## DEPARTMENT OF MATHEMATICS Partial Differential Equations Comprehensive Exam 2025 September 19, 2025 - 6:00 - 9:00 p.m. BA6183

| NO AIDS ALLOWED. Passing score is 80 percent. |
|-----------------------------------------------|
| Last name                                     |
| First name                                    |
| Email                                         |

1. Given a domain  $U \subset \mathbb{R}^n$ , let

$$C_1^2(U \times (0,T]) = \{u : U \times (0,T] \to \mathbb{R}, \text{ such that } u, D_x u, D_x^2 u, u_t \in C(U \times (0,T])\}.$$

Suppose  $u \in C_1^2(\mathbb{R}^n \times (0,T]) \cap C(\mathbb{R}^n \times [0,T])$  solves

$$\begin{cases} u_t - \Delta u = 0 & \text{in } \mathbb{R}^n \times (0, T) \\ u = g & \text{on } \mathbb{R}^n \times \{t = 0\} \end{cases}$$

and satisfies the growth estimate

$$u(x,t) \le Ae^{a|x|^2} \quad (x \in \mathbb{R}^n, 0 \le t \le T)$$

for constants A, a > 0. Prove that then

$$\sup_{\mathbb{R}^n \times [0,T]} u = \sup_{\mathbb{R}^n} g.$$

2. Prove the Rellich-Kondrachov compactness theorem: assume that U is a bounded open subset of  $\mathbb{R}^n$  and that  $\partial U$  is  $C^1$ . Suppose  $1 \leq p < n$ . Then, for each  $1 \leq q < p^*$ ,

$$W^{1,p}(U) \subset\subset L^q(U).$$

Recall that for Banach spaces X and Y with  $X\subset Y,\, X\subset\subset Y$  (X is compactly embedded in Y) means that

- (i)  $||u||_Y \le C ||u||_X$  for some constant C and all  $u \in X$ , and
- (ii) each bounded sequence in X is precompact in Y.

3. Let U be an open, connected and bounded subset of  $\mathbb{R}^n$ , and  $u:\overline{U}\to\mathbb{R}$  be a  $C^2(U)\cap C^1(\overline{U})$  function. Consider the second order operator L

$$Lu = -\sum_{i,j=1}^{n} a^{ij} u_{x_i x_j} + \sum_{i=1}^{n} b^i u_{x_i} + cu ,$$

where  $a^{ij}, b^i, c$  are continuous,  $a^{ij} = a^{ji}$  for i, j = 1, ..., n, which is (uniformly) elliptic, i.e. there exists a constant  $\theta > 0$  such that

$$\sum_{i,j=1}^{n} a^{ij}(x)\xi_i\xi_j \ge \theta |\xi|^2$$

for a.e.  $x \in U$  and all  $\xi \in \mathbb{R}^n$ .

(i) Prove Hopf's lemma: if  $c \equiv 0$  in U,  $Lu \leq 0$  in U, there exists a point  $x^0 \in \partial U$  such that  $u(x^0) > u(x)$  for all  $x \in U$ , and U satisfies the interior ball condition at  $x^0$  (i.e. there exists an open ball  $B \subset U$  with  $x^0 \in \partial B$ ), then

$$\frac{\partial u}{\partial \nu}(x^0) > 0 ,$$

where  $\nu$  is the outer unit normal to B at  $x^0$ .

(ii) As a consequence, prove the following strong maximum principle: if  $u \in C^2(U) \cap C(\overline{U})$ ,  $c \equiv 0$  in U,  $Lu \leq 0$  in U, and u attains its maximum over  $\overline{U}$  at an interior point, then u is constant within U.

4. Suppose that  $u \in W^{1,2}(B_1) \cap L^{\infty}(B_1)$  satisfies  $\partial_i(a^{ij}u_j) = 0$  in the weak sense, where  $\lambda \delta^{ij} < a^{ij} < \Lambda a^{ij}$  for  $0 < \lambda \leq \Lambda < +\infty$ , and we assume that  $a^{ij}$  is symmetric and measurable. Prove that

$$||u||_{L^{\infty}(B_{\frac{1}{2}})} \le C||u||_{L^{2}(B_{1})}$$

for a constant C depending only on  $n, \lambda, \Lambda$ .

5. Suppose  $u \in C^2(B_1) \cap C(\overline{B_1})$  solves  $a^{ij}u_{ij} = f$  in  $B_1 \subset \mathbb{R}^n$ , where  $\lambda \delta^{ij} < a^{ij} < \Lambda \delta^{ij}$  for  $0 < \lambda \leq \Lambda < +\infty$ , and we assume that  $a^{ij}$  is symmetric and measurable. Suppose furthermore that  $f \in L^n(B_1)$ . Assume that  $u|_{\partial B_1} \leq 0$ . Prove that

$$\sup_{B_1} u \le C(n) \left\| \frac{f^-}{D^*} \right\|_{L^n(\Gamma^+)}$$

for a constant C depending only on n. Here  $f^- = \min\{f, 0\}$ ,  $D^* = (\det a^{ij})^{1/n}$ , and  $\Gamma^+$  is the upper contact set of u:

$$\Gamma^+ = \{ x \in B_1 : u(x) = \widehat{u}(x) \}$$

where  $\hat{u}$  is the concave envelope of u.

6. Suppose  $u: \mathbb{R}^n \to \mathbb{R}$  is smooth and  $||D^2u||_{L^{\infty}(\mathbb{R}^n)} < +\infty$ . Suppose u solves  $F(D^2u) = 0$  where F(M) is smooth, uniformly elliptic and convex as a function of symmetric  $n \times n$  matrices. Show that u is a quadratic polynomial.