.1.6)

for all v, w with ‖v‖2,1, ‖w‖2,1 ≤ η.

Proof. Let N1(v) denote the first component of N . The difference is given by

N1(v)−N1(w) = v21(α + 1− 3ϕ1 − v1)− w2
1(α + 1− 3ϕ1 − w1)

=
(
(α + 1− 3ϕ1)(v1 + w1)− (v21 + v1w1 + w2

1)
)
(v1 − w1) .

(3.1.7)

Since the cylindrical surface has dimension 2, the Sobolev space H2(SR) is a Banach
algebra. By the continuity of the multiplication and the fact that ϕ1 ∈ H2, Eq. (3.1.7)
implies

‖N(v)−N(w)‖2,1 ≤ Cmax{‖v1‖H2 , ‖w1‖H2}‖v1 − w1‖H2

≤ Cη‖v − w‖2,1 ,

as desired.
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An immediate consequence of Lemma 3.1.2 is that the nonlinearity N is quadratic in
‖ · ‖2,1 near zero, i.e., there exists η > 0 and Cη > 0 such that

‖N(v)‖2,1 ≤ Cη‖v1‖2H2

for all v with ‖v1‖H2 ≤ η.

Proof of Proposition 3.1.1. Given v0 ∈ H2,1, fix η > 0 and T > 0, and consider the ball,
B, given by Eq. (3.1.5). The time T will be specified below. We first show that the map
F defined in Eq. (3.1.3) is Lipschitz continuous on B. Indeed, by Lemma 3.1.2 and the
fact that H2,1 is a Banach algebra, we have

‖F(v)−F(w)‖T ≤ sup
0≤t≤T

∫ t

0

‖e(t−s)L
(
N(v(s))−N(w(s))

)
‖2,1 ds

≤ sup
0≤t≤T

∫ t

0

‖e(t−s)L‖2,1‖N(v(s))−N(w(s))‖2,1 ds

≤ T C0Cη ‖v − w‖T

where C0 := sup0≤t≤T ‖etL‖2,1, and Cη as in Eq. (3.1.6). For this argument we do not need
explicit estimates on the linear semigroup etL, t ≥ 0. Defining the constant C ′

η := C0Cη

we obtain
‖F(v)−F(w)‖T ≤ T C ′

η ‖v − w‖T .

Moreover, for v = 0 and since N(0) = 0:

‖F(0)‖T = sup
0≤t≤T

‖etLv0‖2,1 ≤ C0‖v0‖2,1 . (3.1.8)

Choose η = 2C0‖v0‖2,1, and T = (2C ′
η)

−1. Then F is Lipschitz continuous with
Lipschitz constant 1

2
. Furthermore, from Eq. (3.1.8), F maps B into B. By the contraction

mapping principle, F has a unique fixed point in B. This is the mild solution of the initial
value problem (3.1.1).

Next we show that the mild solution v depends continuously on v0 in the Sobolev
space H2,1. Let w(t) be another mild solution, with initial data w|t=0 = w0 satisfying



Chapter 3. Pulses on standard cylinders 24

‖w0‖2,1 < η. By definition of the mild solution, their difference satisfies

‖v(t)− w(t)‖2,1 ≤ ‖etL(v0 − w0)‖2,1 +
∫ t

0

‖e(t−s)L
(
N(v(s))−N(w(s))

)
‖2,1 ds

≤ C0‖v0 − w0‖2,1 + C ′
η

∫ t

0

‖v(s)− w(s)‖2,1 ds ,

where in the second inequality we have applied Eq. (3.1.6). Using Grönwall’s inequality
we have

‖v(t)− w(t)‖2,1 ≤ C0 e
C′

η t‖v0 − w0‖2,1 .

Therefore, the solution depends continuously on the initial value.

3.2 Linear stability
This section is the core of the proof of Theorem 1.2.1. Here we study the linear stability
of the pulse Φ under the flow generated by the FHN system in Eq (1.1.3) on the surface
of a standard cylinder SR.

Specifically, we will show that L generates a strongly continuous semigroup etL on
L2. The point at zero is an eigenvalue of L, and the tangent vector τ = −∂zΦ is the
corresponding eigenfunction. This follows from the fact that

L∂zΦ = 0 . (3.2.1)

To verify Eq. (3.2.1) recall that G(Φ) = 0, since Φ is a stationary solution of Eq. (2.3.1).
By translation invariance, G(Φh) = 0 for any h ∈ R. Eq. (3.2.1) follows by differentiating
G(Φh) = 0 with respect to h at h = 0. It turns out that the spectral projection P

associated with the zero eigenvalue of L has rank one. The complementary projection
Q = 1 − P is the projection onto the range of L. Both P and Q commute with L and
with the semigroup etL.

The main result of this chapter is stated next:

Proposition 3.2.1 (Linearized decay). Let L be the operator defined by Eq. (3.0.4). If
ε > 0 is sufficiently small, and 0 < R ≤ 1, then there exists σ > 0 such that the semigroup
etL satisfies ∥∥etLQ∥∥

2,1
≤ Ce−σt (3.2.2)

for some constant C > 0 and for all t ≥ 0.
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The proof of Proposition 3.2.1 will be given in Subsection 3.2.4. In the proof we
specify the conditions on σ.

3.2.1 The linear semigroup

Consider the linearization L about the pulse Φ defined in Eq. (3.0.4) with domain
Dom(L) = H2,1. Here, we show that L is the infinitesimal generator of a strongly
continuous semigroup. We denote this semigroup by etL, t ≥ 0. The idea is to write L

as a generator of a strongly continuous semigroup, that is easy to study, perturbed by a
bounded linear operator.

Indeed, we decompose L as L = L̄+ V where

L̄ :=

(
∆SR

+ c∂z + f ′(0) −1

ε c∂z − εγ

)
(3.2.3)

is a constant coefficient linearized operator about zero and V is the matrix multiplication
operator:

V :=

(
f ′(ϕ1)− f ′(0) 0

0 0

)
. (3.2.4)

Since f is a polynomial and ϕ1 is a smooth, bounded function, V is a bounded operator
on the space L2 and also on H2,1.

We say that the operator L is a relatively compact perturbation of L̄ if (L −
L̄)(λ − L̄)−1 : H2,1 7→ H2,1 is compact for some λ in the resolvent set of L̄. The next
lemma is used to construct the semigroup generated by L. Moreover, it plays a role in
locating the essential spectrum of L.

Lemma 3.2.2. The operator L is a bounded, relatively compact perturbation of L̄.

Proof. Observe that the nonzero entry of V is continuous and decays at infinity. Also,
L̄ is a constant coefficient operator with domain H2,1. By a standard result (Theorem
3.1.11, [32]), V (λ− L̄)−1 is compact for fixed λ in the resolvent set of L̄.

The operator L̄ captures the behavior of L at infinity, since limz→±∞ Φ(z) = 0 implies
limz→±∞ f ′(ϕ1(z)) = f ′(0) and so V ≡ 0. Next we show that L̄ generates a strongly
continuous semigroup. For this we introduce the notion of dissipativity. A linear operator
B on a Hilbert space H is called dissipative if

Re〈Bu, u〉 ≤ 0 ,
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for every u ∈ Dom(B). In Appendix A we state the Lumer-Phillips theorem which
provides a characterization to the generator of a densely defined, dissipative operator.

Lemma 3.2.3 (Dissipative operators). Let B be a closed, densely defined, dissipative
operator on a Hilbert space H. Then B generates a strongly continuous semigroup of
contractions, etB. Its spectrum lies in the left half-plane {λ ∈ C | Re λ ≤ 0}, and its
resolvent is bounded by

‖(λ−B)−1‖ ≤ 1

Re λ
(Re λ > 0) . (3.2.5)

Proof. Since B is dissipative, the operator 1+B is injective,

‖(1+B)v‖ ≥ |Re〈(1+B)v, v〉|

≥ ‖v‖2 .

Since the adjoint of B is injective by the same argument, it follows that the range of
1+B is dense.

Let v0 ∈ H be arbitrary. Choose a sequence (vn) = ((1+B)un) in the range of 1+B

with lim vn = v0. Since

‖un − um‖ ≤ ‖(1+B)(un − um)‖

= ‖vn − vm‖ ,

the sequence (un) satisfies the Cauchy criterion, and converges to some limit, u0. Since
B is a closed operator, v0 = (1+B)u0. We conclude that 1+B is surjective.

By the Lumer-Phillips theorem A.0.3, B generates a strongly continuous semigroup
of contractions on a Hilbert space H. The resolvent bound in Eq. (3.2.5) follows from
Lemma A.0.2.

The above lemma is a consequence of the Lumer-Phillips theorem that is used fre-
quently in the text. Taking into account Lemma 3.2.3 we prove the following:

Lemma 3.2.4. Let L̄ be the operator defined by Eq. (3.2.3), and σ = min{α, εγ}. Then,

1. L̄+ σ is dissipative, i.e.,
Re〈L̄v, v〉 ≤ −σ‖v‖2 .

2. L̄ generates a strongly continuous semigroup of contractions, etL̄. The semigroup



Chapter 3. Pulses on standard cylinders 27

etL̄ satisfies the estimate ∥∥etL̄∥∥ ≤ e−σt (3.2.6)

for all t ≥ 0 .

Proof. First we show that L̄ + σ is dissipative. Since ∂z is skew-adjoint in L2(SR), and
the off-diagonal terms in L̄ are skew-adjoint with respect to the inner product from
Eq. (3.0.6), we have

Re〈L̄v, v〉 = Re

∫
SR

(
(∆SR

v1)v̄1 + f ′(0)|v1|2 − v1v̄2 + v̄1v2 − γ|v2|2
)
Rdθdz

=

∫
SR

(
(∆SR

v1)v̄1 − α|v1|2 − γ|v2|2
)
Rdθdz

= −
∫
SR

(
α|v1|2 + γ|v2|2

)
Rdθdz

≤ −min{α, εγ}‖v‖2.

In the second inequality we used that the operator ∆SR
is negative semi-definite. Since the

parameters α, ε and γ are positive, it follows that Re〈L̄v, v〉 ≤ −σ‖v‖2 for all v ∈ H2,1.
It follows directly by Lemma 3.2.3 that L̄ is the infinitesimal generator of a strongly

continuous semigroup of contractions on L2(SR). We denote this semigroup by etL̄.
Define σ := min{α, εγ}. For Reλ > −σ we have

‖(λ− L̄)v‖ ≥ Re〈(λ− L̄)v, v〉
‖v‖

≥ (Reλ+ σ)‖v‖.

Setting v := (λ− L̄)−1w we obtain that the resolvent operator of L̄ is bounded by

‖(λ− L̄)−1‖ ≤ 1

Reλ+ σ

for Reλ > −σ. By (Corollary II.3.6, [12]), the above inequality implies that the semi-
group etL̄ satisfies the estimate

‖etL̄‖ ≤ e−σt

for all t ≥ 0, as desired.

Studying further the operator L̄, in the Fourier representation it is given by the matrix



Chapter 3. Pulses on standard cylinders 28

multiplication operator

m(k, n) :=

(
−k2 − n2R−2 + ick − α −1

ε ick − εγ

)
(3.2.7)

for k ∈ R, and n ∈ N. Therefore L̄ has only essential spectrum. In particular, the
spectrum contains the branch of all eigenvalues of m(k, 0), given by

λ+(k, 0) = ick − 1

2
(k2 + α + εγ) +

1

2

√
(k2 + α− εγ)2 − 4ε

∼ ick − εγ (|k| → ∞) .

An important consequence is that L̄ is not sectorial, and etL̄ is not an analytic semigroup.
Combining the above results we are now able to define and estimate the linear semi-

group etL.

Proposition 3.2.5. The linear operator L generates a strongly continuous semigroup,
etL, satisfying the estimate

‖etL‖ ≤ et (3.2.8)

for all t ≥ 0.

