DEPARTMENT OF MATHEMATICS

University of Toronto

Real Analysis Comprehensive Exam

2 hours
September, 42019

Make sure to justify all your work. If you make a reference to a result in the textbook, please make sure to carefully quote it (correctly!).

Problem 1

Each of the following questions have equal weight can be solved independently
(a) Let $f_{n}(x)=\sin (2 \pi n x)$ for $n \in \mathbb{N}$. Show that the sequence $\left\{f_{n}\right\}_{n=1}^{\infty}$ has no subsequence which converges Lebesgue-a.e. on $[0,1]$.
(b) Let μ and ν be two finite positive measures on a measurable space (X, \mathcal{A}) so that $\mu \ll \nu$ and $\nu \ll \mu$. Let $\lambda=\mu+\nu$; show that the Radon-Nikodym derivative $d \nu / d \lambda$ satisfies a.e. the following bound:

$$
0<\frac{d \nu}{d \lambda}<1
$$

Problem 2

(a) State the definition of the space $L^{p}(\mathbb{R})$ for $1 \leq p<\infty$ and for $p=\infty$
(b) Let $1 \leq p<\infty$ and $f \in L^{p}(\mathbb{R})$. Show that:

$$
\lim _{h \rightarrow 0}\|f(x+h)-f(x)\|_{L^{p}}=0
$$

(c) Is the statement true if $p=\infty$? Either prove or find a counterexample.

Problem 3

Let \mathcal{H} be a Hilbert space, and let $\mathcal{L}(\mathcal{H}, \mathcal{H})$ denote the space of all bounded linear operators on \mathcal{H}.
(a) Let $T \in \mathcal{L}(\mathcal{H}, \mathcal{H})$. Define the adjoint T^{*} of T, quoting necessary theorems on why it's well defined.
(b) Let $V \subset \mathcal{H}$ be a closed linear subspace, and $T \in \mathcal{L}(\mathcal{H}, \mathcal{H})$. Suppose that $T V \subset V$ and $T^{*} V \subset V$, prove that $T V^{\perp} \subset V^{\perp}$ and $T^{*} V^{\perp} \subset V^{\perp}$.
(c) Suppose $A: \mathcal{H} \rightarrow \mathcal{H}$ is a linear mapping (not assumed to be bounded), and suppose $\langle A x, y\rangle=\langle x, A y\rangle$ for all $x, y \in \mathcal{H}$, prove that A is bounded and hence self-adjoint. (Hint: closed graph theorem).
(a) Prove that the Fourier transform $f \mapsto \hat{f}$ is a bounded linear operator from $L^{1}(\mathbb{R})$ to $L^{\infty}(\mathbb{R})$.
(b) Let $f, g \in L^{1}(\mathbb{R})$, show that

$$
\int f \hat{g}=\int \hat{f} g
$$

including why this expression makes sense.
(c) Let $f_{k}, f \in L^{1}(\mathbb{R}), k \in \mathbb{N}$, satisfy the following: $\sup _{k}\left\|f_{k}\right\|_{L^{1}}<\infty$, and the Fourier transforms $\hat{f}_{k} \rightarrow \hat{f}$ pointwise. Prove that for every Schwartz function φ, we have

$$
\lim _{k \rightarrow \infty} \int f_{k} \varphi=\int f \varphi .
$$

You may use without proof that the Fourier transform is a bijection on the space of Schwartz functions. You should carefully justify your answer.

