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Iwasawa theory began as a Galois module theory of ideal class groups, initiated by Kenkichi Iwasawa

as part of the theory of cyclotomic �elds. In the early 1970s, Barry Mazur considered generalizations

of Iwasawa theory to Selmer groups of elliptic curves (Abelian varieties in general). At the turn of this

century, Coates and Sujatha initiated the study of a subgroup of the Selmer group of an elliptic curve

called the �ne Selmer group.

The focus of this thesis is to understand arithmetic properties of this subgroup. In particular, we

understand the structure of �ne Selmer groups and their growth patterns. We investigate a strong

analogy between the growth of the p-rank of the �ne Selmer group and the growth of the p-rank of the

class groups. This is done in the classical Iwasawa theoretic setting of (multiple) Zp-extensions; but

what is more striking is that this analogy can be extended to non-p-adic analytic extensions as well,

where standard Iwasawa theoretic tools fail.

We provide new evidence towards the two conjectures on the structure of the �ne Selmer groups

proposed by Coates and Sujatha. Conjecture A is viewed as a generalization of the classical Iwasawa

µ = 0 conjecture to the context of the motive associated to an elliptic curve; whereas Conjecture B is in

the spirit of generalising Greenberg's pseudonullity conjecture to elliptic curves.
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Chapter 1

Introduction

Iwasawa Theory is an area of number theory that emerged out of the foundational work of Kenkichi

Iwasawa in the 1950s [47]. It has its origins in the following (at �rst counter-intuitive) insight of Iwasawa:

instead of trying to understand the structure of a particular Galois module, it is often easier to describe

every Galois module in an in�nite tower of number �elds at once. It was inspired by Weil's theory of the

characteristic polynomial of Frobenius acting on the Jacobian of a curve over a �nite �eld. The primary

question in classical Iwasawa theory is to study the growth of arithmetic objects in in�nite towers. It

began as a Galois module theory of ideal class groups and was then generalized to Selmer groups of

Abelian varieties by Mazur [66]. More recently, Greenberg proposed an Iwasawa theory for motives [38].

A key observation is that growth of Galois modules in certain towers exhibits remarkable regularity.

This can be described in terms of values of L-functions, such as the Riemann ζ function. Hence, Iwasawa

theory truly unveils intricate links between algebraic, geometric, and analytic objects.

The foundations of the subject were laid way back in the mid 19th century with Kummer's work on

Fermat's Last Theorem and reciprocity laws. Kummer discovered that special values of the Riemann ζ

function have remarkable arithmetic properties. In particular, the class number of Q(ζp) is divisible by

p if and only if p | ζ(n) for some negative odd integer n ≥ 4 − p. Such primes p are called irregular.

He showed that for all regular primes p, xp + yp = zp has no non-trivial integral solutions. In a way,

Kummer showed that the ideal class group is both a �bitter� and a �sweet� group at the same time.

While it is an obstruction to the study of arithmetic of number �elds, it is closely related to zeta values.

Another mysterious relationship between ζ functions and the ideal class group is the analytic class

number formula which was also proved in the mid 19th century by Dedekind and Dirichlet.

After Kubota and Leopoldt introduced p-adic L-functions, Iwasawa interpreted them in terms of

Zp-extensions [48]. The link between the analytic and the algebraic worlds is provided by the Main

Conjecture which states that the p-adic L-functions are essentially the characteristic power series of

certain Galois actions arising in the theory of Zp-extensions. Using the theory of modular forms, Mazur

and Wiles proved the �rst case of this deep connection [68]. In [86], Rubin provided a proof based on

the technically complex machinery of Euler systems developed by Kolyvagin.

In the setting of elliptic curves, the arithmetic objects that replace class groups are the Selmer

groups. For an elliptic curve de�ned over a number �eld F , its Mordell-Weil group E(F ) of F -rational

points of the elliptic curve is a �nitely generated group. The Selmer group intertwines the Mordell-Weil

group and the mysterious, conjecturally �nite Shafarevich-Tate group. This intertwining is re�ected in

1



Chapter 1. Introduction 2

analytic formulae. Given E/Q, one constructs an L-series from the data of the number of Fp-points
of the mod p reductions of E. By the modularity of rational elliptic curves, this L-series has analytic

continuation. The Birch and Swinnerton-Dyer Conjecture (BSD) equates the order of vanishing of the

L-function L(E, s) at s = 1 to the rank of E(Q). Much of the progress towards this conjecture uses

Iwasawa theory. The �rst major theoretical evidence towards BSD was due to Coates and Wiles [24];

they proved that if the order of vanishing of the L-function associated to elliptic curves with complex

multiplication over an imaginary quadratic �eld of class number 1 is zero, then the rational Mordell-Weil

group is �nite.

For elliptic curves with good ordinary reduction at p, Mazur and Swinnerton-Dyer constructed p-adic

L-functions Lp(E, s) interpolating values of L(E, s) up to Euler factors. Mazur formulated an analogous

Main Conjecture in this setting. For elliptic curves with complex multiplication, this is equivalent to

the Main Conjecture for imaginary quadratic �elds proven by Rubin. One direction of the elliptic

curve Main Conjecture was proven by Kato employing the method of Euler systems [54]; the other

direction was proven by Skinner and Urban under mild hypothesis using Galois representations attached

to automorphic forms [99]. The Main Conjecture for elliptic curves implies a p-adic analogue of BSD

that relates the rank of the rational Mordell-Weil group to the order of vanishing of Lp(E, s) at s = 1.

In the early 2000's, Iwasawa theory over towers of number �elds with Galois groups isomorphic to

subgroups of GLn(Zp) was developed. A major breakthrough was the non-commutative Main Conjecture

for elliptic curves by Coates, Fukaya, Kato, Sujatha, and Venjakob [16]. The invariants playing the

roles of characteristic ideals and p-adic L-functions lie in a �rst K-group of a localization of the non-

commutative Iwasawa algebra. In the intervening two decades, signi�cant progress has been made in

this direction by the work of Burns, Kakde, and Ritter and Weiss [10], [53], [84].

Fine Selmer Groups

The focus of this thesis is to understand arithmetic properties of a subgroup of the Selmer group, called

the �ne Selmer group. This is de�ned by imposing stricter restriction conditions on the elements of the

classical Selmer group at all places above p. This subgroup plays a key role in the formulation of the

Main Conjecture in Iwasawa theory. A detailed study of the �ne Selmer group was �rst undertaken by

Coates and Sujatha [22]. The authors proposed that in a Zp-extension, the right analogue of the ideal
class group is not the classical Selmer group, but instead it is the �ne Selmer group.