Proof. Consider the linear operators L and L̄ with Dom(L) = Dom(L̄) = H2,1 and so
that L = L̄+ V . Let σ := min{α, εγ}. For all λ such that Reλ > −σ we express λ− L

as

λ− L = λ− L̄− V

= (1− V (λ− L̄)−1)(λ− L̄).
(3.2.9)

We claim that 1 − V (λ − L̄)−1 is invertible. Indeed, for Reλ > −σ + ‖V ‖ and since
‖(λ− L̄)−1‖ ≤ 1

Reλ+σ
by Lemma 3.2.4, the bounded linear operator V (λ− L̄)−1 satisfies

‖V (λ− L̄)−1‖ ≤ ‖V ‖
Reλ+ σ

< 1.

Thus, 1 − V (λ − L̄)−1 is invertible. For all λ in the resolvent set of L, we have by
Eq. (3.2.9) that

(λ− L)−1 = (λ− L̄)−1(1− V (λ− L̄)−1)−1

= (λ− L̄)−1

∞∑
j=0

(V (λ− L̄)−1)j.
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Next we estimate the resolvent operator (λ− L)−1:

‖(λ− L)−1‖ ≤ 1

Reλ+ σ
· 1

1− ∥V ∥
Reλ+σ

=
1

Reλ+ σ − ‖V ‖

for Reλ > −σ + ‖V ‖. Therefore, the operator L generates a strongly continuous semi-
group of contractions, etL, for t ≥ 0, satisfying

‖etL‖ ≤ e(−σ+∥V ∥)t (3.2.10)

(see Corollary II.3.6 [12]). Observe that

‖V ‖ = ‖f ′(y)− f ′(0)‖ = ‖ − 3y2 + 2(α + 1)y‖ < 1 (3.2.11)

for y ∈ R and 0 < α < 1
2
. The desired estimate follows by applying Eq. (3.2.11) to

Eq. (3.2.10).

3.2.2 Construction of the projection

Consider the linear operator L, given by Eq. (3.0.4), and its adjoint L∗. In the discussion
at the beginning of Subsection 3.2.1 we verified that zero is an eigenvalue of L. In this
subsection we explore in more depth the spectrum of L. In particular, we prove the
following

1. spec(L) ⊂ {0} ∪
{
λ ∈ C

∣∣ Reλ < −σ
}

for some σ > 0;

2. 0 is a simple eigenvalue of L and L∗.

These two results will be used to construct the spectral projection Q that appears in
Proposition 3.2.1.

We start our analysis with the spectrum of L. By definition, the spectrum consists of
two sets: the essential spectrum and the discrete spectrum. More specifically, we have:

Lemma 3.2.6 (Essential spectrum of L). Define σ = min{α, εγ}. The operator L given
by Eq. (3.0.4) satisfies

specess(L) ⊂ {λ ∈ C | Re λ ≤ −σ} . (3.2.12)
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Proof. By Lemma 3.2.2, L is a relatively compact perturbation of the operator L̄, where
recall L̄ is defined in Eq. (3.2.3). From Weyl’s essential spectrum theorem (Theorem
2.2.6, [32]) it holds that

specess(L) = specess(L̄) .

In Lemma 3.2.4 we proved that σ + L̄ is dissipative. By Lemma 3.2.3 the spectrum of
σ + L̄ lies in the left half plane {λ ∈ C | Reλ ≤ 0} and so the relation in Eq. (3.2.12)
follows.

Next, we determine the discrete spectrum of L. To this end, we expand functions on
the surface of SR as Fourier series in the angular variable, θ:

v(z, θ) =
∑
n∈Z

vn(z)e
inθ .

As in Eq. (3.2.7), L splits into a direct sum L =
⊕

n≥0 Ln, where

Ln :=

(
∂2
z − n2R−2 + c∂z + f ′(ϕ1(z)) −1

ε c∂z − εγ

)
(3.2.13)

is the restriction of L to the invariant subspace corresponding to the Fourier modes
n ≥ 0. We study separately the zero mode from the positive modes. The case n = 0 is
more delicate but it coincides with the linear operator L in the one dimension defined in
Eq. (2.1.5). So, we are using the existing results from Subsection 2.1.2.

Starting with n > 0 we have:

Lemma 3.2.7 (Discrete spectrum, n > 0). Consider the operator Ln in Eq. (3.2.13).
On SR, with 0 < R ≤ 1:

specdisc(Ln) ⊂ {λ ∈ C | Re λ ≤ −σ} , (3.2.14)

where n > 0 and σ := min{α, εγ}.

Proof. If we show that Ln + σ is dissipative, i.e., Re〈(Ln + σ)v, v〉 ≤ 0 for v ∈ Dom(Ln),
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then Eq. (3.2.14) follows by Lemma 3.2.3. Indeed,

Re 〈Lnv, v〉 = Re

∫
R

{
(∂2

zv1)v̄1 +
(
− n2R−2 + f ′(ϕ1(z))

)
|v1|2 − v1v̄2 + v̄1v2 − γ|v2|2

}
Rdz

=

∫
R

{
(∂2

zv1)v̄1 +
(
− n2R−2 + f ′(ϕ1(z))

)
|v1|2 − γ|v2|2

}
Rdz

=

∫
R

{(
− n2R−2 + f ′(ϕ1(z))

)
|v1|2 − γ|v2|2

}
Rdz

≤ −σ‖v‖2.

To obtain the last inequality we used that n > 0, R ≤ 1 and f ′(ϕ1(z))− f ′(0) ≤ 1, where
recall f ′(0) = −α.

Lemmas 3.2.7 and 3.2.3 imply the following resolvent estimate:

Corollary 3.2.8 (Resolvent estimate, n > 0). For λ ∈ C with Reλ > −σ, and σ :=

min{α, εγ}, the resolvent operator of Ln, for n > 0, satisfies

∥∥(λ− Ln)
−1
∥∥ ≤ 1

Reλ+ σ
. (3.2.15)

Turning to the zero mode we have:

Lemma 3.2.9 (Discrete spectrum, n = 0). Let L0 be given by Eq. (3.2.13) with n = 0.
If ε > 0 is sufficiently small, then there exists β > 0 such that

specdisc(L0) ⊂ {0} ∪
{
λ ∈ C

∣∣ Reλ ≤ −β
}
. (3.2.16)

Moreover, the eigenvalue at 0 is simple.

Proof. Let M be the manifold of stationary solutions defined in Eq. (1.2.6). Denote by
τ = −∂zΦ the tangent vector on M at a fixed point Φ. By the translation invariance
Lτ = 0. This implies that 0 is an eigenvalue of L0 with corresponding eigenfunction τ .
In what follows we show that the eigenvalue 0 is simple, and that there are no other
eigenvalues to the right of {Reλ = −β, β > 0}.

The operator L0 agrees with the linearization of the FHN system in the one spatial
dimension defined in Eq. (2.1.5). Jones [30] and Yanagida [49] studied extensively the
spectrum of the latter linearization in the space of bounded continuous functions. As
discussed in Subsection 2.1.2, they proved that for ε > 0 sufficiently small, 0 is a simple
eigenvalue of the linearization, and all other eigenvalues lie in a half-space {λ ∈ C | Reλ <

−β}.
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We claim that the discrete spectrum of L0 on the Hilbert space L2(R) is contained
in its discrete spectrum on the space of bounded continuous functions. Indeed, any
generalized eigenfunction must lie in the domain of L0, given by the mixed Sobolev
space H2,1 (we prove this result below in Lemma 3.2.16). In particular, the generalized
eigenfunctions are bounded and continuous. Therefore, the results of Jones [30] and
Yanagida [49] also apply to L0 on L2(R).

The following proposition gives the spectrum of the linear operator L.

Proposition 3.2.10 (Spectrum of L). Assume ε > 0 sufficiently small, and β > 0

(depending on ε) is the constant determined by Lemma 3.2.9. Define σ := min{α, β, εγ}
and consider the linear operator L, given in Eq. (3.0.4). Then the spectrum of L is
contained in

{0} ∪ {λ ∈ C | Reλ ≤ −σ} . (3.2.17)

Moreover, 0 is a simple eigenvalue of both L and its adjoint, L∗.

Proof. Eq. (3.2.17) follows directly by combining Lemmas 3.2.6, 3.2.7 and 3.2.9. It
remains to verify the second argument,i.e., that the eigenvalue 0 is simple. Indeed,
the linear operator L̄, defined in Eq. (3.2.3), is Fredholm. By Lemma 3.2.4, 0 lies in
its resolvent set, so the Fredholm index of L̄ is zero. Since L is a relatively compact
perturbation of L̄, by Lemma 3.2.2, L is a Fredholm operator of the same index as L̄,
namely of index zero. Therefore, 0 is a simple eigenvalue of both L and L∗.

Since the eigenvalue at 0 is isolated, the spectral projection to the zero eigenspace is
defined by the line integral

P =
1

2πi

∮
Γ0

(λ− L)−1dλ, (3.2.18)

where Γ0 ⊂ C is any simple closed positively oriented curve that separates zero from the
remainder of the spectrum of L (Subsection 2.2.4, [32]). By definition, P is a bounded
linear operator that commutes with the linearization L, i.e., PL = LP , as well as with
the generator etL. The complementary projection of P is defined as Q := 1 − P , and
is the projection onto the range of L. The projection Q also commutes with L and its
semigroup etL.

Lemma 3.2.11 (Spectral projection). Let τ = −∂zΦ be the tangent vector on the mani-
fold M at a fixed point Φ, and τ ∗ the eigenfunction of the adjoin L∗ corresponding to the
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zero eigenvalue, normalized to 〈τ, τ ∗〉 = 1. Then the projection in Eq. (3.2.18) is given
by

Pv = 〈v, τ ∗〉τ (3.2.19)

for v ∈ L2.

Proof. The eigenfunction τ ∗ is well-defined because 0 is a simple eigenvalue for both L

and L∗, by Proposition 3.2.10. In particular, since τ does not lie in the range of L, τ ∗ is
not orthogonal to τ . The Riesz projection P is uniquely determined by its action on the
nullspace and range of L, that is, the following two properties hold:

Pτ = τ and PLv = 0

for all v ∈ H2,1. We verify that 〈τ, τ ∗〉τ = τ , and 〈Lv, τ ∗〉τ = 〈v, L∗τ ∗〉τ = 0, as
required.

We are now able to estimate the resolvent operator of L0.

Lemma 3.2.12 (Resolvent estimate, n = 0). Let P be the projection to the nullspace of
L and Q = 1 − P be the complementary projection. Denote by Q0 the restriction of Q
to the range of L0 in L2. For every σ > min{α, β, εγ}, there exists a positive constant C
such that

‖(λ− L0)
−1Q0‖ ≤ C (3.2.20)

for Re λ ≥ −σ. Here, β is as in Lemma 3.2.9.

The proof of the above lemma is deferred to the next subsection.

3.2.3 Proof of Lemma 3.2.12

The idea of the proof is to estimate the resolvent operators of the linearization L0, given
by Eq. (3.2.13) with n = 0, in the three regions:

S1 := {λ ∈ C | − σ ≤ Re λ ≤ 2, | Im λ| ≤ N} ,

S2 := {λ ∈ C | Re λ ≥ 2},

S3 := {λ ∈ C | − σ ≤ Re λ ≤ 2, | Im λ| ≥ N} .

(3.2.21)

Here, the constant σ satisfies: σ < min{α, β, εγ}, and β is as in Lemma 3.2.9. The
positive constant N will be specified below. Yanagida had also slit the complex plane
into three regions (see Eq. (2.1.8)), however our approach is slightly different.

On the first region, S1, we appeal to compactness.
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Lemma 3.2.13 (Resolvent estimate on S1). Let Q0 be the restriction of Q = 1 − P to
the range of L0 in L2. For any N > 0,

sup
λ∈S1

‖(λ− L0)
−1Q0‖ < ∞ .

Proof. By Lemma 3.2.9, the region S1 intersects the spectrum of L0 only at the simple
eigenvalue 0. Since the restriction of L0 to the range of the projection Q0 has no spectrum
in S1, its resolvent is an analytic function of λ, and hence bounded on the compact set
S1.

The second region, i.e., the half-plane S2, is treated by a dissipativity estimate similar
to that in the proof of Lemma 3.2.7.

