Real Analysis Qualifying Exam September 2015

Please be brief but justify your answers, citing relevant theorems. Sometimes a sketch can help!

- (a) In a couple of sentences, describe Lebesgue measure on R^d.
 (You need not provide a construction, but aim for an unambiguous characterization.)
 - (b) Assume that $E \subset \mathbb{R}^d$ is compact, and set, for $\varepsilon > 0$,

$$U_{\varepsilon} = \left\{ x \in \mathbb{R}^d : \operatorname{dist}(x, E) < \varepsilon \right\}$$
.

Prove that their Lebesgue measure satisfies

$$\lim_{\varepsilon \to 0^+} m(U_\varepsilon) = m(E) \, .$$

(c) Show by example that the conclusion from (b) can fail for bounded open sets.

2. (a) Let $(f_n)_{n\geq 1}$ be a sequence of nonnegative measurable functions converging pointwise a.e. to an integrable function f. If $\lim \int f_n = \int f$, show that

$$\int_E f = \lim_{n \to \infty} \int_E f_n$$

for all measurable sets E.

(b) Let $(g_n)_{n\geq 1}$ be a sequence of Lebesgue measurable functions on the interval [0, 1] converging pointwise a.e. to some function g.

If $|g_n(x)| < |x|^{-\frac{1}{3}}$, show that

(*)
$$\lim_{n \to \infty} \int_0^1 g_n(x)h(x) \, dx = \int_0^1 g(x)h(x) \, dx$$

for all $h \in L^2[0, 1]$.

(c) If, instead, $||g_n||_{L^2} \leq M$ for all n, show that (*) holds for all bounded functions h. (*Hint:* Egoroff's theorem.)

3. Let f, g be complex-valued functions on \mathbb{R}^d .

(a) Define the Fourier transform $\mathcal{F} : f \mapsto \hat{f}$ for $f \in L^1$. Likewise for $f \in L^2$. What can you say about $||\hat{f}||_{\infty}$ (for $f \in L^1$) and $||\hat{f}||_2$ (for $f \in L^2$)?

(b) Let f * g denote the convolution of two integrable functions f and g, given by

$$f * g(x) = \int_{\mathbb{R}^d} f(x - y)g(y) \, dy \, .$$

Express the Fourier transform of f * g in terms of \hat{f} and \hat{g} . (Please provide a full proof.) Is your formula valid when $f, g \in L^2$? In what sense?

(c) Show that the Fourier transform defines a bounded linear operator from L^p to its dual, and provide an estimate on its operator norm. (*Hint:* Interpolate between p = 1 and p = 2.)

- 4. Let \mathcal{H} be an infinite-dimensional Hilbert space (such as $L^2(\mathbb{R})$).
 - (a) What does it mean for a sequence $(v_n)_{n>1}$ to be *orthonormal*?
 - (b) Define weak convergence $(f_n \rightharpoonup f)$ in \mathcal{H} .

Show that every orthonormal sequence converges weakly to zero.

(c) What is the precise relationship between *bounded* sequences and weak convergence in \mathcal{H} ? Please state two relevant theorems.

(d) Given a vector $f \in \mathcal{H}$ with norm ||f|| < 1, construct a sequence of unit vectors that converges weakly to f, that is, find $(u_n)_{n\geq 1}$ with

 $||u_n|| = 1$ (for all $n \ge 1$), and $u_n \rightharpoonup f$ $(n \to \infty)$.

Hint: Consider the intersection of the unit sphere $\{g \in \mathcal{H} : ||g|| = 1\}$ with the subspace f^{\perp} .