DEPARTMENT OF MATHEMATICS
 University of Toronto

 Comprehensive Exam, 2021

 Comprehensive Exam, 2021}

Day 2: Tuesday, September 28, 4-7pm, in SS1069

Time: $\mathbf{3}$ hours. Please be brief but justify your work.
If you appeal to a standard result, be sure to carefully quote it (and verify the assumptions)
Format: 12 questions (over 2 days). Do not attempt to answer them all!
Problems come from different areas of Mathematics; work in your areas of strength, aiming for full solutions. (Passing score is $6 / 12$)
7. Let $f, g \in L^{2}\left(S^{1}\right)$ (i.e., f and g are 2π-periodic, and square integrable over each period.) Denote the k-th Fourier coefficient of f by $\widehat{f}(k)$.
(a) Prove that

$$
\lim _{m \rightarrow \infty} \int_{S^{1}} f(x) g(m x) d x=\widehat{f}(0) \widehat{g}(0)
$$

For $m \geq 1$, write $g_{(m)}(x):=g(m x)$.
(b) Conclude from (a) that $g_{(m)}$ converges to some limit \bar{g}.
(Please specify in which sense the sequence converges, and characterize the limit \bar{g}.)
8. Let $A \in \mathbb{R}^{n \times m}$ be a real rectangular matrix.

Let $\|A\|_{2}$ be the operator norm of A (considered a linear map from \mathbb{R}^{m} to \mathbb{R}^{n}, with the standard Euclidean norms). Also denote by $\|A\|_{F}:=\sqrt{\operatorname{trace}\left(A^{t} A\right)}$ its Frobenius norm.
(a) Show that $\|A\|_{2} \leq\|A\|_{F}$.
(b) Prove that for each $k \geq 1$ there exists a matrix $B \in \mathbb{R}^{n \times m}$ of rank at most k such that

$$
\|A-B\|_{2} \leq \frac{\|A\|_{F}}{\sqrt{k}}
$$

(c) There are many applications where A is a data matrix. Explain why bounds of the form you proved in (b) are useful in such applications.
9. Prove that the real projective space $\mathbb{R} P^{2 n}$ for $n \geq 1$ does not admit an open cover by two orientable open subsets with connected intersection.
10. Let $S_{n}=X_{1}+\ldots+X_{n}$ be a simple symmetric random walk with $S_{0}=0$ (i.e., the steps $\left(X_{i}\right)_{i \geq 1}$ are i.i.d. and $\mathbb{P}\left(X_{i}= \pm 1\right)=1 / 2$.
Let $\tau=\min \left\{n \geq 5: S_{n}=S_{n-5}+5\right\}$.
(a) Is τ a stopping time?
(b) Compute $\mathbb{E} \tau$.

Hint: If $\tau=n$ for some $n \geq 6$, what must happen in the last six steps? How can one rewrite $\mathbb{P}(\tau=n)$?
11. Let $\Omega \subset \mathbb{R}^{3}$ be a bounded smooth domain. Consider the energy functional

$$
E[u]:=\int_{\Omega} \frac{1}{2}|\nabla u|^{2}-\frac{1}{4} u^{4} d x, \quad u \in H_{0}^{1}(\Omega)
$$

(a) Find the Euler-Lagrange equation.
(b) Prove that there exists a minimizer.
(c) Is it clear that minimizers solve the Euler-Lagrange equations (in what sense)? And vice versa? (Discuss briefly; no proofs required for this part.)
12. (a) Show that there exists a 2×2 matrix A with entries in \mathbb{R} such that $A^{5}=I$ but $A \neq I$.
(b) Show that there does not exist a 2×2 matrix A with entries in \mathbb{Q} such that $A^{5}=I$ but $A \neq I$.
(c) Show that there exists a 4×4 matrix A with entries in \mathbb{Q} such that $A^{5}=I$ but $A \neq I$. Write down an explicit example of such a matrix A.