Lemma 3.2.14 (Resolvent estimate on S2). For any N > 0,

sup
λ∈S2

∥∥(λ− L0)
−1
∥∥ ≤ 1 . (3.2.22)

Proof. Setting n = 0 at the estimate in the proof of Lemma 3.2.7 we obtain

Re 〈L0v, v〉 ≤ −σ‖v‖2 ,

for v ∈ Dom(L0) and σ := min{α, εγ}. By Lemma 3.2.3, λ−L0 is invertible for Reλ > −σ

and the inverse satisfies
‖(λ− L0)

−1‖ ≤ 1

Re λ+ σ
, (3.2.23)

for Re λ > −σ. Since Reλ ≥ 2 on S2, Eq. (3.2.23) implies Eq. (3.2.22).

The third region, S3, requires more work to do. We prove the following explicit
estimate.

Lemma 3.2.15 (Resolvent estimate on S3). Assume N > 0 is sufficiently large. Then

sup
λ∈S3

∥∥(λ− L0)
−1
∥∥ ≤ 2

min{α, εγ} − σ
. (3.2.24)

Here, σ < min{α, β, εγ}, and β is as in Lemma 3.2.9.
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Proof. We write the linear operator L0 as: L0 = L̄0 + V , where

L̄0 :=

(
∂2
z + c∂z + f ′(0) −1

ε c∂z − εγ

)

and V is the bounded linear operator given by the difference L0 − L̄0. In the same way
as in the proof of Lemma 3.2.4, we show that

Re〈L̄0v, v〉 ≤ −min{α, εγ}‖v‖2

for v ∈ L2. By Lemma 3.2.4, the resolvent set of L̄0 contains the half-plane {λ ∈
C | Reλ ≥ −min{α, εγ}} and the resolvent operator of L̄0 satisfies

‖(λ− L0)
−1‖ ≤ 1

Re λ+min{α, εγ}
. (3.2.25)

By the resolvent identity

(λ− L̄0)
−1 − (λ− L0)

−1 = −(λ− L̄0)
−1V (λ− L0)

−1 . (3.2.26)

To solve Eq. (3.2.26) with respect to (λ− L0)
−1 we should verify first that 1− (λ−

L̄0)
−1V is invertible. In particular, we need to show that there exists an N > 0 such that

sup
λ∈S3

∥∥(λ− L̄0)
−1V

∥∥ ≤ 1

2
. (3.2.27)

Assuming the above argument is true we solve Eq. (3.2.26) for the resolvent of L0 to
obtain

(λ− L0)
−1 =

(
1− (λ− L̄0)

−1V
)−1

(λ− L̄0)
−1. (3.2.28)

Applying Eq. (3.2.27) into (3.2.28) we estimate

‖(λ− L0)
−1‖ ≤

(
‖1− (λ− L̄0)

−1V ‖
)−1 ‖(λ− L̄0)

−1‖

≤ 2 ‖(λ− L̄0)
−1‖

≤ 2

Re λ+min{α, εγ}
,

(3.2.29)

where the last line follows from Eq. (3.2.25). Recall that on the region S3, Reλ ≥ −σ.
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This estimate together with Eq. (3.2.29) imply

‖(λ− L0)
−1‖ ≤ 2

−σ +min{α, εγ}
,

where σ < min{α, β, εγ}, as desired.

To complete the proof it suffices to verify Eq. (3.2.27). Indeed, pick λ ∈ S3. Using
that the (1, 2)-entry and the (2, 2)-entry of the operator matrix (λ− L̄0)

−1V vanish and
that ∥∥∥∥

(
a11 0

a21 0

)∥∥∥∥ ≤ ‖a11‖+ ‖a21‖,

we find

‖(λ− L̄0)
−1V ‖ ≤

(
‖((λ− L̄0)

−1)11‖+ ‖((λ− L̄0)
−1)21‖

)
sup
y∈R

|f ′(y)− f ′(0)| .

Since the last term is bounded by Eq. (3.2.37), to verify Eq. (3.2.27) we only need to
prove that

lim
N→∞

sup
λ∈S3

∥∥((λ− L̄0)
−1)i1

∥∥ = 0 , i = 1, 2 . (3.2.30)

Moreover, since L̄0 has real coefficients, we may restrict the supremum over the intersec-
tion of S3 with the upper half-plane.

The operator L̄0, in the Fourier representation is given by the matrix multiplication
operator (as in Eq. (3.2.7))

m(k, 0) =

(
−k2 + ick + f ′(0) −1

ε ick − εγ

)

for k ∈ R. In particular,

∥∥((λ− L̄0)
−1)ij

∥∥ = sup
k∈R

∣∣((λ−m(k, 0))−1)ij
∣∣. (3.2.31)

Suppressing the dependence on k in the notation and using Cramer’s rule, for the (1, 1)-
entry we have

((λ−m)−1)11 =
λ−m22

det(λ−m)

and for the (2, 1)-entry:
((λ−m)−1)21 =

m21

det(λ−m)
.
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Passing to reciprocals, we compute for the first entry

1(
(λ−m)−1

)
11

= λ−m11 −
m12m21

λ−m22

.

We next separate the real and imaginary parts. Since Re λ ≥ −σ on S3, and σ ≤
min{α, εγ}, we have that

Re (λ−m11) ≥ k2 , (3.2.32)

and
Re (λ−m22) ≥ εγ − σ > 0 . (3.2.33)

Since m12m21 = −ε < 0, it follows that

Re
1

((λ−m)−1)11
≥ k2 .

For the imaginary part, we have

Im
1

((λ−m)−1)11
≥ Im λ− ck + ε| Im λ− ck|−1 .

Combining the estimates of the real and imaginary parts, and assuming that Im λ ≥ N ,
we obtain

1

|((λ−m)−1)11|
≥ max

{
k2, | Im λ− ck|+ ε| Im λ− ck|−1

}
≥ max

{
N2

4c2
, N

2
+ 2ε

N

}
→ ∞ as N → ∞ .

The second inequality above holds since k ≥ N
2c

whenever | Im λ− ck| ≤ N
2

. This implies
Eq. (3.2.30) for i = 1. Similarly,

1

((λ−m)−1)21
=

(
λ−m11

)(
λ−m22

)
m21

−m12 .

As before, we separately estimate the real and imaginary parts of each of the factors in
the numerator:

|λ−m11| ≥ max
{
k2, | Im λ− ck|

}
and

|λ−m22| ≥ εγ − σ .
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The two estimates yield

1

|((λ−m)−1)21|
≥ εγ − σ

ε
max

{
k2, | Imλ− ck|

}
− 1

≥ εγ − σ

ε
max

{
N2

4c2
, N

2

}
− 1

→ ∞ as N → ∞ .

This implies Eq. (3.2.30) for i = 2.

Combining Lemmas 3.2.13 - 3.2.15, the proof of Lemma 3.2.12 follows.

3.2.4 Proof of Proposition 3.2.1

Consider the projection, P , constructed in Lemma 3.2.11, and let Q = 1 − P be the
complementary projection to the range of L. Choose

σ < min{α, β, εγ} ,

where β is the constant from Lemma 3.2.9. We need to find a constant M > 0 such that
the estimate ∥∥etLQ∥∥

2,1
≤ Me−σt (3.2.34)

holds for all t > 0.
First we verify Eq. (3.2.34) with the norm ‖ · ‖2,1 replaced by ‖ · ‖. This follows from

Prüss’ theorem C.0.1 if we show that the resolvent operator of L projected onto the range
of L, is uniformly bounded on the half-plane {λ ∈ C | Re λ ≥ −σ}. Then we use an
equivalence relation of those two norms to verify Eq. (3.2.34).

Indeed, splitting L into the discrete sum L =
⊕

n≥0 Ln, where recall that Ln are the
Fourier modes of L given by Eq. (3.2.13), we obtain∥∥(λ− L)−1Q

∥∥ =
∥∥⊕n≥0 (λ− Ln)

−1Qn

∥∥
≤ sup

n≥0

{∥∥(λ− Ln)
−1Qn

∥∥} .

Here, Qn is the corresponding projection to the range of Ln, for each n ≥ 0. Corol-
lary 3.2.8 and Lemma 3.2.12 imply that there exists a constant C > 0 such that

‖(λ− L)−1Q‖ ≤ C



Chapter 3. Pulses on standard cylinders 39

for Re λ ≥ −σ. Since Q commutes with L, this establishes the hypotheses of Prüss’
theorem on the range of L.

Applying Prüss’ theorem C.0.1 with B given by the restriction of L to the range of
Q we obtain that

‖etLQ‖ ≤ Me−σt (3.2.35)

for some constant M > 0.

To reduce Eq. (3.2.35) from the space L2 to H2,1 we prove in the following lemma
that the H2,1-norm is equivalent to the graph norm of L. The notation . and & stand
for the respective inequalities up to constants. The constants depend on the parameters
α, ε and γ but not on the solution u or the initial value u0.

Lemma 3.2.16. The graph norm of the operator L, with Dom(L) = H2,1, satisfies

‖u‖2,1 . ‖Lu‖+ ‖u‖ . ‖u‖2,1 (3.2.36)

for u ∈ H2,1.

Proof. We use that
‖∂zu1‖ ≤ 1

2c
‖∆SR

u1‖+ c
2
‖u1‖ ,

and set
b := sup

z∈R
|f ′(ϕ1(z))− f ′(0)| . (3.2.37)

By the reverse triangle inequality, this yields for the lower bound

‖Lu‖ ≥ min
{

1
2
, c
}
‖(∆cSR

u1, ∂zu2)‖ − ( c
2

2
+ b)‖u1‖ ,

which implies that(
1 + c2

2
+ b
)
(‖Lu‖+ ‖u‖) ≥ ‖Lu‖+

(
1 + c2

2
+ b
)
‖u‖

≥ min
{

1
2
, c
}
‖u‖2,1 .

For the upper bound, the triangle inequality yields

‖Lu‖+ ‖u‖ ≤ max
{

3
2
, c, 1 + c2

2
+ b
}
‖u‖2,1 .
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Since L commutes with etL, it follows that

‖etLQu‖2,1 . ‖LetLQu‖+ ‖etLQu‖

≤ Me−σt
(
‖Lu‖+ ‖u‖

)
≤ Me−σt‖u‖2,1

for u ∈ H2,1. Therefore, Eq. (3.2.34) follows by Lemma 3.2.16, and this completes the
proof of Proposition 3.2.1.

2

An immediate consequence of Proposition 3.2.1 is that the semigroup generated by
L is uniformly bounded.

Corollary 3.2.17. Under the assumptions of Proposition 3.2.1, there is a constant C > 0

such that
‖etL‖2,1 ≤ C

for all t ≥ 0.

Proof. By the triangle inequality,

‖etL‖2,1 ≤ ‖etLP‖2,1 + ‖etLQ‖2,1
≤ ‖P‖2,1 +Me−σt

for t ≥ 0, where we have used that etL is constant on the nullspace of L to bound the
first summand, and applied Proposition 3.2.1 to the second. This proves the claim with
C = ‖P‖2,1 +M .

3.3 Nonlinear Stability
In this section we return to the nonlinear system on SR in the moving frame, and prove
Theorem 1.2.1. Let G(u) denote the right hand side of Eq. (2.3.1). It is defined explicitly
in Eq. (3.0.2). By Proposition 3.1.1, the initial value problem (3.1.1) is locally well-posed
in the class of mild solutions on H2,1.

3.3.1 Modulated pulses

Let M be the manifold of pulses. We decompose solutions near M into a nonlinear
projection onto M that evolves slowly in time, and a fluctuation that satisfies a suitable
orthogonality condition.
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Let P be the projection to the tangent space of M at Φ from Lemma 3.2.11. By
translation invariance,

Phv := 〈v, τ ∗h〉 τh , v ∈ L2

defines the corresponding projection to the tangent space of M at the translated pulse
Φh. This is the spectral projection associated with the zero eigenspace of Lh := dG(Φh).

Proposition 3.3.1. Under the assumptions of Proposition 3.2.1:

1. (Projection onto M.) There exists a tubular neighborhood W of M in H2,1 such
that every u ∈ W has a unique decomposition as

u = Φh + v with Phv = 0 . (3.3.1)

2. (Local projection near Φ.) There exists a neighborhood U of Φ in H2,1 such that
every u ∈ U has a unique decomposition

u = Φh + v with Pv = 0 . (3.3.2)

In both cases, h and v are smooth functions of u.

