DEPARTMENT OF MATHEMATICS
 University of Toronto

 Comprehensive Exam, 2021

 Comprehensive Exam, 2021}

First half: Monday, September 27, 3-6pm, in MP137

Time: $\mathbf{3}$ hours. Please be brief but justify your work
If you appeal to a standard result, be sure to carefully quote it (and verify the assumptions)
Passing score: 6/12 (over 2 days)
Do not attempt all problems; instead, aim for complete solutions

1. (a) Suppose that G is a (non-trivial) finite group and let p be the smallest prime divisor of the order of G. Show that any normal subgroup of G of order p is contained in the centre of G.
(b) Suppose that G is a finite simple group and p a prime number such that p^{2} divides the order of G. Show that any proper subgroup H of G has index $(G: H)$ at least $2 p$. (Hint: use a suitable group action.)
(c) In the setting of part (b), give an example where equality can hold when $G=A_{6}$ (i.e. find p and H such that p^{2} divides $|G|$ and $\left.(G: H)=2 p\right)$.
2. Prove that every discrete normal subgroup of a connected topological group is abelian.
3. Prove the following version of the Dominated Convergence Theorem: Let (X, \mathcal{M}, μ) be a measure space, and let f, f_{1}, f_{2}, \ldots be measurable functions on (X, \mathcal{M}). If

- $f_{n} \rightarrow f$ for μ a.e. x,
and there exist $g, g_{1}, g_{2}, \cdots \in L^{1}(X, \mu)$ such that
- $\left|f_{n}\right| \leq\left|g_{n}\right|$, and
- $\left\|g_{n}-g\right\|_{1} \rightarrow 0$ as $n \rightarrow \infty$,
then $\left\|f_{n}-f\right\|_{1} \rightarrow 0$ as $n \rightarrow \infty$.

4. The purpose of this problem is to prove that, if $P(z)$ is a non-constant complex polynomial, then the zeros of $P^{\prime}(z)$ lie in the convex hull of the set of zeros of P.
(a) Suppose that $P(z)$ has degree $n \geq 1$ and zeros b_{1}, \ldots, b_{n} (each zero listed as many times as its multiplicity). Show that

$$
\frac{P^{\prime}(z)}{P(z)}=\sum_{k=1}^{n} \frac{1}{z-b_{k}}
$$

(b) Show that, if $P^{\prime}(z)=0$, then

$$
\left(\sum_{k=1}^{n} \frac{1}{\left|z-b_{k}\right|^{2}}\right) \bar{z}=\sum_{k=1}^{n} \frac{\bar{b}_{k}}{\left|z-b_{k}\right|^{2}} .
$$

(c) Deduce that, if $P^{\prime}(z)=0$, then z lies in the convex hull of the points b_{k}.
5. Let S^{2} be the 2 -sphere and $A \subset S^{2}$ a subset of cardinality 3 . We denote by S^{2} / A the space obtained by contracting A to a point.
(a) What is the fundamental group of S^{2} / A ?
(b) Compute the singular cohomology groups $H^{*}\left(S^{2} / A ; \mathbf{Z}\right)$ and the cup product structure. Justify your answers with proofs.
6. Let $G=\operatorname{Gal}(K / F)$ be the Galois group of the splitting field of a monic, integral polynomial $f(x) \in \mathbb{Z}[x]$ of degree n.
(a) Prove that G acts by permutation on the roots of $f(x)$ in K.
(b) Under what condition on G is $f(x)$ irreducible over \mathbb{Q} ?
(c) More generally, under what conditions on G do the irreducible factors of f have degrees $\left(n_{1}, \ldots, n_{r}\right)$?
(d) What about irreducibility over \mathbb{Z} ?

