Department of Mathematics
 Comprehensive Exam 2022
 Second half: Tuesday, September 27, 6pm-9pm
 BA1200

Last name \qquad

First name \qquad

Email
Solve 6 questions out 14 questions. Indicate which questions you want to be graded. Passing score is 80 percent from those 6 questions.

1. (10 pts)

Denote

$$
\zeta(z)=\frac{1}{z}+\sum_{\omega \in \mathcal{M} \backslash\{0\}}\left[\frac{1}{(z-\omega)}-\frac{1}{\omega}-\frac{z}{\omega^{2}}\right],
$$

where \mathcal{M} is an elliptic module.
(i) Consider the series

$$
\mathcal{Q}=\sum_{\omega \in \mathcal{M} \backslash\{0\}}\left[\frac{1}{(z-\omega)^{2}}-\frac{1}{\omega^{2}}\right]
$$

Take arbitrary path C from 0 to $z \notin \mathcal{M}$ away from the set $z \notin \mathcal{M}$. Show that

$$
\mathrm{q}(z):=-\int_{C} \mathcal{Q}(\mathrm{z}) d \mathrm{z}:=-\int_{0}^{z} \mathcal{Q}(\mathrm{z}) d \mathrm{z}
$$

does not depend on C.
(ii) In (i) one can integrate termwise and the series of integrals with z varying in a small disk away from the set \mathcal{M} converges absolutely and uniformly, i.e.
$\mathrm{q}(z)=-\sum_{\omega \in \mathcal{M} \backslash\{0\}} \int_{0}^{z}\left[\frac{1}{(\mathbf{z}-\omega)^{2}}-\frac{1}{\omega^{2}}\right] d \mathbf{z}=\sum_{\omega \in \mathcal{M} \backslash\{0\}}\left[\frac{1}{(z-\omega)}-\frac{1}{\omega}-\frac{z}{\omega^{2}}\right]$
(iii) $\mathrm{q}^{\prime}(z)=-\mathcal{Q}(z), \zeta^{\prime}(z)=-\wp(z)$.
(iv) $\eta_{i}:=\zeta\left(z+\omega_{i}\right)-\zeta(z)=$ const.
(v) Pick c so $0 \in \mathrm{P}_{c}$ is the only point of \mathcal{M} inside the contour $\partial \mathrm{P}_{c}$. Then

$$
\frac{1}{2 \pi i} \oint_{\partial \mathbf{P}_{c}} \zeta(z) d z=1
$$

(vi) Legendre Relation: $\omega_{2} \eta_{1}-\omega_{1} \eta_{2}=1$. In particular, $\zeta(z)$ is not double periodic. In other words, thought the derivative of an elliptic function is always an elliptic function, the anti-derivative, provided it exists, i.e all the residues are zero, might be not elliptic function.
2. (10 pts) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a differentiable function. The NewtonRaphson method is an iterative method for trying to find solutions of $f(x)=0$. Given a first guess, x_{0}, it constructs a sequence $\left\{x_{n}\right\}$ via the rule

$$
x_{i+1}=x_{i}-\frac{f\left(x_{i}\right)}{f^{\prime}\left(x_{i}\right)}, \quad i \geq 0
$$

Assume $p \in(a, b)$ is such that $f(p)=0$ and that f, f^{\prime}, and $f^{\prime \prime}$ are all continuous on (a, b). Show that if $f^{\prime}(p) \neq 0$ then there exists $\delta>0$ such that if $x_{0} \in(p-\delta, p+\delta)$ then the Newton-Raphson method generates a sequence that converges to p and that the convergence is quadratic:

$$
\left|x_{i+1}-p\right| \leq M\left|x_{i}-p\right|^{2} \quad \text { for some } M<\infty \text { and all } i \geq 1
$$

