DEPARTMENT OF MATHEMATICS

University of Toronto

Real Analysis Comprehensive Exam

2 hours
September, 52018

Make sure to justify all your work. If you make a reference to a result in the textbook, please make sure to state it explicitly (and correctly!).

Problem 1

Each of the following items can be solved independently
(a) Let X, Y be Banach spaces and $S, T: X \rightarrow Y$ two bounded linear operators; show that if T is a bijection, there exists $\delta>0$ so that if $\|S-T\|<\delta$ then S is a bijection.
(b) Is it possible to find uncountably many disjoint measurable subsets of \mathbb{R} with strictly positive Lebesgue measure? Either give an example or show that this is impossible.
(c) Let $p>1 / 2$ and assume $\left(x^{p}+x^{-p}\right) f \in L^{2}(0, \infty)$; show that $f \in$ $L^{1}(0, \infty)$.

Problem 2
Let \mathcal{M} denote the set of finite signed Borel measures on \mathbb{R}; given $z \in \mathbb{R}$ and $r>0$, denote with $B(z, r)=\{y \in \mathbb{R}$ s.t. $|z-y|<r\}$ the ball of radius r centered at z. Given two $\mu, \mu^{\prime} \in \mathcal{M}$, define

$$
\left(\mu, \mu^{\prime}\right)_{r}=\int_{\mathbb{R}} \mu(B(z, r)) \mu^{\prime}(B(z, r)) d z
$$

(a) show that $\|\mu\|_{r}=\sqrt{(\mu, \mu)_{r}}$ is a norm on \mathcal{M} and deduce that

$$
\left(\mu, \mu^{\prime}\right)_{r} \leq\|\mu\|_{r}\left\|\mu^{\prime}\right\|_{r}
$$

(b) Let $\mu \in \mathcal{M}$ be so that $\mu(\mathbb{R})=1$ and define

$$
\ell_{r}(\mu)=\liminf _{r \rightarrow 0^{+}} \frac{\|\mu\|_{r}}{r}
$$

Show that if $\ell_{r}(\mu)<\infty$, then $\mu \ll$ Leb and

$$
\left\|\frac{d \mu}{d x}\right\|_{L^{2}} \leq \ell_{r}(\mu)
$$

[Hint: For $r>0$ define $g_{r}(x)=r^{-1} \mu(B(x, r))$; show that there exists a sequence $r_{k} \rightarrow 0^{+}$so that $\lim _{k \rightarrow \infty}\left\|g_{r_{k}}\right\|_{L^{2}} \leq \ell_{r}(\mu)$ and $g_{r_{k}}$ converges weakly to some \bar{g}. Show that $\frac{d \mu}{d x}=\bar{g}$.]
(a) State the Hahn Banach theorem, the open mapping theorem, the uniform boundedness principle and Alaoglu's theorem.
(b) Define the weak topology on a Banach space \mathcal{X}, and the weak-* topology on its dual \mathcal{X}^{*}.
(c) Suppose that B is the closed unit ball in \mathcal{X}, and that \mathcal{X} is reflexive. Prove that B is compact in the weak topology on \mathcal{X}.

Problem 4

a) What is the general formula for the Fourier transform of a function f on \mathbb{R} ? The Fourier inversion formula? The Plancherel formula?
b) Explain what conditions you can put on f in order to make these formulas valid.
c) (Optional question on distribution theory)

Can you define the Fourier transform of the function

$$
f(x)=1+2 x+3 x^{2}+\ldots \ldots . .+(m+1) x^{m} ?
$$

What is it?