In the proof, we show that each of Eq. (3.3.1) and Eq. (3.3.2) defines a pair of
complementary non-linear projections P : u 7→ Φh(u) (onto M) and and Q : u 7→ v (onto
a transversal subspace), with

dP
∣∣∣
u=Φ

= P , dQ
∣∣∣
u=Φ

= Q .

In fact, Eq. (3.3.2) defines a diffeomorphism u 7→ (h, v) from U onto a neighborhood
of the origin in R × Ran (Q). The proof relies on the Implicit Function Theorem. The
following lemma provides the requisite smoothness.

Lemma 3.3.2 (Smooth dependence on h). The manifold of pulses M is a smooth simple
curve in H2,1. Moreover, the tangent vector τh, the dual vector τ ∗h , the projections Ph, Qh,
the linearization Lh = dG(Φh), and the nonlinearity Nh(v) := G(Φh + v) − Lhv depend
smoothly in H2,1 on h, with bounded derivatives of all orders.

Proof. The smoothness of M follows from the smoothness and decay of Φ and its deriva-
tives. This also proves the smoothness of τh, τ ∗h , and the projections. The linearization
Lh is a matrix-valued differential operator whose coefficients are smooth functions of Φh;
the linearity Nh(v) = G(Φh+ v)−Lh(Φh)v is a cubic polynomial in v1 whose coefficients
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are smooth functions of Φh. Since H2(SR) is a Banach algebra, G(Φh + v), Lhv, and
Nh(v) all depend smoothly on h.

Proof of Proposition 3.3.1. (i). Given u near M, we need to find h ∈ R such that
Ph(u − Φh) = 0. Choose h0 ∈ R with ‖u − Φh0‖ = dist (u,M). By applying the
translation τ−h0 to a neighborhod of u, we may assume that h0 = 0. Thus we need to
solve

H(u, h) := 〈u− Φh, τ
∗
h〉 = 0

near (Φ, 0). Clearly, H(Φ, 0) = 0. Moreover, since Φh and τ ∗h are smooth in h, the map
H is continuously differentiable in h ∈ R and u ∈ L2. Since ∂zΦ = −τ ,

∂hH(u, h)
∣∣
u=Φ

= 〈τ, τ ∗〉 = 1.

By the Implicit Function Theorem, there is a unique solution h = h(u) in a neighborhood
U of Φ, which is continuously differentiable in u and satisfies h(0) = 0. Since Φ is smooth,
also v(u) = u−Φh(u) is smooth. The tubular neighborhood W is the union of all translates
of U .

(ii) Apply the Implicit Function Theorem to H(u, h) := 〈u− Φh, τ
∗〉.

Fix a pulse Φ ∈ M, and let U be the neighborhood constructed in the second part of
Proposition 3.3.1. Consider a mild solution u of Eq. (2.3.1) on U . By Eq. (3.3.2), we can
represent it uniquely as the superposition of a modulated pulse Φh(t) and a transversal
fluctuation v(t)

u(t) = Φh(t) + v(t) with Pv(t) = 0 . (3.3.3)

Since Φh is a stationary solution of Eq. (1.1.3), we have G(Φh) = 0. Its Taylor
expansion about Φh is given by G(Φh + v) = Lhv + Nh(v), where Lh = dG(Φh) is as in
Eq. (3.0.4) but with Φh in place of Φ, and

Nh(v) =

(
v21(α + 1− 3(ϕh)1 − v1)

0

)
. (3.3.4)

Note that Nh differs from the nonlinearity N in Eq. (3.0.5) by a bounded multiplication
operator that decays as z → ±∞.

Assume for the moment that u is a classical solution of Eq. (2.3.1). Substituting
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Eq. (3.3.3) into Eq. (3.1.1) and using that ∂tΦh(z) = ḣτh, we obtain

ḣ(t)τh + ∂tv = G(Φh(t) + v) = Lhv +Nh(v) .

We next apply the spectral projections P and Q. Since P∂tv = 0, we have by the chain
rule

〈τh, τ ∗〉ḣ = 〈Lhv +Nh(v), τ
∗〉 . (3.3.5)

The complementary projection yields

∂tv = Q
(
Lhv +Nh(v)− ḣτh

)
.

In general, if u is a mild solution of Eq. (1.1.3), we interpret v as a mild solution of the
equation

v(t) = etLv0 +

∫ t

0

e(t−s)LQ
(
Lh(s)v(s) +Nh(s)(v(s))− ḣ(s)τh(s)

)
ds . (3.3.6)

By the same argument as in Eq. (3.1.6), the nonlinearity Nh is locally Lipschitz on
H2,1. We will need the following refined estimate that takes advantage of the fact that
Nh vanishes quadratically at v = 0.

Lemma 3.3.3 (Small Lipschitz estimate). For any η > 0 there exists a constant Cη > 0

such that the nonlinearity Nh(v) defined in Eq. (3.3.4) satisfies

‖Nh(v)−Nh(w)‖2,1 ≤ Cη max
{
‖v1‖H2 , ‖w1‖H2

}
‖v1 − w1‖H2 (3.3.7)

for all v, w with ‖v1‖H2 , ‖w1‖H2 ≤ η and all h ∈ R.

Proof. We expand the first component of Nh as

(Nh(v))1 − (Nh(w))1 =
(
(α + 1− 3(ϕh)1)(v1 + w1)− (v21 + v1w1 + w2

1)
)
(v1 − w1) .

Eq. (3.3.7) follows directly from the continuity of the multiplication in H2 and the fact
that ϕ1 ∈ H2.

Lemma 3.3.4 (Evolution inequalities). With the notation and assumptions of Proposi-
tion 3.2.1, suppose h(t) and v(t) satisfy Eqs. (3.3.5)-(3.3.6) on some interval [0, T ], and
that

|h(t)| ≤ κ , ‖v(t)‖2,1 ≤ η
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for all 0 ≤ t ≤ T , where κ > 0 is sufficiently small, and η > 0. Then there exists a
constant C > 0 (depending on κ and η) such that

∣∣ḣ∣∣ ≤ C
(
|h|+ ‖v‖2,1

)
‖v‖2,1 , (0 ≤ t ≤ T ) , (3.3.8)

and

‖v(t)‖2,1 ≤ C0e
−σt‖v0‖2,1+ C

∫ t

0

e−σ(t−s)
(
|h(t)|+ ‖v(t)‖2,1

)
‖v(t)‖2,1 ds . (3.3.9)

Proof. Choose κ > 0 such that 〈τh, τ ∗〉 ≥ 1
2

for all h with |h| ≤ κ. This is possible
because 〈τ, τ ∗〉 = 1, and 〈τh, τ ∗〉 depends smoothly on h by Lemma 3.3.2. For |h| ≤ κ,
Eq. (3.3.5) yields

|ḣ| ≤ 2
(
|〈Lhv, τ

∗〉|+ |〈Nh(v), τ
∗〉|
)
.

Since L∗v = 0, the first summand is bounded by

|〈Lhv, τ
∗〉| = |〈v, (L∗

h − L∗)τ ∗〉| ≤ C|h| ‖v‖2,1

for some constant C. By Lemma 3.3.3, the second summand satisfies ‖Nh(v)‖2,1 ≤
Cη‖v‖22,1. Combining these two inequalities yields the bound on |ḣ|.

For v(t), we separately estimate each term on the right hand side of Eq. (3.3.6). In
the integrand, we use that Lv = 0 and ‖Lh − L‖2,1 is of order |h| by Lemma 3.3.2. For
the nonlinearity, we use Lemma 3.3.3, and for the last term, we use Eq. (3.3.8). The
result is

‖v(t)‖2,1 ≤ ‖etLQ‖2,1‖v0‖2,1 + C

∫ t

0

‖e−(t−s)LQ‖2,1
(
|h(s)|+ ‖v(s)‖2,1

)
‖v(s)‖2,1 ds .

The proof is completed with Proposition 3.2.1.

We end this subsection with a differential inequality that will be used below.

Lemma 3.3.5 (Estimates on h). Let y be a nonnegative, nondecreasing function on [0, t],
and let C, ξ, η be nonnegative constants. If h satisfies the differential inequality

|ḣ| ≤ Ce−ξty(|h|+ y) (0 ≤ t ≤ T )
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with h(0) = 0, and y(T ) ≤ η, then

|h(t)| ≤ C1y(t) , |ḣ(t)| ≤ C2e
−ξty(t)2 (0 ≤ t ≤ T ) ,

where C1 = (e
Cη
ξ − 1), C2 = Ce

Cη
ξ .

Proof. Fix t0 ∈ (0, T ]. Since y is non-decreasing, |ḣ(s)| ≤ Cy(t)(|h(t)| + y(t)) for all
0 ≤ s ≤ t. We separate variables and integrate from h(0) = 0 to obtain

log
( |h(s)|+ y(t)

y(t)

)
≤ Cy(t)

ξ
(1− e−ξt) ≤ Cη

ξ
(0 ≤ s ≤ t) ,

which yields the first claim after solving for h(s) and setting s = t. The second claim
follows by substituting this bound back into the differential inequality.

3.3.2 Proof of Theorem 1.2.1

In this section we establish the stability result of Theorem 1.2.1, that solutions with
initial values close to the pulse Φ converge exponentially to a small translate Φct+h∗ of
the pulse solution Φct.

Let L be the linearization about Φ in the moving frame, defined in Eq. (3.0.4), and
ξ ∈ (0, σ). We will construct a neighborhood U of Φ in H2,1 such that for every solution
u(t) with initial value u0 ∈ U there is a real-valued function h(t) such that

‖u(t)− Φh(t)‖ . e−ξt‖u0 − Φ‖2,1 (t ≥ 0)

where |h(0)| . ‖u0 − Φ‖2,1, and there exists h∗ ∈ R such that

|h(t)− h∗| . e−ξt‖u0 − Φ‖22,1 (t ≥ 0) .

Transforming back to the static frame, this will prove the theorem.
By Eq. (3.3.1) of Proposition 3.3.1, there is a neighborhood U of Φ such that each

u0 ∈ U can be written uniquely as u0 = Φh0 + v0, where Ph0v = 0. Since h0 depends
smoothly on u,

|h0| . ‖u0 − Φ‖2,1 , ‖v0‖2,1 = ‖u0 − Φh0‖2,1 . ‖u0 − Φ‖2,1 .
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Replacing u0 with its translate (u0)−h0 , we may assume that h0 = 0, that is,

u0 = Φ+ v0 , Pv0 = 0 .

By the second part of Proposition 3.3.1, the solution of Eq. (2.3.1) with initial value u0

can be written uniquely as

u(t) = Φh(t) + v(t) , Pv(t) = 0 ,

so long as u(t) ∈ U . The functions h(t) and v(t) satisfy inequalities (3.3.5) and (3.3.6)
with initial values h(0) = 0 and v(0) = v0.

Since the map u 7→ (h, v) is a diffeomorphism from U to a neighborhood of the origin
in R×Ran (Q), by replacing U with a smaller neighborhood we may assume that it has
the form U =

{
Φh + v

∣∣ (h, v) ∈ R× Ran (Q), |h| < κ, ‖v‖2,1 < η
}

, where κ is so small
that 〈τh, τ ∗〉 ≥ 1

2
whenever |h| ≤ κ. The value of η > 0 will be further specified below.

Let σ be the exponent from Proposition 3.2.1, and let C0 be the multiplicative con-
stant. Choose ξ ∈ (0, σ), define the monotonically increasing function

y(t) := sup
0≤s≤t

e−ξs‖v(s)‖2,1 ,

and let
T := inf

{
t ≥ 0

∣∣ |h(s)| ≥ κ or ‖y(s)‖2,1 ≥ η
}
.