The underlying theme of this thesis is to understand the structure of �ne Selmer groups and their

growth patterns. We investigate a strong analogy between the growth of the p-rank of the �ne Selmer

group and the growth of the p-rank of the class groups. This is done in the classical Iwasawa theoretic

setting of (multiple) Zp-extensions; but what is more striking is that this analogy can be extended to

non-p-adic analytic extensions as well, where standard Iwasawa theoretic tools fail.

We provide new evidence towards the two conjectures on the structure of the �ne Selmer groups

proposed by Coates and Sujatha [22]. Conjecture A is viewed as a generalization of the classical Iwasawa

µ = 0 conjecture to the context of the motive associated to an elliptic curve; whereas Conjecture B is in

the spirit of generalising Greenberg's pseudonullity conjecture to elliptic curves [35]. These conjectures

have been generalised to �ne Selmer groups of ordinary Galois representations associated to modular

forms [52]. In this thesis, we restrict our attention to �ne Selmer groups of Abelian varieties, often

elliptic curves with good reduction at a prime p, over p-adic Lie extensions of the base �eld. However,

many of the results easily generalise to the case of ordinary Galois representations.
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Organization of this Thesis:

Chapter 2 is expository in nature. We introduce the key de�nitions and results which will be required

throughout the thesis. In Chapter 3, we investigate the strong �niteness properties of the �ne Selmer

group. Exploiting techniques used by Lim and Murty in [59] and [60], we study the growth of the

�ne Selmer group (and �ne Shafarevich-Tate groups) in di�erent situations. In Chapter 4, we prove a

Riemann-Hurwitz type formula for λ-invariants of �ne Selmer groups. In Chapter 5, we provide new

evidence for Conjecture A and establish isogeny invariance in previously unknown cases. In Chapter 6, we

investigate Conjecture B. Even though Conjecture B was proposed as a generalization of the Generalized

Greenberg's Conjecture, the precise formulation of this relationship is rather intricate. This connection

is made explicit using the Powerful Diagram. We also provide unconditional evidence towards this

conjecture in a large number of cases. The results in the �nal chapter are joint work with R. Sujatha.



Chapter 2

Background

This chapter is expository in nature. We introduce the objects of study and give a detailed background

of the theory of modules over an Iwasawa algebra which is crucial for the study of Iwasawa theory. We

also discuss some aspects of non-commutative Iwasawa theory. In the �nal section, we brie�y mention

some technical tools that are required in the study of Iwasawa theory.

2.1 Classical Iwasawa Theory

Fix a prime p and a number �eld F . A Zp-extension F∞ of F is one where the corresponding Galois

group Γ = Gal(F∞/F ) ' Zp, the additive group of p-adic integers. Such an extension is visualized as a

tower of number �elds

F = F0 ⊂ F1 . . . ⊂ Fn . . . ⊂ F∞ =
⋃
n

Fn

with each Gal(Fn/F ) ' Z/pnZ. To see this, note that the non-trivial closed subgroups of Γ are of the

form Γp
n

for n ≥ 0 and are denoted by Γn. These {Γn}n form a descending sequence with Γ/Γn ' Z/pnZ.
With Fn = FΓn

∞ , we obtain the above tower.

Every number �eld has at least one Zp-extension, i.e. the cyclotomic Zp-extension, which is a sub�eld
of F (µp∞). Indeed, consider the canonical homomorphism

χ : Gal
(
F (µp∞)/F

)
→ Z×p

σ 7→ χ(σ) = u.

Let ζpn be a primitive pn-th root of unity, then σ(ζpn) = ζunpn with un ∈ Z and gcd(un, p) = 1. This

sequence of {un}n is a Cauchy sequence in Zp and converges to a well-de�ned element u ∈ Z×p . For all
ζ ∈ µp∞ , it follows that σ(ζ) = ζχ(σ). χ is a continuous and injective homomorphism with image of

�nite index in Z×p . The p-adic logarithm gives the isomorphism

Z×p '
(
Z/pZ

)× × Zp for p 6= 2

Z×2 ' {±1} × Z2 for p = 2.

Therefore Im(χ) ' ∆× Γ with ∆ a �nite group and Γ ' Zp. This proves there exists a unique sub�eld

Fcyc of F (µp∞) such that Gal(Fcyc/F ) ' Γ ' Zp. This is the cyclotomic Zp-extension of F .

4



Chapter 2. Background 5

Let F̃ /F denote the compositum of all Zp-extensions of F . By idelic class �eld theory, it follows

Gal(F̃ /F ) ' Zdp (2.1)

where r2 + 1 ≤ d ≤ [F : Q]. Thus, for a number �eld which is not totally real, there are in�nitely many

Zp-extensions. The Leopoldt Conjecture asserts d = r2 + 1. This would imply that for a totally real

�eld there is precisely one Zp-extension, namely the one constructed above.

In 1959, Iwasawa proved the following result on the growth of the orders of p-parts of the class groups

of the �elds Fn [47].

Theorem 2.1.1. Consider a Zp-extension F∞/F . Let An denote the p-part of the class group of Fn.

There exist non-negative integers λ, µ and an integer ν such that for n� 0,

|An| = pµp
n+λn+ν .

In the same paper, Iwasawa made the following conjecture.

Classical µ = 0 Conjecture. For F∞ = Fcyc, µ = 0.

This is known for Abelian number �elds by the work of Ferrero-Washington [30]. In 1984, Sinnott

proved the same using p-adic L-functions [98].

Idea of Proof of Iwasawa's Theorem. The proof hinges on studying the Galois group X := Gal(L∞/F∞)

where L∞ =
⋃
n Ln and Ln is the maximal Abelian unrami�ed p-extension of Fn, i.e. its p-Hilbert

class �eld. The inverse limit of Artin isomorphisms identi�es X with lim←−nAn. By class �eld theory,

[Ln : Fn] = pen is �nite. The Galois extension Gal(L∞/F ) �ts into the short exact sequence

0→ X → Gal(L∞/F )→ Γ→ 0.

First, X is a compact Zp-module because it is a projective limit of �nite Abelian p-groups. There is also

a natural action of Γ on lim←−nAn and via the Artin isomorphism it can be identi�ed with the conjugation

action of Γ on X. This gives X a rich structure of a module over the Iwasawa algebra; this structure

allows the study of the growth of [Ln : Fn], giving the precise formula. K

2.1.1 Modules over the Iwasawa Algebra

The Iwasawa algebra Λ(G) of a pro�nite group G is a variation of the group ring of G with p-adic

coe�cients taking into account the topology of G. More precisely,

Λ(G) := lim←−Zp[G/H]

where H runs over the open normal subgroups of G and the inverse limit is taken with respect to natural

projection maps. For now, the focus is on commutative Iwasawa algebras. We choose G = Γ ' Zp. Their
non-commutative analogues were introduced by Lazard and will be discussed in brief in Section 2.4.

