# IS THE DETERMINANT UNIQUE? 

ALEXANDER KUPERS

This is a proposal for summer undergraduate research at the University of Toronto.

1. Proposal

For a field $\mathbb{F}$, the determinant is the unique function

$$
\{(n \times n) \text {-matrices with entries in } \mathbb{F}\} \longrightarrow \mathbb{F}
$$

that sends the identity matrix to 1 , and is multilinear and alternating. It is a classical result that it is given by the polynomial $\operatorname{det}_{n}=\sum_{\sigma \in \Sigma_{n}}(-1)^{\operatorname{sign}(\sigma)} \prod_{i=1}^{n} x_{i \sigma(i)}$ in variables $x_{i j}$ standing for the $(i, j)$ th entry of the matrix. Over a finite field different polynomials can give the same function-that is, take all the same values - so it is natural to wonder whether there exists another polynomial than $\operatorname{det}_{n}$ that gives the determinant. Over $\mathbb{F}_{2}$, the field with two elements, there is a particularly elegant reformulation of this question because being multilinear and alternating is equivalent to saying $\operatorname{det}_{n}$ is invariant under left- and right-multiplication by $\mathrm{GL}_{n}\left(\mathbb{F}_{2}\right)$.
Question. Is $\operatorname{det}_{n}$ the only non-zero polynomial over $\mathbb{F}_{2}$ in the variables $x_{i j}$ of degree $n$ that is invariant under left- and right-multiplication by $\mathrm{GL}_{n}\left(\mathbb{F}_{2}\right)$ ?

This question is a part of a subject known as modular invariant theory. It came up for us in the course of a computation in algebraic topology [GKRW18], where we resolved it positively for $n \leqslant 4$ using results from the early 20th century [Dic11, Kra14] (and independently by brute-force computer calculation). It is just one of a family - you can vary the field, the degree, and the group-whose answers conjecturally have the property that they "stabilise" appropriately as one increase $n$ [SS15]. After solving the above question we can explore these conjectures.

## 2. Prerequisites

The prerequisites are:

- Linear algebra.
- Finite fields.

Moreover, the following may be helpful:

- Experience with computer algebra software.
- Algebra (groups, rings, modules).
- Representation theory.
- Algebraic topology.


## References

[Dic11] L. E. Dickson, A fundamental system of invariants of the general modular linear group with a solution of the form problem, Trans. Amer. Math. Soc. 12 (1911), no. 1, 75-98. 1
[GKRW18] S. Galatius, A. Kupers, and O. Randal-Williams, $E_{\infty}$-cells and general linear groups of finite fields, https://arxiv.org/abs/1810.11931, 2018. 1
[Kra14] W. C. Krathwohl, Modular Invariants of Two Pairs of Cogredient Variables, Amer. J. Math. 36 (1914), no. 4, 449-460. 1
[SS15] S. V. Sam and A. Snowden, Stability patterns in representation theory, Forum Math. Sigma 3 (2015), Paper No. e11, 108. MR 33767381