Assume that ‖v0‖2,1 < η
2C

, and apply Lemma 3.3.4. By Eq. (3.3.8),

|ḣ(t)| ≤ Ce−ξt
(
|h(t)|+ y(t)

)
y(t) , (0 ≤ t ≤ T ) ,

where we have used that ‖v(t)‖2,1 ≤ e−ξty(t) by definition of y. It follows by Lemma 3.3.5
that h(t) ≤ Cηy(t) for 0 ≤ t ≤ T for some constant Cη. Since y(t) < η for t < T , by
reducing the value of η we can achieve that |h(t)| < κ for all t ∈ [0, T ). Inserting this
estimate into Eq. (3.3.9) yields

y(t) ≤ C0e
−(σ−ξ)t‖v0‖2,1 + C

∫ t

0

e−(σ−ξ)(t−s)y2(s) ds ,

where C is the product of C0, Cη, and the constant from Lemma 3.3.3. Since y is
nondecreasing, taking it out of the integral yields the upper bound

y(t) ≤ C0‖v0‖2,1 + Cy2(t) (0 ≤ t ≤ T ) (3.3.10)
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with a suitably adjusted constant C.

Consider the quadratic polynomial p(y) := C0‖v0‖2,1−y+Cy2. If d := 4C0C‖v0‖2,1 <
1, then P has two positive real roots, and is positive on the interval between them. The
smaller root satisfies

y∗ =
1

2C

(
1−

√
1− 4C0C‖v0‖2,1

)
≤ 2C‖v0‖2,1 < η .

Since C0 ≥ 1, we have that ‖v0‖2,1 < y∗. Eq. (3.3.10) implies, by continuity, that y(t) ≤ y∗

for all 0 ≤ t ≤ T . If T < ∞, then by continuity also y(T ) ≤ y∗ < η, contradicting the
definition of T . Hence T = +∞, and

‖v(t)‖2,1 ≤ e−ξty(t) ≤ 2C0e
−ξt‖v0‖2,1 (t ≥ 0) .

Since |h(t)| ≤ κ and ‖v(t)‖ < η, we conclude that Φh(t) + v(t) ∈ U for all t ≥ 0, and
‖v(t)‖2,1 converges exponentially to zero.

To show that h(t) converges as well, we use again Lemma 3.3.5 to see that

|ḣ(t)| ≤ Ce−ξt‖v0‖22,1 .

It follows that h(t) converges exponentially to a limit, h∗, with |h∗| . ‖v0‖22,1. Since
‖v0‖2,1 . ‖u0 − Φ‖2,1, this proves the estimate for h. The proof of the theorem is
completed by shrinking the neighborhood once more, to

U =
{
Φh + v

∣∣ (h, v) ∈ R× Ran (Q), |h| < κ, ‖v‖2,1 < η
2C

}
2

3.4 Numerical simulations

To strengthen our analytical results we include numerical simulations. Discretize Eq. (1.1.3)
with ∆S given by Eq. (1.2.2) uniformly in space (x, θ) and time (t). Consider Dirich-
let boundary conditions in the x-direction and periodic boundary conditions in the θ-
direction. In all simulations the parameters α, γ, ε and R are fixed.

For the standard cylinder SR fix the radius R = 0.8. The first three plots of Fig. 3.1
depict images of the formation of the pulse and the last two of the propagation of the
pulse. In Fig. 3.2 we pick the cross section at θ = π and draw the profiles of the pulses.



Chapter 3. Pulses on standard cylinders 48

Figure 3.1: Evolution of the potential, u1, of the FitzHugh-Nagumo system (1.1.3) for S = SR.
The x-axis and y-axis represent the variables x and θ, respectively. The snapshots are taken
in time t = 0, 50, 150, 300 and 600 (from top to bottom). The initial condition depends on
both x and θ, and the boundary conditions are Dirichlet in the x-direction and periodic in the
θ-direction. The values of the parameters are: α = 0.22, ε = 0.001, γ = 2.5 and R = 0.8.
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Figure 3.2: Configuration of the pulse corresponding to the images of Figure 3.1 at the cross
section θ = π.



Chapter 4

Near-pulse solutions on warped
cylinders

In this chapter, we consider the case of warped cylinders S = Sρ. We assume that the
radius ρ(x) is a function of class C2, and it is also positive, bounded, and bounded away
from zero. The Laplace-Beltrami operator ∆Sρ is given by Eq. (1.2.8) and the FHN
system on Sρ by

∂tu1 = ∆Sρu1 + f(u1)− u2 ,

∂tu2 = ε(u1 − γu2) .
(4.0.1)

Let Fρ(u) denote the right hand side of Eq. (4.0.1). It is defined explicitly as

Fρ(u) :=

(
∆Sρu1 + f(u1)− u2

ε(u1 − γu2)

)
. (4.0.2)

The pulse Φ is not a solution of Eq. (4.0.1), so Fρ(Φ) 6= 0. This implies that expanding
Eq. (4.0.1) (or the corresponding equation in the moving frame (2.3.1)) about Φ, the
principal part will be time-dependent. To avoid this issue we Taylor expand Eq. (4.0.1)
in the static frame about the zero solution:

∂tu = Fρ(u)

= Aρu+N(u) .

Here the linearization of Eq. (4.0.1) about zero is given by the Gâteaux derivative Aρ :=

49
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dFρ(0):

Aρ :=

(
∆Sρ + f ′(0) −1

ε −εγ

)
(4.0.3)

and N(u) := Fρ(u)− Aρu is the nonlinearity stated explicitly as

N(u) :=

(
−u3

1 + (α + 1)u2
1

0

)
. (4.0.4)

Due to the geometry of the surface of Sρ, the inner product on L2(Sρ) is defined by
the surface integral

〈u,w〉ρ :=
∫
Sρ

(u1w̄1 + ε−1u2w̄2)
√
g dθdx, (4.0.5)

with the corresponding norm ‖ · ‖ρ. In Eq. (4.0.5), √
g dθdx is the Riemannian area

element with density g = ρ2(1+ (ρ′)2). The linearization in Eq. (4.0.3) is an operator on
L2(Sρ).

Define the mixed Sobolev spaces

H2k,ℓ(Sρ) :=
{
u ∈ L2

∣∣ (∆Sρ)
ku1 ∈ L2(Sρ), (∂x)

ℓu2 ∈ L2(Sρ)
}

(4.0.6)

for k, ℓ = 0, 1, with norms

‖u‖2k,ℓ;ρ :=
∑
0≤i≤k

‖(∆Sρ)
iu1‖ρ +

∑
0≤j≤ℓ

ε−1‖∂j
xu2‖ρ . (4.0.7)

Observe that the spaces in Eq. (4.0.6) do not impose a condition on the derivative ∂θu2.
The space H0,0 agrees with the Hilbert space L2, and the H2,0 agrees with the corre-
sponding Sobolev space H2 × L2. On the other hand, H0,1 strictly contains the space
L2×H1, and H2,1 strictly contains H2×H1. In the special case of the standard cylinder
SR, Eq. (4.0.6) with k = l = 1 coincides with the definition of H2,1(SR) in Eq. (4.0.7).
We will prove in Lemma 4.2.7 that the norms ‖ · ‖2k,ℓ;ρ are equivalent to ‖ · ‖2k,ℓ.

First we verify that the solution u of Eq. (4.1.1) with suitable initial conditions is well-
posed locally in time, and then we prove Theorem 1.2.2. The proof of the first argument
is similar to that of the local well-posedness on SR (Section 3.1), but for the sake of
completeness we include the proof in Section 4.1. As mentioned in the introduction, the
proof of Theorem 1.2.2 relies on a perturbation estimate that controls the dependence of
solutions on ρ. We prove this key estimate in Subsection 4.3.1, and in Subsection 4.3.2
we complete the proof of Theorem 1.2.2.
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4.1 Local well-posedness

Let Aρ and N(u) be given by Eqs. (4.0.3) and (4.0.4), respectively, and consider the
initial value problem

∂tu = Aρu+N(u)

u|t=0 = u0

(4.1.1)

on the space H2,1(Sρ). If u(t) is a classical solution of Eq. (4.1.1), then by Duhamel’s
formula it also solves the integral equation

u(t) = etAρu0 +

∫ t

0

e(t−s)AρN(u(s)) ds =: Fρ(u)(t) . (4.1.2)

As in Lemma 3.1.2, for every η > 0 there exists a constant Cη > 0 depending on α, γ, ε,
and η such that

‖N(u)−N(w)‖2,1;ρ ≤ Cη‖u− w‖2,1;ρ (4.1.3)

for all u, w with ‖u‖2,1;ρ, ‖u‖2,1;ρ ≤ η.

Proposition 4.1.1 (Local well-posedness). Assume that ρ is of class C2, bounded, and
bounded away from zero. Then for each u0 ∈ H2,1(Sρ), there exists T > 0 (depending on
‖u0‖2,1) such that Eq. (4.0.1) on Sρ has a unique mild solution u in C([0, T ], H2,1) with
initial condition u|t=0 = u0. The solution depends continuously on u0.

Proof. Given u0 ∈ H2,1(Sρ), fix η > 0 and T > 0 (to be specified below) and consider
the ball

B :=
{
u ∈ C([0, T ], H2,1(Sρ))

∣∣ ‖u(t)‖2,1;ρ ≤ η for all 0 ≤ t ≤ T
}
,

equipped with the norm ‖u‖T := sup0≤t≤T ‖u(t)‖2,1;ρ.
The map Fρ defined by Eq. (4.1.2) is Lipschitz continuous on B,

‖Fρ(u)−Fρ(w)‖T ≤ sup
0≤t≤T

∫ t

0

‖e(t−s)Aρ‖2,1;ρ‖N(u(s))−N(w(s))‖2,1;ρ ds

≤ TC0Cη ‖u− w‖T ,

where C0 := supt≥0 ‖etAρ‖2,1;ρ, and Cη is as in Eq. (4.1.3). Moreover,

‖Fρ(0)‖T = sup
0≤t≤T

‖etAρu0‖2,1;ρ ≤ C0 ‖u0‖2,1;ρ .
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Choose η = 2C0‖u0‖2,1;ρ, and T = (2C0Cη)
−1. Then Fρ has Lipschitz constant 1

2
and

maps B into itself. By the contraction mapping principle, Fρ has a unique fixed point in
B, which provides the desired mild solution of Eq. (4.1.1).

Let w(t) be another mild solution, whose initial value w0 := w
∣∣
t=0

satisfies ‖w0‖2,1;ρ <
η. The difference between the solutions is bounded by

‖u(t)− w(t)‖2,1;ρ ≤ ‖etAρ(u0 − w0)‖2,1;ρ +
∫ t

0

‖e(t−s)Aρ
(
N(u(s))−N(w(s))

)
‖2,1;ρ ds

≤ C0‖u0 − w0‖2,1;ρ + C0Cη

∫ t

0

‖u(s)− w(s)‖2,1;ρ ds ,

so long as max{‖u(s)‖2,1;ρ, ‖w(s)‖2,1;ρ} ≤ η for all 0 ≤ s ≤ t. By Grönwall’s inequality,

‖u(t)− w(t)‖2,1;ρ ≤ C0e
C0Cηt‖u0 − w0‖2,1;ρ .

This proves continuous dependence on initial data.

4.2 Linear dynamics

This section is dedicated to the study of the linear part of Eq. (4.1.1). We start with
some basic properties of Aρ (Subsection 4.2.1) and then we compare the linear solutions
of the FHN system on the surface of Sρ with those on the surface of the standard cylinder
SR (Subsection 4.2.2).

4.2.1 Properties of the linear operator

The linearization Aρ, of Eq. (4.0.1) about the zero solution, is given by Eq. (4.0.3). The
domain of Aρ is H2,0(Sρ).

Lemma 4.2.1 (Aρ is dissipative). Define σ := min{α, εγ}. Then

Re〈Aρu, u〉ρ ≤ −σ‖u‖2ρ (4.2.1)

for u ∈ H2,0(Sρ).

Proof. Using that ∆Sρ is negative semi-definite with respect to the Riemannian metric
on the surface of Sρ, that f ′(0) = −α < 0, and that the off-diagonal terms of Aρ are
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skew-adjoint relative to the inner product 〈·, ·〉ρ, we have

Re〈Aρu, u〉ρ = Re

∫
Sρ

(
(∆Sρu1)ū1 + f ′(0)|u1|2 − u1ū2 + ū1u2 − γ|u2|2

)√
g dθdx

=

∫
Sρ

(
(∆Sρu1)ū1 − α|u1|2 − γ|u2|2

)√
g dθdx

≤ −
∫
Sρ

(
α|u1|2 + γ|u2|2

)√
g dθdx

≤ −σ‖u‖2ρ.