Fix a topological generator γ of Γ; it is an element that generates a dense subgroup of Γ. The

isomorphism Zp ' Γ is given by x 7→ γx. Serre proved that the Iwasawa algebra is isomorphic to a
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power series in one variable. More precisely,

Λ(Γ)
∼−→ ZpJT K

γ − 1 7→ T

This Iwasawa algebra is a Noetherian ring. If f(T ) =
∑
i≥0 αiT

i is an element of the Iwasawa algebra,

it is invertible if and only if α0 ∈ Z×p . This makes the Iwasawa algebra a local ring with maximal

ideal m = (p, T ). This gives us a powerful tool from commutative algebra, namely the Nakayama's

Lemma (see Section A.1.1). Since Λ(Γ)/mk is �nite for all positive k, the Iwasawa algebra is viewed as a

topological ring by giving it the m-adic topology. Moreover, it is compact because Λ(Γ) ' lim←−Λ(Γ)/mk.

Λ(Γ) is not a Principal Ideal Domain (PID). However, the structure theory of �nitely generated

modules over Λ(Γ) is similar to that of �nitely generated modules over a PID, provided these Λ(Γ)-

modules are de�ned up to �nite submodules and quotient modules.

A homomorphism θ : M → N of �nitely generated Λ(Γ) modules is called a pseudo-isomorphism

if both its kernel and cokernel are �nite. This notion gives an equivalence relation on any set of �nitely

generated, torsion Λ(Γ)-modules.

Theorem 2.1.2 (Structure Theorem). For any �nitely generated, torsion Λ(Γ)-module M , there is a

pseudo-isomorphism

M →
s⊕
i=1

Λ(Γ)
/(
pmi
)⊕ t⊕

j=1

Λ(Γ)
/(

f
lj
j

)
where s, t are �nite, mi, lj > 0 and each fj is a distinguished polynomial (i.e. a monic irreducible

polynomial in Zp[T ] such that fj ≡ T deg fj mod p).

In the notation of the theorem, set

µ(M) =

s∑
i=1

mi, λ(M) =

t∑
j=1

lj deg fj .

To each M , it is also possible to associate its annihilator, called the characteristic ideal

char(M) =

pµ(M)

t∏
j=1

f
lj
j

 .

Remark 2.1.3. Recall from the proof of Theorem 2.1.1: the conjugation action of Γ on X ' lim←−nAn
makes it a (compact) Λ(Γ)-module. It is called the unrami�ed Iwasawa module and is a �nitely

generated torsion Λ(Γ)-module. In this case, λ = λ(X) and µ = µ(X) are as in the theorem.

2.1.2 Pseudo-nullity

We return to the situation considered in Equation 2.1. Let F̃ be the compositum of all Zp-extensions of
F . Pick a set of topological generators {γi}di=1 of Γd = Gal(F̃ /F ) ' Zdp. The maps γi − 1 7→ Ti for each

1 ≤ i ≤ d extend to a Zp-algebra isomorphism

Λ(Γd) = ZpJΓdK
∼−→ ZpJT1, . . . , TdK.
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As before, Λ(Γd) is a complete regular local domain of dimension d + 1. In particular, it is a Unique

Factorization Domain (UFD). Consider the maximal Abelian unrami�ed p-extension L̃ of F̃ and set

X̃ = Gal(L̃/F̃ ). X̃ can be viewed as a Zp-module by the natural action of Γd. In [34], Greenberg proved

that X̃ is a Noetherian torsion Λ(Γd)-module.

De�nition 2.1.4. A �nitely generated, torsion Λ(Γd)-module M is pseudo-null if its annihilator

AnnΛ(Γd)(M) has height atleast 2. Equivalently, AnnΛ(Γd)(M) is generated by two co-prime elements.

As before, there is a pseudo-isomorphism from M to a (unique) module
⊕r

i=1
Λ(Γd)

/(
feii
) where

fi ∈ Λ(Γd) are irreducible; but now we require the kernel and cokernel are pseudo-null.

When d = 1, a �nitely generated Λ(Γ)-module is pseudo-null if and only if it �nite. Indeed, consider a

�nitely generated, pseudo-null Λ(Γ)-moduleM . By de�nition, char(M) = AnnΛ(Γ)(M) has two relatively

prime elements, hence it has �nite index in Λ(Γ). Conversely, if M is �nite,

AnnΛ(Γ)(M) =
⋂
m∈M

AnnΛ(Γ)(m).

Since m generates a �nite Λ(Γ)-module Λ(Γ)
/

AnnΛ(Γ)(m), each AnnΛ(Γ)(m) must be of �nite index in

Λ(Γ). Thus AnnΛ(Γ)(M) has �nite index in Λ(Γ) and is of height 2.

Greenberg observed that it appears as if for totally real �elds, the Iwasawa module associated to the

cyclotomic extension Xcyc is �nite, i.e. λ = µ = 0. He formulated the following general conjecture [35].

Generalized Greenberg's Conjecture. Let F be a number �eld. Consider the compositum of all

Zp-extensions F̃ /F and let L̃ denote its (pro)-p Hilbert class �eld. Then X̃ = Gal(L̃/F̃ ) is a pseudo-null

Λ(Γd)-module.

2.2 Iwasawa Theory of Selmer Groups

Throughout this section p 6= 2. In [66], Mazur developed a theory that aimed at proving a result of the

following �avour.

Conjecture 2.2.1. Let A be an Abelian variety de�ned over a number �eld F . Assume p is such that

A has good ordinary reduction at all primes above p. Let Fcyc/F be the cyclotomic Zp-extension, then
the group of Fcyc-rational points of A, denoted A(Fcyc), is a �nitely generated Λ(Γ)-module.

2.2.1 Selmer Groups of Abelian Varieties

Let A be an Abelian variety de�ned over a �xed number �eld F . Let S be a �nite set of primes in F

containing the Archimedean primes, the primes above p, and the primes of bad reduction; for short write

S ⊃ S∞∪Sp∪Sbad. For any extension L/F , denote by LS the maximal extension of L unrami�ed outside

S; set the Galois group Gal(LS/L) as GS(L). For a GS(L)-module M , its i-th Galois cohomology group

is denoted Hi(GS(L), M). If w is a place of L, we write Lw for its completion at w; when L/K is

in�nite, it is the union of completions of all �nite sub-extensions of L. For local �elds, Hi(Lw, M) is

the cohomology with respect to the absolute Galois group of Lw.

