PDE Comprehensive Exam (Fall 2019)

Problem 1. Consider the operator $L u=2 \frac{\partial^{2} u}{\partial x \partial y}$ on the domain

$$
U:=\left\{(x, y) \in \mathbb{R}^{2} \mid y>x\right\} .
$$

(1) Is this operator elliptic, parabolic or hyperbolic? (HINT: Diagonalize the matrix $a_{i j}=a_{j i}$.)
(2) If we try to prescribe the boundary values of both u and its outward normal derivative $\frac{\partial u}{\partial \nu}$ on the boundary of U to be given, respectively, by functions $g \in C^{2}(\partial U)$ and $h \in C^{1}(\partial U)$:
How many solutions does the equation $L u=0$ admit?
How smooth will these solutions be in the interior of U ?

Problem 2. Assume that U is an open, bounded set of \mathbb{R}^{n}, with smooth boundary.
(1) Let $\lambda_{1}>0$ the smallest eigenvalue of the operator $(-\Delta)$ with zero Dirichlet boundary condition on U . Let u be a smooth solution of the diffusion equation

$$
\begin{gathered}
u_{t}-\Delta u=0 \text { in } U \times(0, \infty) \\
u=0 \text { on } \partial U \times[0, \infty) . \\
u=g \text { on } U \times\{t=0\} .
\end{gathered}
$$

Prove the exponential decay estimate:

$$
\|u(\cdot, t)\|_{L^{2}(U)} \leq e^{-\lambda_{1} t}\|g\|_{L^{2}(U)}
$$

(2) Suppose that u is a smooth solution of

$$
\begin{gathered}
u_{t}-\Delta u+q(x) u=0 \text { in } U \times(0, \infty) \\
u=0 \text { on } \partial U \times[0, \infty) . \\
u=g \text { on } U \times\{t=0\} .
\end{gathered}
$$

and the function q satisfies for all $x \in U, q(x) \geq \alpha>0,(\alpha$ constant). Prove

$$
|u(x, t)| \leq C e^{-\alpha t} \quad(x, t) \in U \times(0, T)
$$

Problem 3. Consider the solution $u=u(x, t)$ of the quasilinear partial differential equation

$$
\begin{equation*}
u_{t}+a(u) u_{x}=0, \quad u(x, 0)=f(x) \tag{1}
\end{equation*}
$$

(1) Derive an implicit formula for the solution u.
(2) Show that u becomes singular for some $t>0$ unless $a(f(s))$ is a non-decreasing function of s.
(3) Define the concept of a classical and a weak (or integral) solution of (1).

Problem 4. Fix a bounded domain $U \Subset \mathbb{R}^{n}$ with C^{1} smooth boundary, and $f \in L^{\infty}(U)$. Define the functional

$$
E(u):=\int_{U}\left(\frac{1}{2}|D u|^{2}-f u\right) d x .
$$

(1) If the functional $E(u)$ happens to be minimized on $W_{0}^{1,2}(U)$ by some $u \in C^{2}(\bar{U})$, derive the partial differential equation that will be satisfied by u.
(2) Show the partial differential equation derived in part (1) has at most one solution in $C^{2}(\bar{U})$ satisfying the boundary condition $u=0$ on ∂U.
(3) Show the functional $E(u)$ has a unique minimizer in $W_{0}^{1,2}(U)$.

Problem 5. Let $u=u(x, t)$ be a solution of the $3+1$ dimensional nonlinear Klein-Gordon equation

$$
\begin{cases}u_{t t}-\Delta u+u=u^{3} & \text { in } \quad \mathbb{R}^{3} \times(0, \infty), \tag{KG}\\ u=g, \quad u_{t}=h & \text { on } \quad \mathbb{R}^{3} \times\{0\} .\end{cases}
$$

where the data (g, h) are smooth and compactly supported.
(1) Define the energy functional

$$
\mathcal{E}(u)(t)=\frac{1}{2}\left\|\partial_{t} u(t)\right\|_{H^{2}\left(\mathbb{R}^{3}\right)}^{2}+\frac{1}{2}\|\nabla u(t)\|_{H^{2}\left(\mathbb{R}^{3}\right)}^{2}+\frac{1}{2}\|u(t)\|_{H^{2}\left(\mathbb{R}^{3}\right)}^{2} .
$$

Prove that solutions of (KG) satisfy, for some constant C, the energy inequality

$$
\frac{d}{d t} \mathcal{E}(u)(t) \leq C(\mathcal{E}(u)(t))^{2}
$$

(2) Deduce that on some time interval $[0, T]$ for T small enough depending on the energy of the initial data $\mathcal{E}(u)(0)$, one has the estimate

$$
\mathcal{E}(u)(t) \leq 2 \mathcal{E}(u)(0)
$$

Problem 6. Consider the initial value problem associated to the linearized Korteweg-de Vries equation

$$
\begin{aligned}
& \partial_{t} u+\partial_{x x x} u=0, \quad x \in \mathbb{R}, t \in \mathbb{R}^{+} \\
& u(x, 0)=u_{0}(x)
\end{aligned}
$$

Here $u(x, t)$ is real-valued. Assume $u \in \mathbb{S}(\mathbb{R})$ (i.e. of Schwartz class).
(1) Write the differential equation satisfied by $\hat{u}(k, t)$, the Fourier transform of u (in x), and solve it.
(2) Write u in the form of a convolution of u_{0} with a kernel $T(x, t)$, written in terms of the Airy function

$$
A i(x)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} e^{i\left(k x+\frac{k^{3}}{3}\right)} d k
$$