Since σ > 0, the right hand side in the above inequality is negative implying that Aρ is
dissipative.

In the next lemma we show that the graph norm of Aρ is equivalent to the norm
‖ · ‖2,0;ρ.

Lemma 4.2.2. The graph norm of the operator Aρ satisfies

‖u‖2,0;ρ . ‖Aρu‖ρ + ‖u‖ρ . ‖u‖2,0;ρ (4.2.2)

for u ∈ H2,0(Sρ).

Proof. The upper bound in Eq. (4.2.2) follows immediately from the fact that Aρ is a
second-order differential operator with twice continuously differentiable coefficients. For
the lower bound, we use ‖∂xu1‖L2

ρ
≤ b‖∂2

xu1‖L2
ρ
+ 1

4b
‖u1‖L2

ρ
for b small enough, and we

estimate the principal part of Aρ:

‖∆Sρu1‖L2
ρ
≥ sup(1 + ρ′2)−1‖∂2

xu1‖L2
ρ
+ (sup ρ)−2‖∂2

θu1‖L2
ρ
− C1‖∂xu1‖L2

ρ

≥ C2‖u1‖H2
ρ
− C3‖u1‖L2

ρ

for some positive constants C1, C2 and C3. The rest of the terms in Aρ are bounded
operators on L2. It follows that

‖Aρu‖L2
ρ
≥ C2‖u‖H2

ρ×L2
ρ
− C4‖u‖L2

ρ

where C4 > 0. Therefore, for any C6 ≥ 1,

C6(‖Aρu‖L2
ρ
+ ‖u‖L2

ρ
) ≥ C5‖u‖H2

ρ×L2
ρ
+ (C6 − C4)‖u‖L2

ρ
.

Take C4 = C6. Dividing by C6 we obtain the lower bound in Eq. (4.2.2).
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By Eq. (4.2.1) the graph norm of Aρ is also equivalent to the norm ‖Aρu‖ρ. Combining
this with the relation in Eq. (4.2.2) we have

‖u‖2,0;ρ . ‖Aρu‖ρ . ‖u‖2,0;ρ . (4.2.3)

Since Aρ is dissipative it follows form Lemma 3.2.3 that Aρ generates a strongly contin-
uous semigroup, denoted by etAρ for t ≥ 0, on L2(Sρ) that has H2,0(Sρ) as an invariant
subspace.

Next we restrict Aρ to the subspace H0,1(Sρ). The reason is that we want to work
in the subspace H2,1 that was used in Theorem 1.2.1, but it is not immediately obvious
that this space is an invariant subspace of etAρ .

Lemma 4.2.3 (Domain of Aρ in H0,1). Let α, γ, ε be fixed positive constants, and ρ

be a positive function of class C2 on the real line. Then the operator Aρ maps H2,1(Sρ)

bijectively onto H0,1(Sρ), and

‖u‖2,1;ρ . ‖Aρu‖0,1;ρ . ‖u‖2,1;ρ (4.2.4)

with u ∈ H2,1(Sρ).

Proof. Fix ρ as in the assumptions, and let u ∈ H2,1(Sρ). To simplify notation, we
momentarily suppress the dependence of the spaces and norms on ρ in the notation.

Write ‖Aρu‖0,1 = ‖Aρu‖ + ‖∂x(εu1 − εγu2)‖, and combine the upper bound in
Eq. (4.2.3) with the estimates ‖∂xu1‖ ≤ ‖u‖2,1 and ‖∂xu2‖ ≤ ‖u‖0,1. It follows that
Aρu ∈ H0,1, and the upper bound in Eq. (4.2.4) holds. In particular, Aρ maps H2,1 to
H0,1. By Eq. (4.2.3), this map is injective.

To show that this map is also surjective, let w ∈ H0,1. Since w ∈ L2, the equation
Aρu = w has a unique solution u ∈ H2,0. The lower bound in Eq. (4.2.3) yields u1 ∈ H2,
and ‖u1‖H2 . ‖Aρu‖ ≤ ‖Aρu‖0,1. For the second component, we use that εu1 − εγu2 =

w2, and estimate

‖∂xu2‖ ≤ γ−1‖∂xu1‖+ (εγ)−1‖∂xw2‖ . ‖u‖2,0 + ‖w‖0,1 . ‖Aρu‖0,1 .

This proves surjectivity, and the lower bound.

A useful consequence of Lemma 4.2.3 is the following

Corollary 4.2.4. Let B be a bounded linear operator on H0,1(Sρ) that commutes with
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Aρ. Then
‖B‖0,1;ρ . ‖B‖2,1;ρ . ‖B‖0,1;ρ .

We continue with one more property of the linear operator Aρ that will be used to
characterize its semigroup etAρ on H0,1(Sρ).

Lemma 4.2.5 (Aρ is sectorial). Let ρ ∈ C2 be a real-valued function that is bounded and
bounded away from zero. Then Aρ generates an analytic semigroup etAρ on H2,1(Sρ).
The spectrum of Aρ on H0,1(Sρ) is contained in the sector

Σ :=
{
λ ∈ C

∣∣ Re λ ≤ −σmin{1, ε−
1
2 | Im λ|}

}
, (4.2.5)

where σ := min{α, εγ} and α, ε, γ are fixed positive constants.

Proof. We will bound the numerical range of Aρ with respect to a certain weighted inner
product, and then apply [43, Theorem 1.3.9]. As in the proof of Lemma 4.2.3, ρ is fixed
and will be suppressed in the notation. For s > 0, define

〈u, v〉s := 〈u1, v1〉+ ε−1〈u2, v2〉+ sε−1〈∂xu2, ∂xv2〉 .

The corresponding norm ‖ · ‖s is equivalent to the norm ‖ · ‖0,1 from Eq. (4.0.6),

min{1, s
1
2}‖u‖0,1 ≤ ‖u‖s ≤ max{1, s

1
2}‖u‖0,1 , (s > 0) .

We compute

Re 〈Aρu, u〉s = −α‖u1‖2 − γ‖u2‖2 + 〈∆Sρu1, u1〉+ sRe 〈∂xu1 − γ∂xu2, ∂xu2〉

≤ −σ‖u‖2 − 1

1 + sup |ρ′|2
‖∂xu1‖2 + s‖∂xu1‖‖∂xu2‖ − sγ‖∂xu2‖2

≤ −σ‖u‖2s +
s2

4
(1 + sup |ρ′|2)‖∂xu2‖2 . (4.2.6)

Note that the inner products and norms on the right hand side of the first line are
the standard Riemannian ones for scalar functions in L2(Sρ). In the second line, we
have integrated the Laplacian term by parts. The last step follows by completing the
square. For any q ∈ (0, 1), we can achieve Re 〈Aρu, u〉s ≤ −qσ‖u‖2s by choosing s

sufficiently small. By Lemma 3.2.3, Aρ generates a semigroup of contractions with respect
to the norm ‖ · ‖s. Moreover, the spectrum of Aρ is contained in each of the half-planes
{Re λ ≤ −qσ}, and hence in their intersection.
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Likewise,

Im 〈Aρu, u〉s = 2 Im 〈u1, u2〉+ s Im 〈∂xu1, ∂xu2〉

≤
√
ε‖u‖2 + s‖∂xu1‖‖∂xu2‖ .

Comparing with the second line of Eq. (4.2.6), we see that for s > 0 sufficiently small

Re 〈Aρu, u〉s ≤ −σε−
1
2 | Im 〈Aρu, u〉s| .

Since the resolvent set of Aρ contains 0, by [43, Theorem 1.3.9], it contains the entire
complement of the sector {Re λ ≤ −σε−

1
2 | Im λ|}. In summary, for s sufficiently small,

the numerical range of Aρ with respect to 〈·, ·〉s lies in

Σq :=
{
λ ∈ C

∣∣ Re λ ≤ −σmin{q, ε−
1
2 | Im λ|}

}
.

For the same norm ‖ · ‖s as in the proof of Lemma 4.2.5, the resolvent operator of Aρ

satisfies the estimate
‖(λ− Aρ)

−1‖s ≤
1

infz∈Σ ‖λ− z‖s
for λ 6∈ Σ. In the space H2,1(Sρ) we have the following resolvent and semigroup estimates:

Lemma 4.2.6. Assume ρ ∈ C2 is as in Lemma 4.2.5. Then for all λ with Re λ ≥
−1

2
σmin{1, ε− 1

2 | Im λ|} the resolvent operator (λ− Aρ)
−1 satisfies

‖(λ− Aρ)
−1‖2,1;ρ ≤ C(1 + sup |ρ′|)min

{
1,

1

|λ|

}
(4.2.7)

for some constant C > 0. The semigroup etAρ satisfies

sup
t>0

‖etAρ‖2,1;ρ ≤ C(1 + sup |ρ′|)e−σt (4.2.8)

where σ := min{α, εγ}.

Proof. To obtain Eq. (4.2.7) we choose s = γ(1 + sup |ρ′|2)−1, and compare the norm
‖ · ‖s with the norm ‖ · ‖0,1;ρ. Since the resolvent commutes with Aρ, by Lemma 4.2.3,
the estimate holds also for the norm ‖ · ‖2,1;ρ.

The bound on the semigroup follows directly by Eq. (4.2.7) and the Corollary II.3.6 [12].
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4.2.2 Comparison with the standard cylinder

The purpose of this subsection is to compare the semigroups etAρ and etAR . The operator
AR is the corresponding linear operator of Aρ on the standard cylinder SR. It is given
explicitly by

AR :=

(
∆SR

+ f ′(0) −1

ε −εγ

)
. (4.2.9)

These two semigroups are defined in different spaces, so we need the following equiv-
alence relation.

Lemma 4.2.7 (Equivalence of Sobolev spaces). Let α, γ, ε be fixed positive constants,
0 < R ≤ 1, and ρ a positive function of class C2. If δ := R−1‖ρ−R‖C2 ≤ 1

16
, then

1

2
‖u‖2k,ℓ ≤ ‖u‖2k,ℓ;ρ ≤ 2‖u‖2k,ℓ (4.2.10)

for k, ℓ ∈ {0, 1}.

Proof. Consider a scalar-valued function w on Sρ. By Eq. (4.0.5):

‖w‖2ρ =
∫
R

∫
S1

|w|2
√

g(x) dθdx ,

where g = ρ2(1 + (ρ′)2). The bound |
√
g(x)−R| ≤ 2δ yields

∣∣‖w‖ρ − ‖w‖
∣∣ ≤ 2δ‖w‖ . (4.2.11)

Applying Eq. (4.2.11) to ∂xw we have

∣∣‖∂xw‖ρ − ‖∂xw‖
∣∣ ≤ 2δ‖∂xw‖ . (4.2.12)

Next we claim that

∣∣‖∆Sρw‖ρ − ‖∆SR
w‖
∣∣ ≤ 8δ

(
‖∆SR

w‖+ ‖w‖
)
. (4.2.13)

Indeed,
∆Sρ −∆SR

= a(x)∂2
x + b(x)∂x + c(x)|ρ(x)−R|R−2∂2

θ , (4.2.14)

where the coefficients are bounded by 0 < a(x) ≤ 1
2
Rδ, |b(x)| ≤ δ+R2δ2, and c(x) ≤ 6Rδ.

Since δ ≤ 1, R ≤ 1, and
‖∂xw‖ ≤ 1

2

(
‖∆SR

w‖+ ‖w‖
)
, (4.2.15)
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we obtain by the triangle inequality that

‖(∆Sρ −∆SR
)w‖ ≤ 6δ(‖∆SR

w‖+ ‖w‖) . (4.2.16)

Using once more the triangle inequality, as well as Eq. (4.2.11), we arrive at

∣∣‖∆Sρw‖ρ − ‖∆SR
w‖
∣∣ ≤ ‖(∆Sρ −∆SR

)w‖+
∣∣‖∆Sρw‖ρ − ‖∆Sρw‖

∣∣
≤ 8δ (‖∆SR

w‖+ ‖w‖) .