Let k be a positive integer. Kummer theory for Abelian varieties provides an injection

A(F )/pk ↪→ H1
(
GS(F ), A[pk]

)
.
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The classical pk-Selmer group is the following kernel

0→ Selpk
(
A/F

)
→ H1

(
GS (F ) , A[pk]

)
→
⊕
v∈S

H1 (Fv, A) [pk]. (2.2)

Taking limit with respect to the maps induced by the inclusions A[pk] ↪→ A[pk+1], we obtain

Sel(A/F ) = Selp∞(A/F ) := lim−→
k

Selpk(A/F ). (2.3)

This p-primary Selmer group �ts into an exact sequence

0→ A(F )⊗Qp
/
Zp → Sel(A/F )→X(A/F )(p)→ 0

where A(F ) is the group of F -rational points called the Mordell-Weil group and X(A/F ) is the

Shafarevich-Tate group. This latter group measures the extent of failure of the local-global principle

for rational equations with coe�cients in F .

For an in�nite Galois extension L/F , the Selmer group Sel
(
A/L

)
is de�ned as follows

0→ Sel
(
A/L

)
→ H1

(
GS(L), Ep∞

)
→
⊕
v∈S

lim−→
L

⊕
w|v

H1 (Lw, E) [p∞]

 .

The inductive limit is taken with respect to the restriction maps and L runs over all �nite extensions of

F contained in L. Also note

Sel
(
A/L

)
= lim−→

L

Sel
(
A/L

)
.

2.2.2 Cyclotomic Theory

Mostly, we restrict ourselves to the study of cyclotomic Zp-extension. The following result however is

true in general. It is similar to the classical case and holds irrespective of the reduction type at p.

Proposition 2.2.2. Let A be an Abelian variety over F . The Pontryagin dual of the p-primary Selmer

group X(A/F∞) is a �nitely generated Λ(Γ)-module.

When M is a discrete p-primary Abelian group or a compact pro-p Abelian group, its Pontryagin

dual M∨ := Homcont(M, Qp/Zp). For a pro�nite group G and M a G-module, MG is the subgroup of

elements �xed by G and MG is the largest quotient of M on which G acts trivially.

Sketch of Proof. By Nakayama's Lemma, it is enough to prove that X(A/F∞)Γ is a �nitely generated

Zp-module. By Pontryagin duality, it su�ces to show Sel(A/F∞)Γ is a co-�nitely generated Zp-module.

This is done by a careful analysis of the Fundamental Diagram.

0 Sel(A/F∞)Γ H1(GS(F∞), A[p∞])Γ
⊕

v∈S lim←−L
(
⊕w|vH1(Lw, A)(p)

)Γ

0 Sel(A/F ) H1(GS(F ), A[p∞])
⊕

v∈S H
1(Fv, E)(p)

α β γ
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First, H1(GS(F ), A[p∞]) has �nite Zp-rank. It follows immediately that the same is true for Sel(A/F ).

Therefore, it is enough to show coker(α) has �nite Zp-rank.
Observe coker(β) = 0 because the p-cohomological dimension of Γ is 1; by Hochschild-Serre spectral

sequence coker(β) ↪→ H2(Γ, A[p∞](F∞)). Lastly, ker(γ) has �nite Zp-corank. Indeed, the dual of ker(γ)

is a quotient of ⊕v∈S lim←−nA(Fv)/p
n; the structure of the latter group is known using the theory of formal

groups. It is a �nitely generated Zp-module. The claim for coker(α) follows from the Snake Lemma. K

Remark 2.2.3. Even when X(A/F∞) is a �nitely generated Λ(Γ)-module it can fail to be Λ(Γ)-torsion.

1. Let F be an imaginary quadratic �eld and E/Q be an elliptic curve with good ordinary reduction

at p. Consider the anti-cyclotomic Zp-extension Fac/F . It is possible rankZ(E(Fn)) is unbounded,

then X(E/Fac) is not Λ(Γ)-torsion.

2. Let F be a number �eld and E/F be an elliptic curve with good supersingular reduction at p.

Then X(E/Fac) is not Λ(Γ)-torsion.

In [66], Mazur proved the Control Theorem for Zp-extensions of a number �eld.

Theorem 2.2.4. Suppose A/F has good ordinary reduction at all primes above p. Let F∞/F be any

Zp-extension. The kernel and cokernel of the following natural maps are �nite and bounded as n→ 0,

Sel(A/Fn)→ Sel(F∞)Gal(F∞/Fn).

Corollary 2.2.5. Let A/F be an Abelian variety with good ordinary reduction at all primes above p.

Suppose Sel(A/F ) is �nite. Then X(A/F∞) is Λ(Γ)-torsion.

Proof. By hypothesis, the Control Theorem implies Sel(A/F∞)Γ is �nite. The maximal quotient of

X(A/F∞) on which Γ acts trivially is X(A/F∞)/TX(A/F∞). Therefore, it is the Pontryagin dual of

Sel(A/F∞)Γ and is also �nite. By a variant of the Nakayama's Lemma (Theorem A.1.2), X(A/F∞) is a

�nitely generated, torsion Λ(Γ)-module . K

Therefore, by the Structure Theorem X(A/F∞) has �nite Zp-corank, denoted λ(X(A/F∞)). The

maximal divisible subgroup of Sel(A/F∞) is isomorphic to
(
Qp
/
Zp

)λ(X(A/F∞)

. Then,

A(F∞)⊗Qp
/
Zp '

(
Qp
/
Zp

)r
where 0 ≤ r ≤ λ(X(A/F∞)). For cyclotomic extensions, A(Fcyc)tors is �nite [83]. It follows that

Conjecture 2.2.1 is true when Sel(A/F ) is �nite (see [66, Proposition 6.11] or [20, Theorem 2.8]). The

above argument suggests more should be true, i.e. Conjecture 2.2.1 holds if the following is true.

Conjecture 2.2.6. Let A be an Abelian variety de�ned over a number �eld F . Assume p is such that A

has good ordinary reduction at all primes above p. Consider the cyclotomic Zp-extension Fcyc/F . Then

X(A/Fcyc) is a �nitely generated torsion Λ(Γ)-module.

