DEPARTMENT OF MATHEMATICS University of Toronto

Real Analysis Comprehensive Exam

2 hours

September, 4 2019

..---

Make sure to justify all your work. If you make a reference to a result in the textbook, please make sure to carefully quote it (correctly!).

PROBLEM 1

Each of the following questions have equal weight can be solved independently

- (a) Let $f_n(x) = \sin(2\pi nx)$ for $n \in \mathbb{N}$. Show that the sequence $\{f_n\}_{n=1}^{\infty}$ has no subsequence which converges Lebesgue-a.e. on [0,1].
- (b) Let μ and ν be two finite positive measures on a measurable space (X,\mathcal{A}) so that $\mu \ll \nu$ and $\nu \ll \mu$. Let $\lambda = \mu + \nu$; show that the Radon–Nikodym derivative $d\nu/d\lambda$ satisfies a.e. the following bound:

$$0 < \frac{d\nu}{d\lambda} < 1.$$

PROBLEM 2

- (a) State the definition of the space $L^p(\mathbb{R})$ for $1 \leq p < \infty$ and for $p = \infty$
- (b) Let $1 \leq p < \infty$ and $f \in L^p(\mathbb{R})$. Show that:

$$\lim_{h \to 0} \|f(x+h) - f(x)\|_{L^p} = 0.$$

(c) Is the statement true if $p = \infty$? Either prove or find a counterexample.

PROBLEM 3

Let \mathcal{H} be a Hilbert space, and let $\mathcal{L}(\mathcal{H},\mathcal{H})$ denote the space of all bounded linear operators on \mathcal{H} .

- (a) Let $T \in \mathcal{L}(\mathcal{H}, \mathcal{H})$. Define the adjoint T^* of T, quoting necessary theorems on why it's well defined.
- (b) Let $V\subset \mathcal{H}$ be a closed linear subspace, and $T\in \mathcal{L}(\mathcal{H},\mathcal{H})$. Suppose that $TV\subset V$ and $T^*V\subset V$, prove that $TV^\perp\subset V^\perp$ and $T^*V^\perp\subset V^\perp$.
- (c) Suppose $A:\mathcal{H}\to\mathcal{H}$ is a linear mapping (not assumed to be bounded), and suppose $\langle Ax,y\rangle=\langle x,Ay\rangle$ for all $x,y\in\mathcal{H}$, prove that A is bounded and hence self-adjoint. (Hint: closed graph theorem).

PROBLEM 4

- (a) Prove that the Fourier transform $f\mapsto \hat{f}$ is a bounded linear operator from $L^1(\mathbb{R})$ to $L^\infty(\mathbb{R})$. (b) Let $f,g\in L^1(\mathbb{R})$, show that

$$\int f\,\hat{g} = \int \hat{f}\,g,$$

including why this expression makes sense.

(c) Let $f_k, f \in L^1(\mathbb{R}), k \in \mathbb{N}$, satisfy the following: $\sup_k \|f_k\|_{L^1} < \infty$, and the Fourier transforms $\hat{f}_k \to \hat{f}$ pointwise. Prove that for every Schwartz function φ , we have

$$\lim_{k\to\infty}\int f_k\varphi=\int f\varphi.$$

You may use without proof that the Fourier transform is a bijection on the space of Schwartz functions. You should carefully justify your answer.