When δ ≤ 1
16

, we can solve Eq. (4.2.11) for the norm on L2(Sρ) to obtain

1

2
‖w‖ ≤ ‖w‖ρ ≤ 2‖w‖ .

Similarly, we solve Eq. (4.2.12) for ‖∂xw‖ρ, and Eq. (4.2.13) for ‖∆Sρw‖ρ. The desired
result follows from the definitions of the norms in Eqs. (1.2.4) and (4.0.6).

A key tool is a similarity argument of the corresponding resolvent operators, (λ −
AR)

−1 and (λ− Aρ)
−1.

Lemma 4.2.8 (Perturbation estimate for the resolvent). Let α, γ and ε be positive
constants, and 0 < R ≤ 1. There exists a constant C such that if δ := R−1‖ρ−R‖C2 ≤ 1

16
,

then
‖(λ− Aρ)

−1 − (λ− AR)
−1‖2,1 ≤ Cδmin{1, |λ|−1}

for all λ with Re λ ≥ −1
2
σmin{1, ε− 1

2 | Im λ|}.

Proof. If λ is as in the statement of the lemma, then by Lemma 4.2.5 it lies in the
resolvent set of both Aρ and AR. To estimate the difference, we write

Aρ − AR =

(
∆Sρ −∆SR

0

0 0

)
=: W ,

and apply the resolvent identity

(λ−Aρ)
−1 − (λ−AR)

−1 = (λ−AR)
−1W (λ−Aρ)

−1 .
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For the factor on the right, we use Lemmas 4.2.7 and 4.2.3 to see that

‖(λ− Aρ)
−1‖2,1 . ‖(λ− Aρ)

−1‖2,1;ρ
. ‖(λ− Aρ)

−1‖0,1;ρ

. min

{
1,

1

|λ|

}
.

(4.2.17)

The second inequality holds because the resolvent commutes with Aρ. By Eq. (4.2.16),
the middle factor maps H2,1 into H0,1 and satisfies

‖Wu‖0,1 = ‖(∆Sρ −∆SR
)u1‖ . δ‖u‖2,1

for all u ∈ H2,1. By Lemma 4.2.3, the factor on the left maps H0,1 back into H2,1, and

‖(λ− AR)
−1u‖2,1 . ‖AR(λ− AR)

−1u‖0,1
≤ ‖u‖0,1 + |λ| ‖(λ− AR)

−1u‖0,1
. ‖u‖0,1

for all u ∈ H0,1. In the second line we have written AR = −(λ−AR)+λ and applied the
triangle inequality, and in the last line we have used that ‖(λ−AR)

−1‖0,1 . min{1, |λ|−1}
by Lemma 4.2.5.

Combining the inequalities for the three factors, we conclude that

∥∥((λ−Aρ)
−1 − (λ−AR)

−1
)
u
∥∥
2,1

. δmin{1, |λ|−1|} ‖u‖2,1

for all u ∈ H2,1, proving the claim.

Using the result of the above lemma we prove that the semigroup generated by AR

is close to that of Aρ.

Proposition 4.2.9 (Perturbation estimate for the semigroup). Let α, γ and ε be positive
constants. There exists a constant C such that, if 0 < R ≤ 1 and δ := R−1‖ρ−R‖C2 ≤ 1

16
,

then the semigroup generated by Aρ on H2,1 satisfies

‖etAR − etAρ‖2,1 ≤ Cδ(1 + log t−1)

for all t ≥ 0.
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Proof. Let Γ be the contour consisting of the two half-lines Re λ = −1
2
σε−

1
2 | Im λ|,

traversed counterclockwise. By Lemma 4.2.5, Γ encloses the spectrum of Aρ and AR.
Since Aρ is sectorial, the semigroup etAρ is represented by the contour integral

etAρ =
1

2πi

∮
Γ

eλt(λ− Aρ)
−1 dλ ,

and correspondingly for AR. Parametrizing Γ by λ(s) = −|s|+ 2iσ−1
√
ε, we see that for

each t > 0, the integral converges absolutely with respect to the operator norm on H2,1.

We estimate the difference from etAR by

‖etAρ − etAR‖2,1 =
∥∥∥∥ 1

2πi

∮
Γ

eλt
(
(λ− Aρ)

−1 − (λ− AR)
−1
)
dλ

∥∥∥∥
2,1

≤ 1

2π

∫ ∞

−∞
etRe λ(s)‖(λ−Aρ)

−1 − (λ−AR)
−1‖2,1 |λ′(s)| ds

. δ

∫ ∞

0

e−ts min{1, s−1} ds ,

where we have applied Lemma 4.2.8 to the integrand in the last step. For t ≥ 1, the
integral is uniformly bounded. For t < 1, we have∫ ∞

0

e−ts min{1, s−1} ds ≤ 1 +

∫ t−1

1

s−1 ds+

∫ ∞

t−1

te−ts ds

≤ 2 + log t−1 ,

(4.2.18)

proving the claim.

4.3 Nonlinear dynamics

We extend the perturbation estimates from Section 4.2 to the nonlinear evolution gener-
ated by the FHN system on Sρ. To prove Theorem 1.2.2 we need a perturbation estimate
that controls the dependence of solutions on ρ. The size of the perturbation is measured
in terms of the parameter δ := R−1‖ρ − R‖C2 . In Subsection 4.3.1 we state and prove
that perturbation result, and in Subsection 4.3.2 we prove Theorem 1.2.2.
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4.3.1 Perturbation of the radius

Suppose that u ∈ C([0, T ], H2,1) is a mild solution of Eq. (3.0.1) on a standard cylinder
SR, with initial values u|t=0 = u0. Eq. (3.0.1) is equivalent to Eq. (4.0.1), expressed in
the static frame. The pulse defines a traveling wave solution Φ(x − ct) on SR. In the
next proposition, we address the dependence of the mild solution on the variable radius,
ρ(x).

Proposition 4.3.1 (Perturbation of the radius). Let uρ ∈ C([0, T ], H2,1(Sρ)) be a mild
solution of Eq. (4.0.1) on Sρ with initial values uρ|t=0 = u0. There are positive constants
δ∗ and C such that if 0 < R ≤ 1 and δ := R−1‖ρ−R‖C2 ≤ δ∗, then uρ satisfies

sup
0≤t≤T

‖uρ(t)− u(t)‖2,1 ≤ Cδ. (4.3.1)

Proof. Given a solution u(t) of the FHN system on SR, set η = 2 sup0≤t≤T ‖u(t)‖2,1. Let
uρ(t) be the solution on Sρ with the same initial value, u0. By definition of the mild
solutions,

uρ(t)− u(t) = (etAρ − etAR)u0 +

∫ t

0

(
e(t−s)AρN(uρ(s))− e(t−s)ARN(u(s))

)
ds ,

so long as both solutions exist. By Proposition 4.2.9, for δ ≤ 1
16

the difference of the
semigroups is bounded by

‖etAρ − etAR‖ ≤ C0δ(1 + log t−1) , (t > 0)

with some constant C0. We use the triangle inequality on the integrand, and then apply
the semigroup estimate and Eq. (4.1.3),

‖e(t−s)AρN(uρ)− e(t−s)ARN(u)‖2,1
≤ ‖(e(t−s)Aρ − e(t−s)AR)N(u)‖2,1 + ‖e(t−s)Aρ(N(uρ)−N(u))‖2,1
≤ C0δ(1 + log t−1)‖N(u)‖2,1 + C1‖N(uρ)−N(u)‖2,1
≤ C0Cηδ(1 + log t−1)‖u‖2,1 + C1Cη‖uρ − u‖2,1 ,

so long as ‖uρ(s)‖ ≤ η. Here, C1 = supt e
tAρ , see Lemma 4.2.5, and Cη is the Lipschitz

constant in Eq. (4.1.3). For the integral, it follows that

‖uρ(t)− u(t)‖2,1 ≤ C2(T )δ‖u0‖2,1 + C3

∫ t

0

‖uρ(s)− u(s)‖2,1 ds ,
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where C2(t) = C1(1+2Cηt)(1+log t−1), and C3 = C2Cη. In the bound on the nonlinearity,
we have used that ‖uρ(t)‖2,1 ≤ 1

2
η for 0 ≤ t ≤ T . Set C := C2(T )e

C3T . By Grönwall’s
inequality,

‖uρ(t)− u(t)‖2,1 ≤ Cδ‖u0‖2,1 , (0 ≤ t ≤ T )

provided that sup0≤t≤T ‖uρ(t)‖2,1 ≤ η. Since ‖u(t)‖2,1 ≤ 1
2
η for 0 ≤ t ≤ T , by the triangle

inequality this is guaranteed by setting δ∗ = min
{

1
16
, η
2C

}
.

4.3.2 Proof of Theorem 1.2.2

We consider the FHN system (3.0.1) on a standard cylinder SR in a neighborhood of M
as a reference. Fix a pulse Φ ∈ M. By Theorem 1.2.1, there are constants ξ0 > 0 and
C0 ≥ 1 such that

dist (u(t),M) ≤ C0e
−ξ0t‖u0 − Φ‖2,1

for t ≥ 0 and for every solution u with initial values in a neighborhood U of Φ in H2,1(SR).
But Φ is translation invariant, so

dist (u(t),M) ≤ C0e
−ξ0tdist (u0,M). (4.3.2)

Eq. (4.3.2) holds for all u with u0 ∈ W , where W is a neighborhood of the manifold M
of the form

W =
{
w ∈ H2,1

∣∣ dist (w,M) < η
}

for some η > 0 with C0η ≤ ‖Φ‖2,1. Set T := 1
ξ0
log(2C0), so that C0e

−ξ0T = 1
2
. Using the

triangle inequality we have:

sup
0≤t≤T

‖u(t)‖2,1 ≤ sup
0≤t≤T

dist (u(t),M) + sup
Φh∈M

‖Φh‖2,1

≤ 2‖Φ‖2,1

for all solutions on SR with initial value u
∣∣
t=0

∈ W .
Consider the FHN system (3.0.1) on a warped cylinder Sρ. Define δ := R−1‖ρ −

R‖C2 ≤ δ∗, where the constant δ∗ will be determined below. Given an initial condition
u0 ∈ W , let u(t) be the mild solution of FHN on SR with initial condition u

∣∣
t=0

= u0.
Since ‖u(t)‖2,1 ≤ 2‖Φ‖2,1 for all t ≥ 0, by Proposition 4.3.1 there exists δ0 > 0 and C > 0

such that
sup

0≤t≤T
‖uρ(t)− u(t)‖2,1 ≤ Cδ , (4.3.3)
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provided that δ ≤ δ0. Choose

δ∗ := min

{
δ0,

η

2C

}
. (4.3.4)

Assuming that δ ≤ δ∗, we observe that

dist (uρ(t),M) ≤ dist (u(t),M) + ‖uρ(t)− u(t)‖2,1
≤ C0e

−ξ0tdist (u0,M) + Cδ

< 2C0η

(4.3.5)

for all 0 ≤ t ≤ T . In Eq. (4.3.5) we first used the triangle inequality and then applied
Eqs. (4.3.2) and (4.3.3). For t = T and for δ∗ as in Eq. (4.3.4) we have

dist (uρ(T ),M) ≤ 1

2
dist (u0,M) + Cδ < η . (4.3.6)

Therefore, uρ ∈ W whenever uρ(0) ∈ W .

Iterating Eq. (4.3.6) we obtain

dist (uρ((k+1)T ),M) ≤ 1

2
dist (uρ(kT ),M) + Cδ (4.3.7)

for k ∈ N. Solving the recursion we conclude that

dist (uρ(kT ),M) ≤ 2−kdist (u0,M) + 2Cδ.

By Eq. (4.3.5):

dist (uρ(t),M) ≤ 2−kC0 dist (u0,M) + (2 + C0)Cδ

for all t with kT ≤ t ≤ (k + 1)T and all k ∈ N . For T = 1
ξ0
ln(2C0) the above inequality

implies
dist (u(t),M) ≤ C1e

−ξtdist (u0,M) + C2δ , (t ≥ 0)

with C1 := 2C0, C2 := (2 + C0)C, ξ = ln2
ln(2+C0)

ξ0, and all t ≤ 0.