Remark 2.2.7. In [66], Mazur gave a concrete example of an elliptic curve E/Q of conductor 11, namely

E : y2 + y = x3 − x2 − 10x− 20
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for which at the the prime p = 5 of good ordinary reduction, X(E/Qcyc) is �nitely generated and torsion

as a Λ(Γ)-module but the associated µ-invariant is positive.

2.2.3 Iwasawa Theory of Elliptic Curves with CM

Let E be an elliptic curve over a number �eld F considered as a sub�eld of Q, the algebraic closure of Q.
Denote by EndF (E) the ring of F -endomorphisms of F . It contains all the multiplication-by-[n] maps

where n ∈ Z. Therefore Z ⊆ EndF (E). We say that E admits a complex multiplication (CM) if

EndQ(E) 6= Z.

For an elliptic curve with CM, EndF (E)⊗ZQ = K is an imaginary quadratic �eld [97, Corollary III.9.4].

Elliptic curves which admit CM are very important from the point of view of Iwasawa theory. Their

study goes back to two fundamental papers of Coates and Wiles [24], [25]. On the algebraic side of the

story, the work of Perrin-Riou is highly in�uential [80]. In this section, we will introduce two extensions

that are generally considered in the study of CM elliptic curves.

In view of the classical Iwasawa theory and the ubiquitous nature of elliptic curves, it is natural to

expect an analogue for the �eld obtained by adjoining to Q all the p power torsion points on an elliptic

curve E de�ned over Q.

Split Prime Zp-Extensions

Let K be an imaginary quadratic �eld and p 6= 2 splits as pp̄ in K. Let F/K be any �nite Galois

extension with an elliptic curve E de�ned over it. Let S be a �nite set of primes in F , containing the

archimedean primes, the primes of bad reduction of E and the primes above p. In this section, we

consider elliptic curves E/F with good reduction at p and CM by OK , i.e. the ring of integers of K.

Remark 2.2.8. The hypotheses, EndF (E) is the maximal order of K, involves no real loss of generality

since every E/F with Q⊗Z EndF (E) ' K is isogenous over F to one with this property.

Recall p is a split prime above p in K/Q, thus

E[p] ' OK/pOK ' Z/pZ.

It follows that, as Abelian groups,

E[p∞] =
⋃
n≥1

E[pn] ' Zp.

We recall the construction of a non-cyclotomic Zp-extension from [15]. A natural way to de�ne

a non-cyclotomic Zp-extension is via points of �nite order on E. Set L̃ = F (E[p∞]). The action of

Gal(L̃/F ) on E[p∞] gives a canonical injection

χ∞ : Gal(L̃/F ) ↪→ Z×p .

The image is of �nite index in Z×p . We have the decomposition

Z×p = µp−1 × (1 + pZp)
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where µp−1 is the group of (p− 1)-th roots of unity. Via χ∞, there is a corresponding decomposition of

Gal(L̃/F ) = ∆× Γ. The image of ∆ is a subgroup of µp−1 and that of Γ is a subgroup of 1 + pZp. The
�xed �eld of ∆ is a Zp extension L/F whose Galois group can be identi�ed with Γ.

By class �eld theory, there is a unique Zp-extension of K unrami�ed outside of p. Denote this by

K∞ and call it the split prime Zp-extension of K. By the classical theory of CM, L = FK∞. Thus,

L/F is unrami�ed outside the set of primes above p and each prime above p is rami�ed in L/F .

Trivializing Extension

Keeping the same set up as before, further assume p 6= 3. Let E be an elliptic curve de�ned over F and

F∞ be the �eld obtained by adjoining all the p-power torsion points on E to F , i.e.

F∞ =
⋃
n≥1

F (E[pn]). (2.4)

This is the trivializing extension. By the Weil pairing F∞ ⊃ Fcyc.

Suppose p does not ramify in K and F = K(E[p]). In the CM case, G = Gal(F∞/F ) is a pro-p group

isomorphic to Z2
p. By the theory of CM, Gal(F∞/K) = G×∆. Here ∆ = Gal(F/K) is a �nite Abelian

group, and p - |∆| as p does not ramify in K. Also F∞ = FK̃, where K̃/K is the unique Z2
p-extension.

We now draw the �eld diagram for convenience [80, Page 24].

K

K(E[p]) K(E[p])

F

K(E[p∞]) K(E[p∞])

F∞

Fcyc

Zp Zp

2.3 Iwasawa Theory of Fine Selmer Groups

In view of Remark 2.2.7, it is clear that in the context of Iwasawa theory of (cyclotomic) Zp-extensions,
the Selmer group is not the right analogue of the class group. It is believed that the right analogue is

a subgroup of the classical Selmer group, called the �ne Selmer group which is obtained by imposing

stronger conditions at primes above p.

Let A be an Abelian variety de�ned over F , the pk-�ne Selmer Group is de�ned by the kernel

0→ Rpk
(
A/F

)
→ Selpk

(
A/F

)
→
⊕
v|p

H1
(
Fv, A[pk]

)
. (2.5)

As before, we consider the limit version, called the p-primary �ne Selmer group. It is given by

R(A/F ) = Rp∞(A/F ) := lim←−Rpk(A/F ).
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In fact, it is possible to de�ne the p-primary �ne Selmer group directly as the following kernel

0→ R
(
A/F

)
→ H1

(
GS (F ) , A[p∞]

)
→
⊕
v∈S

H1
(
Fv, A[p∞]

)
.

It is okay to replace the sum to be over all primes in S. This is because by Kummer theory,

ker
(
H1(Fv, A[p∞])→ H1(Fv, A)(p)

)
= A(Fv)⊗Qp

/
Zp.

But the right hand side is trivial when v - p.
For an in�nite Galois extension L/F , the Selmer group R

(
A/L

)
is de�ned as follows

0→ R
(
A/L

)
→ H1

(
GS(L), Ep∞

)
→
⊕
v∈S

lim−→
L

⊕
w|v

H1
(
Lw, E[p∞]

) .

The inductive limit is taken with respect to the restriction maps and L runs over all �nite extensions of

F contained in L. It is easy to observe that

R
(
A/L

)
= lim−→

L

R
(
A/L

)
.

