DEPARTMENT OF MATHEMATICS Real Analysis Comprehensive Exam 2025 September 15, 2025 - 6:00 - 9:00 p.m. BA6183

NO AIDS ALLOWED. Passing score is 80 percent.
Last name
First name
Email

1. Suppose $E \subset \mathbb{R}$ has positive Lebesgue measure, and A is a countable dense subset of \mathbb{R} . Show that $m(\mathbb{R} \setminus \bigcup_{a \in A} (a+E)) = 0$.

2. Let $f \in L^1(\mathbb{R})$. Show that there is a subsequence $n_k \to \infty$ such that $f(\cdot + 1/n_k) \to f$ a.e.

3. Suppose $f:[1,\infty)\to\mathbb{R}$ be a C^1 function satisfying f(1)=0 and $f'\in L^2$. Show that $f(x)/x\in L^2([1,\infty))$.

4. State the open mapping theorem and the closed graph theorem. You do not need to prove it.

5. Define the Fourier transform of a function $f \in L^1(\mathbb{R}^n)$ and show that it is a continuous linear mapping from $L^1(\mathbb{R}^n) \to L^{\infty}(\mathbb{R}^n)$. Is this mapping injective or surjective? Why?

- 6. Do the following functions define tempered distributions? Prove or disprove your claim.
 - $f(x) = x^2 \sin(x)$.
 - $f(x) = e^x.$