DEPARTMENT OF MATHEMATICS University of Toronto

Comprehensive Exam, 2021

First half: Monday, September 27, 3-6pm, in MP137

Time: 3 hours. Please be brief but justify your work

If you appeal to a standard result, be sure to carefully quote it (and verify the assumptions)

Passing score: 6/12 (over 2 days)

Do not attempt all problems; instead, aim for complete solutions

- 1. (a) Suppose that G is a (non-trivial) finite group and let p be the smallest prime divisor of the order of G. Show that any normal subgroup of G of order p is contained in the centre of G.
 - (b) Suppose that G is a finite *simple* group and p a prime number such that p^2 divides the order of G. Show that any proper subgroup H of G has index (G : H) at least 2p. (Hint: use a suitable group action.)
 - (c) In the setting of part (b), give an example where equality can hold when $G = A_6$ (i.e. find p and H such that p^2 divides |G| and (G : H) = 2p).
- 2. Prove that every discrete normal subgroup of a connected topological group is abelian.
- 3. Prove the following version of the Dominated Convergence Theorem: Let (X, \mathcal{M}, μ) be a measure space, and let f, f_1, f_2, \ldots be measurable functions on (X, \mathcal{M}) . If
 - $f_n \to f$ for μ a.e. x,

and there exist $g, g_1, g_2, \dots \in L^1(X, \mu)$ such that

- $|f_n| \leq |g_n|$, and
- $||g_n g||_1 \to 0$ as $n \to \infty$,

then $||f_n - f||_1 \to 0$ as $n \to \infty$.

- 4. The purpose of this problem is to prove that, if P(z) is a non-constant complex polynomial, then the zeros of P'(z) lie in the convex hull of the set of zeros of P.
 - (a) Suppose that P(z) has degree $n \ge 1$ and zeros b_1, \ldots, b_n (each zero listed as many times as its multiplicity). Show that

$$\frac{P'(z)}{P(z)} = \sum_{k=1}^{n} \frac{1}{z - b_k}.$$

(b) Show that, if P'(z) = 0, then

$$\left(\sum_{k=1}^n \frac{1}{|z-b_k|^2}\right)\overline{z} = \sum_{k=1}^n \frac{\overline{b}_k}{|z-b_k|^2}.$$

- (c) Deduce that, if P'(z) = 0, then z lies in the convex hull of the points b_k .
- 5. Let S^2 be the 2-sphere and $A \subset S^2$ a subset of cardinality 3. We denote by S^2/A the space obtained by contracting A to a point.
 - (a) What is the fundamental group of S^2/A ?
 - (b) Compute the singular cohomology groups $H^*(S^2/A; \mathbf{Z})$ and the cup product structure.

Justify your answers with proofs.

- 6. Let G = Gal(K/F) be the Galois group of the splitting field of a monic, integral polynomial $f(x) \in \mathbb{Z}[x]$ of degree n.
 - (a) Prove that G acts by permutation on the roots of f(x) in K.
 - (b) Under what condition on G is f(x) irreducible over \mathbb{Q} ?
 - (c) More generally, under what conditions on G do the irreducible factors of f have degrees (n_1, \ldots, n_r) ?
 - (d) What about irreducibility over \mathbb{Z} ?