Consider a Zp-extension F∞/F with Gal(F∞/F ) = Γ. The �ne Selmer groups is a (discrete) sub-

group of the classical Selmer group; therefore its Pontryagin dual, denoted by Y(A/F∞), is a quotient

of X(A/F∞). By Proposition 2.2.2, it follows Y(A/F∞) is also a �nitely generated Λ(Γ)-module. How-

ever, more is believed to be true. For cyclotomic extensions, Y(A/Fcyc) is expected to be Λ(Γ)-torsion

irrespective of the reduction type at p. This is called the weak Leopoldt Conjecture for elliptic

curves. By a result of Y. Ochi (see Lemma 2.5.1), the elliptic curve analogue of the weak Leopoldt

conjecture over the cyclotomic extension can be formulated in terms of the vanishing of a certain Galois

cohomology group. More precisely,

H2
(
GS
(
Fcyc

)
, E[p∞]

)
= 0. (2.6)

Kato has proved this is indeed true when F/Q is an Abelian extension [54]. For CM elliptic curves this

is known from the work of Rubin in the ordinary case [85] and McConnell in the supersingular case [70].

In [22], Coates and Sujatha studied the �ne Selmer group over p-adic Lie extensions and posed two

conjectures. In the rest of the chapter, we describe the necessary background to state these conjectures.

2.3.1 Conjecture A: Vanishing of the µ-Invariant

The following conjecture is the elliptic curve analogue of the Classical µ = 0 Conjecture.

Conjecture A. Let E be an elliptic curve over F . The Pontryagin dual of the �ne Selmer group

Y(E/Fcyc) is Λ(Γ)-torsion and the associated µ-invariant is 0.

A priori, it might not appear obvious, but Conjecture A is closely related to the Classical µ = 0

Conjecture. This is evident from the following theorem [22, Theorem 3.4]. Using completely di�erent

techniques, this is also proven by Lim and Murty [60, Theorem 5.5].
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Theorem 2.3.1. Let p 6= 2. Suppose F (E[p])/F is a �nite p-extension. Then Conjecture A holds for

Y(E/Fcyc) if and only if the Classical µ = 0 Conjecture holds for Fcyc.

2.4 Non-Commutative Iwasawa Theory

Let G be any compact p-adic Lie group without an element of order p; it is possible to visualize G as a

closed subgroup of GLn(Zp).
For a p-adic analytic, torsion-free, pro-p group G, the Iwasawa algebra over Zp, denoted by Λ(G), is

a left and right Noetherian ring without zero-divisors. In [102], Venjakob proved this is also Auslander

regular. In particular, this property a�ords an associated dimension theory for �nitely generated left

(or right) modules over Λ(G). If d is the dimension of G considered as a p-adic analytic manifold, the

dimension of Λ(G) is d+ 1.

In [44], Howson showed that for a �nitely generated Λ(G)-module M ,

rankΛ(G)(M) =
∑
i≥0

(−1)i dimZp
(
Hi(G, M)

)
. (2.7)

Howson also considered the structure of modules over the Fp-linear, completed group algebra

Ω(G) := lim←−Fp[G/U ]

where U runs over all open normal subgroups of G. For a �nitely generated Ω(G)-module M , its

Ω(G)-rank is de�ned as

rankΩ(G)(M) :=
∑
i≥0

(−1)i dimFp
(
Hi(G,M)

)
.

IfM is a �nitely generated Λ(G)-module, setM(p) to denote the subset ofM annihilated by some power

of p. M(p) is also �nitely generated as a Λ(G)-module, it follows that there exists a non-negative integer

r such that pr annihilates M(p). The µG-invariant of M is de�ned as

µG(M) :=
∑
i≥0

rankΩ(G)

(
pi
(
M(p)

)/
pi+1

)

= ordp

∏
i≥0

(∣∣Hi(G, M(p))
∣∣)(−1)i


Before stating the Non-Commutative Structure Theorem established by Coates, Schneider, and Su-

jatha [19], we give a general de�nition of pseudo-nullity in this setting.

De�nition 2.4.1. Let M be a �nitely generated Λ(G)-module of dimension dim(M). It is torsion if

dim(M) ≤ dim
(
Λ(G)

)
−1 and is pseudo-null if dim(M) ≤ dim

(
Λ(G)

)
−2, i.e. if it has co-dimension

at least 2.

This de�nition coincides with the one in De�nition 2.1.4, i.e. when Λ(G) is a commutative local

Noetherian regular ring via Grothendieck's local duality [9, Corollary 3.5.11]. It follows from the work

of Björk that an equivalent de�nition can be given in terms of the Ext group [102, Proposition 3.4]. A
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�nitely generated torsion Λ(G)-module M is a pseudo-null Λ(G)-module if

Ei := ExtiΛ(G)

(
M, Λ(G)

)
= 0 for i = 0, 1. (2.8)

Theorem 2.4.2 (Non-Commutative Structure Theorem). For every torsion Λ(G)-module M there exist

left ideals a1, . . . , ar such that up to pseudo null modules, M decomposes into a product of cyclic modules

M →
r∏
i=1

Λ(G)
/
ai
.

2.4.1 Iwasawa Theory of Elliptic Curves Without CM

Given a number �eld F and an elliptic curve E/F , we denote the trivializing extension by F∞. When E

admits CM, Gal(F∞/F ) contains an open subgroup which is Abelian and isomorphic to Z2
p. However,

by Serre's Open Image Theorem, when E does not admit CM over the algebraic closure of F , the Galois

group Gal(F∞/F ) is isomorphic to an open subgroup of GL2(Zp). Thus, it is a non-Abelian, p-adic Lie

extension of dimension 4. The methods of classical Iwasawa theory do not extend in the most obvious

way to the GL2 theory. The �rst results in this direction were proved by Coates and Howson [18].

2.4.2 Conjecture B: Pseudo-nullity Conjecture

Let F be a number �eld and S ⊇ S∞ ∪ Sp. A Galois extension L/F is called an S-admissible p-adic

Lie extension if the following conditions are satis�ed

(i) the Galois group GL = Gal(L/F ) is a p-adic Lie group.

(ii) L ⊂ FS .

(iii) Fcyc ⊆ L.

(iv) GL is pro-p and has no element of order p.

In the last section, we saw some equivalent de�nitions of a pseudo-null module. There is yet another

useful de�nition of pseudo-nullity which was given by Venjakob for p-adic Lie extensions �arising from

geometry" [104]. Consider an S-admissible p-adic Lie extension L/F , with the corresponding Galois

group Gal(L/F ) = GL. Denote HL = Gal(L/Fcyc). A �nitely generated Λ(GL)-module M , which is

also �nitely generated over Λ(HL) is a pseudo-null Λ(GL)-module if and only if it is Λ(HL)-torsion.

In [22], Coates and Sujatha made a second conjecture in the spirit of generalising the Generalized

Greenberg's Conjecture to elliptic curves. It concerns the phenomenon of certain arithmetic Iwasawa

modules for p-adic Lie extensions of dimension greater than 1 being smaller than intuitively expected.

