Real Analysis Analysis Comprehensive Exam September 2016

Please be brief but justify your answers, citing relevant theorems.

- 1. Let (X, Σ, μ) be a measure space, and $(E_n)_{n\geq 0}$ be a sequence of μ -measurable sets.
 - (a) Show that the set

$$E = \{x \in X : x \in E_n \text{ for infinitely many } n\}$$

is μ -measurable.

- (b) (Borel-Cantelli Lemma) Show that if $\sum_{n\geq 0} \mu(E_n) < \infty$, then $\mu(E) = 0$.
- (c) Let $(f_n(x))$ be a sequence of μ -measurable functions such that

$$\sum_{n \ge 0} \mu \left\{ x : |n^2 f_n(x)| > 2 \right\} < \infty.$$

Prove that the series $\sum_{n>0} f_n(x)$ converges μ -a. e.

2. Let $g_n(x, y)$ be a sequence of Lebesgue measurable functions on the unit square

$$\{(x,y) : 0 \le x \le 1, 0 \le y \le 1\}.$$

Let $f_n^x(y) = g_n(x, y)$.

- (a) Define what it means for the sequence $g_n(x, y)$ to converge to a measurable function g(x, y) in Lebesgue measure.
- (b) Show that if for a.e. $x \in [0, 1]$, the sequence of functions $f_n^x(y)$ converges to $f^x(y) = g(x, y)$ in (1-dimensional) Lebesgue measure, then $g_n(x, y)$ converges to g(x, y) in measure.
- (c) Show that the converse is false by constructing a sequence $g_n(x, y)$ converging to 0 in Lebesgue measure such that for no $x \in [0, 1]$, $f_n^x(y)$ converges to zero in Lebesgue measure.

Hint: First, construct a sequence $h_n(x)$ of functions on [0, 1] which converges to zero in measure, but does not converge pointwise at any point of [0, 1]. Use the sequence to easily construct the required sequence $g_n(x, y)$.

3. Let $1 \le p < q < \infty$. Let

$$B_n = \left\{ f \in L^p([0, 1]) : \int_0^1 |f(t)|^q \, dt < n \right\}.$$

- (a) Show that B_n has an empty interior in L^p .
- (b) Show that B_n is closed in L^p **Hint:** Use Fatou's Lemma.
- (c) Show that L^q is a subset of the first category in L^p .

(d) Let $\frac{1}{r} + \frac{1}{p} = 1$ Assume that g is a measurable function on [0, 1] which satisfies the following property:

For every $f \in L^p([0, 1]), f \notin L^q([0, 1])$, we have $fg \in L^1([0, 1])$.

Show that $g \in L^r([0, 1])$. **Hint:** Use the sequence $g_n(x) = \min(|g(x)|, n)$, and the Uniform Boundedness Principle.

- 4. (a) What is the general formula for the Fourier transform of a function f on \mathbb{R} ? The Fourier inversion formula? The Plancherel formula?
 - (b) Explain how to make the definition of Fourier transform precise in each of the following cases: f belongs to L¹(ℝ), to L²(ℝ), to the Schwartz space S(ℝ), or its dual space S'(ℝ).
 - (c) In particular, what does it mean to take the Fourier transform of the function

$$f(x) = 1 + 2x + 3x^{2} + \dots + (n+1)x^{n}?$$

Calculate it explicitly.