2
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4.4 Numerical simulations
As in the standard cylinder we include numerical results of the simulations for S = Sρ.
Here the radius is defined by the function ρ(x) = 0.78 + 0.023esin(4x). The potential u1

starts close to a pulse (Fig. 4.1a), and as time progresses it remains close to a translation
of it, see (Fig. 4.1b – 4.1e).

(a) t = 0 (b) t = 200 (c) t = 400 (d) t = 600 (e) t = 800

Figure 4.1: Near-pulse solution of the FitzHugh-Nagumo equation on S = Sρ (green pulse)
compared to the constant pulse (black pulse). The radius on Sρ is given by the function
ρ(x) = 0.78+0.023esin(4x). The initial conditions are θ-independent and the boundary conditions
are Dirichlet in the x-direction and periodic in the θ-direction for both pulses.

Observe that on the surface of a warped cylinder, the width of the pulse changes over
time. For example, the pulse at the timestep t = 800 (Fig. 4.1e) is narrower compared
to the pulse at t = 600 (Fig. 4.1d). On the other hand, the pulse on the surface of a
constant cylinder, after the formation, propagates without changing its shape.



Appendix A

The Hille - Yosida Theorem

We state two theorems: the Hille-Yosida and the Lumer-Phillips. Both theorems char-
acterize the linear operators that are the generator of a strongly continuous semigroup
of contractions.

Recall that a semigroup etB, t ≥ 0, of a bounded linear operator B, on a Hilbert
space H, is strongly continuous if

lim
t↓0

etBu = u for every u ∈ H. (A.0.1)

Assume there exists a constant ω ∈ R such that ‖etB‖ ≤ eωt, t ≥ 0. Then etB is called a
contraction semigroup.

Theorem A.0.1 (Hille-Yosida). For a linear operator B on a Hilbert space H, the
following properties are equivalent.

1. B generates a strongly continuous semigroup of contractions

2. B is closed, densely defined, and for every λ > 0 one has λ in the resolvent set of
B and

‖λ (λ−B)−1‖ ≤ 1 . (A.0.2)

For the proof we refer the reader to either [12] or [43]. The next lemma is a conse-
quence of the Hille-Yoshida theorem.

Lemma A.0.2. Let B be the infinitesimal generator of a strongly continuous semigroup
of contractions. Its spectrum lies in the left half-plane {λ ∈ C | Reλ ≤ 0} and its
resolvent is bounded by

‖(λ−B)−1‖ ≤ 1

Re λ
(Reλ > 0). (A.0.3)
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Proof. For λ > 0 and u ∈ H let

R(λ)u =

∫ ∞

0

e−λt etBu dt. (A.0.4)

The above integral exists by continuity and it is well-defined for λ with Reλ > 0. Taking
the norms we have

‖R(λ)u‖ ≤
∫ ∞

0

eλt ‖etBu‖ dt

≤ 1

Re λ
‖u‖.

For h > 0,

ehB − 1

h
R(λ)u =

1

h

∫ ∞

0

e−λt
(
e(t+h)Bu− etBu

)
dt

=
eλh − 1

h

∫ ∞

0

e−λt etBu dt− eλh

h

∫ h

0

e−λt etBu dt

=
eλh − 1

h
R(λ)u− eλh

h

∫ h

0

e−λt etBu dt.

(A.0.5)

Taking the limit as h → 0+, the left-hand side of Eq. (A.0.5) converges to BR(λ)u and
the right-hand side to λR(λ)u− u. That is, R(λ)u ∈ Dom(B) and

(λ−B)R(λ) = 1. (A.0.6)

For u ∈ Dom(B) and since B is closed we have

R(λ)Bu =

∫ ∞

0

e−λt etBBudt

=

∫ ∞

0

e−λtBetBu dt

= B

(∫ ∞

0

e−λt etBu dt

)
= BR(λ)u.

(A.0.7)

Combining Eq. (A.0.6) and Eq. (A.0.7) we obtain that

R(λ)(λ−B)u = u (u ∈ Dom(B)).

Therefore, R(λ) = (λ − B)−1 which implies that the resolvent set of B contains the
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open right half-plane. The estimate (A.0.3) follows directly.

The second theorem gives a characterization for generators of contraction semigroups
that does not require explicit knowledge of the resolvent. Let us first recall the definition
of dissipativity and then we state the theorem. In a Hilbert space H, we say that a linear
operator B is dissipative if for every u ∈ Dom(B) ⊂ H,

Re〈Bu, u〉 ≤ 0 .

Theorem A.0.3 (Lumer-Phillips). For a densely defined, dissipative operator B on a
Hilbert space H the following estimates are equivalent.

1. The closure B̄ of B generates a strongly continuous semigroup of contractions.

2. The range of λ−B, Ran (λ−B), is dense in H for all λ > 0.

For the complete proof of Theorem A.0.3 see Theorem 1.4.3, [43].
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Inversion formulas

In this appendix we state two inversion formulas. Let ω ∈ R. Assume there exists a
constant M ≥ 1 such that

‖etB‖ ≤ Meωt (B.0.1)

for all t ≥ 0. Without requiring that the semigroup etB is bounded, we have:

Lemma B.0.1. Let B be the infinitesimal generator of a strongly continuous semigroup
on a Banach space X. Then

etBu = lim
n→∞

1

2πi

∫ ω+in

ω−in

eλt(λ−B)−1u dλ (B.0.2)

for all u ∈ Dom(B) and ω such that Eq. (B.0.1) holds, with uniform convergence for t

in compact intervals of (0,∞).

Notice that in Eq. (B.0.2) the integral does not converge absolutely. Hence, it is
difficult to derive from it estimates on the semigroup etB. Adding more regularity on x,
the representation of etBu in the next lemma will converge absolutely.

Lemma B.0.2. Let etB, t ≥ 0, be a strongly continuous semigroup on a Banach space
X. Then

etBu =
(k − 1)!

tk−1

1

2πi
lim
n→∞

∫ ω+in

ω−in

eλt
[
(λ−B)−1

]k
u dλ (B.0.3)

for all ω such that Eq. (B.0.1) holds, k ∈ N, t > 0, and x ∈ Dom(B2). Moreover, if
k ≥ 2, then the integral converges absolutely and uniformly for t > 0.

Complete proofs of Lemmas B.0.1 and B.0.2, as well as more inversion formulas can
be found in the book [11].
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Proof of Gearhart-Prüss Theorem

In Chapter 3 we proved exponential decay of the strongly continuous semigroup etLQ on
the Hilbert space H2,1, using the Gearhart-Prüss theorem. Recall that L is the linear
operator given by Eq. (3.0.4) and Q is the projection to the range of L. Notice that the
Gearhart-Prüss theorem does not hold on arbitrary Banach spaces but holds on Hilbert
spaces. Here we prove the Gearhart-Prüss theorem. We adopt the proof from [11].

Theorem C.0.1 (Gearhart-Prüss). Suppose that the operator B : D(B) ⊂ H → H,
where H is a Hilbert space, generates a strongly continuous semigroup. If the resolvent
(λ − B)−1 is uniformly bounded on the half-plane {λ ∈ C | Re λ > 0}, then there exists
a constant M > 0 such that the semigroup etB is exponentially stable for all t ≥ 0.

Proof. For each λ0 in the resolvent set of B, the spectral radius of the resolvent operator
(λ0 −B)−1 is given by

dist (λ0, σ(B)) ≥ 1

‖(λ0 −B)−1‖
. (C.0.1)

From Eq. (C.0.1) we have that iR is contained in the resolvent set of B. Hence the
uniform boundedness of the resolvent (λ−B)−1 extends by continuity to Reλ ≥ 0.

Define
ω0 := inf

{
β ∈ R : lim

t→∞
e−βt‖etB‖ = 0

}
.

Take β > |ω0|+ ι, for ι > 0 small, and consider the semigroup S(t) = e−βtetB, for t ≥ 0.
In Lemma A.0.2 we proved, for u ∈ H, that

(λ−B)−1u =

∫ +∞

0

e−λtetBu dt.
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So, for s ∈ R we have that

(
(β + is)−B

)−1
u =

(
is− (B − β)

)−1
u =

∫ +∞

0

e−istS(t)u dt.

For t < 0, set S(t) := 0, so that S(t) is defined for all t ∈ R. Using the Fourier transform
we have (

(β + is)−B
)−1

u = Ŝ(s)u.

Plancherel’s theorem implies that∫ +∞

−∞

∥∥((β + is)−B
)−1

u
∥∥2 ds = ∫ +∞

−∞
‖Ŝ(s)u‖2 ds

= 2π

∫ +∞

0

‖S(t)u‖2 dt

≤ C‖u‖2

(C.0.2)

for some positive constant C and u ∈ H.

By the resolvent identity we have

(is−B)−1 =
(
(β + is)−B

)−1
+ β(is−B)−1

(
(β + is)−B

)−1

which implies ∥∥(is−B)−1u
∥∥ ≤

∥∥1+ β(is−B)−1
∥∥∥∥((β + is)−B

)−1
u
∥∥

≤ (1 + βM)
∥∥((β + is)−B

)−1
u
∥∥. (C.0.3)

for some M > 0, and for all s ∈ R, u ∈ H. Combining Eqs. (C.0.2) and (C.0.3) we have∫ +∞

−∞

∥∥(is−B)−1u
∥∥2 ds ≤ (1 + βM)2

∫ +∞

−∞

∥∥((β + is)−B
)−1

u
∥∥2 ds

≤ (1 + βM)2C2 ‖u‖2
(C.0.4)

for all u ∈ H. Since ‖S‖ = ‖S∗‖, where S∗ is the adjoint semigroup generated by the
adjoint operator B∗, the resolvent (is−B∗)−1 satisfies the same estimate as above, i.e.,∫ +∞

−∞

∥∥(is−B∗)−1w
∥∥2 ds ≤ (1 + βM)2C2 ‖w‖2 (C.0.5)

for all w ∈ H.
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Using the formula in Lemma B.0.2 for k = 2 we conclude that

(tetBu,w) =
1

2πi

∫ +∞

−∞
e(β+is)t

((
(β + is−B)−1

)2
u,w

)
ds

=
1

2πi

∫ +∞

−∞
eist
(
(is−B)−1u, (−is−B∗)−1w

)
ds

(C.0.6)

for all u ∈ Dom(B2) and w ∈ H. For the second equality we used Cauchy’s integral
theorem, which is applicable since (λ − B)−1 is uniformly bounded for Re λ ≥ 0, and
hence

‖(λ−B)−1u‖ =
1

|λ|
‖(λ−B)−1Bu+ u‖

≤ 1

|λ|
(M‖Bu‖+ ‖u‖).

Applying the Cauchy-Schwarz inequality and using Eqs. (C.0.4) and (C.0.5), Eq. (C.0.6)
gives

|(tetBu,w)| ≤ 1

2π

(∫ +∞

−∞

∥∥(is−B)−1u
∥∥2ds) 1

2
(∫ +∞

−∞

∥∥(is−B∗)−1w
∥∥2ds) 1

2

≤ 1

2π

∥∥(is−B)−1u
∥∥∥∥(is−B∗)−1w

∥∥
≤ 1

2π
(1 + βM)2C2 ‖u‖ ‖w‖

for all u,w ∈ Dom(B2). Since Dom(B2) is dense in H, the above inequality implies that∥∥tetB∥∥ = sup{|(tetBu,w)| : u,w ∈ Dom(B2), ‖u‖ = ‖w‖ = 1}

≤ 1

2π
(1 + βM)2C2, .

The latter inequality implies that limt→∞ ‖S(t)‖ = 0, as desired.

The converse implication is also true. In other words, if the semigroup etB is exponen-
tially stable, then ‖(λ − B)−1‖ is uniformly bounded in the half-plane {λ ∈ C | Re λ ≥
−β}. This follows directly from the fact that

‖(λ−B)−1‖ ≤ M

Re λ+ β

when ‖etB‖ ≤ Me−βt, t ≥ 0 in {λ ∈ C | Re λ ≥ −β}.
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