Conjecture B. Let E be an elliptic curve de�ned over a number �eld F , such that Conjecture A holds

for Y(E/Fcyc). Let L/F be an admissible p-adic Lie extension and GL be a pro-p p-adic Lie group of

dimension strictly greater than 1. Then, Y(E/L) is a pseudo-null Λ(GL)-module.

Remark 2.4.3. 1. This conjecture is false when dim(G)=1, i.e. when G = Γ ' Zp. If E is a rank 2

(or higher) elliptic curve de�ned over Q, then Y(E/Qcyc) has positive Zp-rank and hence can not

be pseudo-null (equivalently �nite) as a Λ(Γ)-module.
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2. There exist p-adic Lie extensions F/F such that Fcyc 6⊂ F and Y(E/F) is not a pseudo-null

module over the Iwasawa algebra.

3. Even though Conjecture B is formulated for all S-admissible p-adic Lie extensions L/F , we will

focus on those L for which the GS(L) action on E[p∞] is trivial, i.e. those L/F which contain the

trvializing extension F∞ = F (E[p∞]).

2.5 Technical Tools

In this section we record some de�nitions and technical results which are heavily used in Iwasawa theory.

2.5.1 Hochschild-Serre Spectral Sequence

In studying cohomology of pro�nite groups, the Hochschild�Serre spectral sequence plays a major

role. It is a spectral sequence relating the group cohomology of a normal subgroup H and the quotient

group G/H to the cohomology of the group G. The concept is involved and we refer the reader to [76]

for a detailed survey.

Let G be a pro�nite group, H be a closed normal subgroup, andM be a G-module. If Hn(H, M) = 0

for all n ≥ 1, it follows from the �ve-term in�ation-restriction exact sequence that

Hn

(
G
/
H, H

0(H, M)

)
' Hn(G, M).

In fact, something far more general is true. We have a spectral sequence

Hp

(
G
/
H, H

q(H, M)

)
⇒ Hp+q(G, M).

It roughly says that there is a canonical decreasing �ltration of Hn = Hn(G, M),

Hn = F 0Hn ⊇ F 1Hn ⊇ . . . Fn+1Hn = 0

such that the quotient F pHn/F p+1Hn is isomorphic to a subquotient of Hp
(
G/H, Hn−q(H, M)

)
.

An easy consequence of the Hochschild-Serre Spectral sequence is the in�ation-restriction map

0 → H1

(
G
/
H, M

H

)
inf−−→ H1 (G, M)

res−−→ H1 (H, M)
G/H

→ H2

(
G
/
H, M

H

)
inf−−→ H2(G, M)

We record a special case of the Hochschild-Serre spectral sequence when Hq(H, M) = 0 for q > 1

· · · → H1

(
G
/
H, H

0(H, M)

)
→ H1(G, M) → H0

(
G
/
H, H

1(H, M)

)
→

→ H2

(
G
/
H, H

0(H, M)

)
→ H2(G, M) → H1

(
G
/
H, H

1(H, M)

)
→

→ H3

(
G
/
H, H

0(H, M)

)
→ H3(G, M) → H2

(
G
/
H, H

1(H, M)

)
→
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2.5.2 Iwasawa Cohomology of Elliptic Curves

The notion of Iwasawa cohomology will be mainly required in the last chapter.

Let E be an elliptic curve de�ned over F and consider its Tate module

Tp(E) := lim←−E[pn].

Let S be a �nite set of primes in F containing the Archimedean primes, the primes above p, and the

primes of bad reduction of E. Tp(E) is a �nitely generated Zp-module with a continuous action of GS(F ).

For any S-admissible p-adic Lie extension L/F , set G = Gal(L/F ). The i-th Iwasawa cohomology

groups are compact GL-modules de�ned as

Zi(E/L) := lim←−H
i(GS(L), Tp(E)) i = 0, 1, 2

where the projective limit is taken with respect to co-restriction maps and L runs over all the �nite

extensions of F . It is known that Z0(E/L) = 0.

Relation between Dual Fine Selmer Group and the Iwasawa Cohomology

Let v be a �nite place of F . For each �nite extension L/F contained in FS , de�ne

Ki
v(E/L) =

⊕
w|v

Hi(Lw, E[p∞]) when i = 0, 1.

For an S-admissible p-adic Lie extension L/F , de�ne

Ki
v(E/L) := lim−→

L

Ki
v(E/L).

Taking direct limit of the standard Poitou-Tate sequence gives

0→ H0(L, E[p∞])→
⊕
v∈S

K0
v (E/L)→ Z2(E/L)∨ → R(E/L)→ 0. (2.9)

The above equation suggests there is a close relation between Y(E/L) and Z2(E/L). The following

lemma due to Y. Ochi makes explicit this relation [22, Lemma 3.1].

Lemma 2.5.1. Let L be an S-admissible p-adic Lie extension of F with Gal(L/F ) = G. For an elliptic

curve E/F , the following are equivalent.

(i) Y(E/L) is Λ(G)-torsion.

(ii) Z2(E/L) is Λ(G)-torsion.

(iii) The elliptic curve analogue of the weak Leopoldt conjecture holds, i.e. H2(GS(L), E[p∞]) = 0.

When these assertions hold

µG

(
Y
(
E/L

))
= µG

(
Z2
(
E/L

))
.

Sketch of proof. To see the equivalence of (i) and (ii), by Exact Sequence 2.9 it su�ces to show the

Pontryagin dual of K0
v (E/L) (denoted Uv) is Λ(G)-torsion.
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Recall the decomposition group Gv has dimension at least 1. Set Av to be the Pontryagin dual of

E(Lv)[p∞]. It is known that Av is a �nitely generated Zp-module. Further,

Uv = Λ(G)⊗Λ(Gv) Av. (2.10)

By an application of Shapiro's Lemma, Λ(G)-torsion-ness of Uv follows.

Equivalence of (ii) and (iii) is a consequence of Jannsen's spectral sequence. Denote byXi the Pontryagin

dual of Hi(GS(L), E[p∞]). Assuming (iii), Xi are �nitely generated Λ(G)-modules and the implication

follows from the exact sequence

E2(X0)→ Z2(E/L)→ E1(X1).

Conversely, it follows from the exact sequence

Z2(E/L)→ E0(X2)→ E2(X1)

that the middle term is Λ(G)-torsion, in fact it is trivial. Moreover, because X2 has no Λ(G)-torsion,

X2 = 0 and (iii) follows.

