DEPARTMENT OF MATHEMATICS University of Toronto

Comprehensive Exam, 2021

Day 2: Tuesday, September 28, 4-7pm, in SS1069

Time: 3 hours. Please be brief but justify your work.

If you appeal to a standard result, be sure to carefully quote it (and verify the assumptions)

Format: 12 questions (over 2 days). Do not attempt to answer them all! Problems come from different areas of Mathematics; work in your areas of strength, aiming for full solutions. (Passing score is 6/12)

- 7. Let $f, g \in L^2(S^1)$ (i.e., f and g are 2π -periodic, and square integrable over each period.) Denote the k-th Fourier coefficient of f by $\hat{f}(k)$.
 - (a) Prove that

$$\lim_{m \to \infty} \int_{S^1} f(x) g(mx) \, dx = \widehat{f}(0) \, \widehat{g}(0) \, .$$

For $m \ge 1$, write $g_{(m)}(x) := g(mx)$.

- (b) Conclude from (a) that $g_{(m)}$ converges to some limit \bar{g} . (Please specify in which sense the sequence converges, and characterize the limit \bar{g} .)
- 8. Let $A \in \mathbb{R}^{n \times m}$ be a real rectangular matrix.

Let $||A||_2$ be the operator norm of A (considered a linear map from \mathbb{R}^m to \mathbb{R}^n , with the standard Euclidean norms). Also denote by $||A||_F := \sqrt{\operatorname{trace}(A^t A)}$ its Frobenius norm.

- (a) Show that $||A||_2 \le ||A||_F$.
- (b) Prove that for each $k \ge 1$ there exists a matrix $B \in \mathbb{R}^{n \times m}$ of rank at most k such that

$$||A - B||_2 \le \frac{||A||_F}{\sqrt{k}}$$

- (c) There are many applications where A is a data matrix. Explain why bounds of the form you proved in (b) are useful in such applications.
- 9. Prove that the real projective space $\mathbb{R}P^{2n}$ for $n \ge 1$ does not admit an open cover by two orientable open subsets with connected intersection.

- 10. Let $S_n = X_1 + \ldots + X_n$ be a simple symmetric random walk with $S_0 = 0$ (i.e., the steps $(X_i)_{i\geq 1}$ are i.i.d. and $\mathbb{P}(X_i = \pm 1) = 1/2$.)
 - Let $\tau = \min\{n \ge 5 : S_n = S_{n-5} + 5\}.$
 - (a) Is τ a stopping time?
 - (b) Compute $\mathbb{E}\tau$.

Hint: If $\tau = n$ for some $n \ge 6$, what must happen in the last six steps? How can one rewrite $\mathbb{P}(\tau = n)$?

11. Let $\Omega \subset \mathbb{R}^3$ be a bounded smooth domain. Consider the energy functional

$$E[u] := \int_{\Omega} \frac{1}{2} |\nabla u|^2 - \frac{1}{4} u^4 \, dx, \qquad u \in H_0^1(\Omega).$$

- (a) Find the Euler-Lagrange equation.
- (b) Prove that there exists a minimizer.
- (c) Is it clear that minimizers solve the Euler-Lagrange equations (in what sense)? And vice versa? (Discuss briefly; no proofs required for this part.)
- 12. (a) Show that there exists a 2×2 matrix A with entries in \mathbb{R} such that $A^5 = I$ but $A \neq I$.
 - (b) Show that there does not exist a 2×2 matrix A with entries in \mathbb{Q} such that $A^5 = I$ but $A \neq I$.
 - (c) Show that there exists a 4×4 matrix A with entries in \mathbb{Q} such that $A^5 = I$ but $A \neq I$. Write down an explicit example of such a matrix A.