3. (10 pts) Consider the group A_{4} of even permutations on four elements. All representations in this question are over \mathbb{C}.
a) Show that A_{4} has three distinct one-dimensional representations. (It may help to consider a cyclic quotient group of A_{4}.)
b) Construct the character table of A_{4}, explaining your reasoning. You may use that the conjugacy classes have representatives e (the identity), (12)(34), (123), (132).
c) Consider the representation V of A_{4} on \mathbb{C}^{4}, given by permuting the coordinates. In other words, $\sigma\left(z_{1}, \ldots, z_{4}\right)=\left(z_{\sigma^{-1}(1)}, \ldots, z_{\sigma^{-1}(4)}\right)$ for $\sigma \in A_{4}$ and $z_{i} \in \mathbb{C}$. Decompose V into irreducible representations.
4. (10 pts) Two immersions $F_{0}: M \rightarrow N$ and $F_{1}: M \rightarrow N$ are regular homotopic if there exists homotopy $F:[0,1] \times M \rightarrow N$ between them, such that $F_{t}(x)=F(t, x)$ is an immersion for all $t \in[0,1]$. Consider two maps $f_{0}, f_{1}: S^{1} \rightarrow S^{2}$ defined by

$$
\begin{gathered}
f_{0}(\cos (\theta), \sin (\theta))=(\cos (\theta), \sin (\theta), 0) \\
f_{1}(\cos (\theta), \sin (\theta))=(\cos (2 \theta), \sin (2 \theta), 0)
\end{gathered}
$$

a) Prove that both maps are immersions.
b) Are they regular homotopic?
5. (10 pts) Let Z be a standard normal random variable and $f: \mathbb{R} \rightarrow \mathbb{R}$ a function with bounded first derivative. Prove,

$$
\mathbb{E}\left[f^{\prime}(Z)\right]^{2} \leq \operatorname{Var}(f(Z)) \leq \mathbb{E}\left[f^{\prime}(Z)^{2}\right]
$$

6. (10 pts) Let $u:(x, t) \in \mathbb{R}^{n} \times[0, \infty)$ be a solution of the $n+1$ dimensional Klein-Gordon equation

$$
\begin{cases}u_{t t}-\Delta u+m u=f & \text { in } \quad \mathbb{R}^{n} \times(0, \infty) \tag{KG}\\ u=g, \quad u_{t}=h & \text { on } \quad \mathbb{R}^{n} \times\{0\}\end{cases}
$$

where $m>0$ is a mass parameter.
a. Let

$$
e[u](t):=\frac{1}{2} \int_{\mathbb{R}^{d}}\left(\left|u_{t}(t, x)\right|^{2}+\left|\nabla_{x} u(t, x)\right|^{2}+m u^{2}\right) d x .
$$

Prove that $e[u](t)$ is constant for sufficiently smooth solutions u of (KG) with $f=0$
b. Do solutions of (KG) with $f=0$ enjoy finite speed of propagation as in the case $m=0$?
c. Write a conserved energy for the nonlinear problem (KG) with $f=u^{3}$.
d. Suppose you are given two bounded solutions u_{1} and u_{2} of the nonlinear problem (KG) with $f=u^{3}$, with compactly supported initial data.

Differentiate $e\left[u_{1}-u_{2}\right](t)$ and derive a Gronwall's type inequality for it.

What consequences can you deduce from such an inequality?

7. (10 pts)

a) Let d be a positive integer. Establish the Vitali covering lemma on \mathbb{R}^{d}; that is, show that if B_{1}, \cdots, B_{p} are a finite sequence of open balls in \mathbb{R}^{d}, then there exists a subsequence $B_{i_{1}}, \cdots, B_{i_{l}}$ so that
i. $j \neq k \Rightarrow B_{i_{j}} \cap B_{i_{k}}=\emptyset$.
ii. $\cup_{i=1}^{p} B_{i} \subset \cup_{j=1}^{l} \widetilde{B_{i_{j}}}$.

Here $\widetilde{B_{i_{j}}}$ denotes the open ball with the same center as $B_{i_{j}}$ and with a radius three times as big as $B_{i_{j}}$.
b) For any $x \in \mathbb{R}^{d}$, let $B_{r}(x)$ denote the open ball of radius r around x. We recall the Hardy-Littlewood maximal function:

$$
H f(x) \doteq \sup _{r>0} \frac{1}{m\left(B_{r}(x)\right)} \int_{B_{r}(x)}|f(x)| d x,
$$

where m denotes the Lebesgue measure on \mathbb{R}^{d}. Use the Vitali covering lemma to prove that there exists a constant $C>0$ such that for every measurable function f and constant $\alpha>0$, we have

$$
m(x: H f(x)>\alpha) \leq C \alpha^{-1}\|f\|_{L^{1}\left(\mathbb{R}^{d}\right)} .
$$

c) State and prove the Lebesgue differentiation theorem.