To prove the �nal assertion, we need to show that µG(Uv) = 0 for all v ∈ S. This follows from

Equation 2.10 upon noticing that µGv (Av(p)) = 0 for all v since Av(p) is �nite. K

Remark 2.5.2. By Poitou-Tate duality, for any Zp-extension F∞/F , the dual �ne Selmer groupY(E/F∞)

is Λ(Γ)-torsion if and only if the analogue of the weak Leoplodt conjecture holds [64, Theorem 2.2].



Chapter 3

Growth Of Fine Selmer Groups

In the fundamental paper of Coates and Sujatha [22], it is explained that the �ne Selmer group has

stronger �niteness properties than the classical Selmer group. They showed that in the cyclotomic

extension, the growth of the �ne Selmer group is parallel to that of the ideal class group under some

restrictive hypothesis. In [60], Lim and Murty further studied the strong analogy between the growth

of the �ne Selmer group and that of the class group. In this chapter we pursue a similar idea and

understand the growth of �ne Selmer groups in four di�erent situations, namely

(i) in Z/pZ-extensions of number �elds.

(ii) in Zdp-extensions of number �elds.

(iii) in non cyclotomic Zp-extensions of number �elds.

(iv) in certain non-p-adic analytic towers, such as the p-class �eld tower.

3.1 Growth of p-Fine Selmer Groups in Extensions of Fixed

Degree

Using genus theory, Gauss proved that the 2-torsion of the ideal class group of a quadratic number �eld

can be arbitrarily large. If p is a �xed odd prime, it is a folklore result that the p-torsion of the ideal

class group can become arbitrarily large in Z/pZ extensions of a given number �eld [7]. Class groups and

Selmer groups of Abelian varieties have similar properties; their close relationship was studied for global

�elds by �esnavi£ius [11]. Using arithmetic duality and a general version of the Cassels-Poitou-Tate

exact sequence, he proved that the p-Selmer group can become arbitrarily large as one varies over all

Z/pZ-extensions of a global �eld [12].

We show that the p-�ne Selmer group of an Abelian variety has unbounded growth as one varies

over Z/pZ extensions of a �xed number �eld F . Our approach is similar to [60], where Lim and Murty

showed that the p-primary �ne Selmer group has unbounded growth as one varies over Z/pZ extensions

of F . Our results will imply the results of Lim-Murty and also of �esnavi£ius (for the number �eld case).

Indeed, the p-�ne Selmer group is contained in the p-primary �ne Selmer group and is a subgroup of the

p-Selmer group. Our proof provides an e�ective estimate on the conductor of such a Z/pZ-extension.
Such bounds can not be obtained by the method of proof in [12].

18
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For a �xed number �eld F , we do not know at present how to show that the p-�ne Selmer group has

unbounded growth as one varies over all Z/nZ-extensions of F where 1 < n < p. Analogous results are

conjectured to be true for the p-torsion of the ideal class group; in fact even when n = 2. We prove that

under some mild hypothesis, the two questions are in fact equivalent.

3.1.1 Growth of p-Fine Selmer Groups in Z/pZ-Extensions

De�nition 3.1.1. For an Abelian group, G, de�ne its p-rank rp(G) as dimZ/pZG[p].

As a �rst step, we improve upon a result of Lim and Murty [60, Theorem 6.2]. This will also imply

the theorem of �esnavi£ius (for the number �eld case) [12, Theorem 1.2].

Proposition 3.1.2. Let A be a d-dimensional Abelian variety de�ned over a number �eld F . Suppose

A(F )[p] 6= 0. Then

sup{rp
(
Rp(A/L)

)
| L/F is a cyclic extension of degree p} =∞.

The method employed to prove the above proposition paves the way for the following theorem.

Theorem 3.1.3. Let A be an Abelian variety of dimension d, de�ned over a number �eld F . Consider

a �nite set of primes S ⊇ S∞ ∪ Sp ∪ Sbad. Suppose A(F )[p] 6= 0. Given a non-negative integer N , there

exists a Z/pZ extension L/F with norm of the conductor, NF/Q
(
f
(
L/F

))
∼ κN where κ is a constant

depending on S, A and F , such that rp(Rp(A/L)) ≥ N .

Technical Lemmas

We begin by proving a few technical lemmas. These will be used in proving the main results of this

section and will often be used in future arguments.

Lemma 3.1.4. Let G be a pro-p group. Every discrete simple p-primary G-module M is isomorphic to

Z/pZ with trivial G-action. In particular, for a p-primary G-module M , M = 0 if and only if MG = 0.

Proof. Given a discrete p-primary G-module M , pM = 0. If U is an open normal subgroup of G,

MU 6= 0. G/U is �nite and it is known

H0

(
G
/
U, M

U

)
= MG ⊆M.

Note MG 6= 0, since MU 6= 0. Since M is a simple module, M = MG. Thus, M is a dimension 1

Fp-vector space with trivial action of G. K

We record the following estimate which will be used repeatedly.

Lemma 3.1.5. [60, Lemma 3.2] Consider the following short exact sequence of of co-�nitely generated

Abelian groups

P → Q→ R→ S.

Then ∣∣rp (Q)− rp (R)
∣∣ ≤ 2rp (P ) + rp (S) .
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Lemma 3.1.6. [59, Lemma 3.2] Let G be a pro-p group and M be a discrete G-module co-�nitely

generated over Zp. If h1(G) := rp

(
H1
(
G, Z/pZ

))
is �nite, then rp

(
H1 (G, M)

)
is �nite and

h1(G)rp(M
G)− rp

((
M
/
MG

)G)
≤ rp

(
H1 (G, M)

)
≤ h1(G)

(
corankZp(M) + logp

∣∣∣∣M/Mdiv

∣∣∣∣
)

Moreover, when M is a trivial G-module,

rp

(
H1 (G, M)

)
= h1(G)rp(M).

Proof. Upper bound: For �nite M , by dévissage it su�ces to consider M is simple. By Lemma 3.1.4,

rp

(
H1(G,M)

)
≤ h1(G) logp

(
|M |

)
. (3.1)

For general M , consider the maximal p-divisible module Mdiv of M ; it is a G-submodule. There is the

standard short exact sequence,

0→Mdiv →M →M
/
Mdiv

→ 0.

Set N = M/Mdiv. The above short exact sequence induces the following exact sequence,

H1 (G, Mdiv)→ H1 (G, M)→ H1 (G, N) . (3.2)

By hypothesis, N is �nite. Thus rp
(
H1 (G, N)

)
is �nite and by Inequality 3.1,

rp

(
H1 (G, N)

)
≤ h1(G) logp

(
|N |
)
. (3.3)

Now consider the multiplication-by-p map of G-modules,

0→Mdiv[p]→Mdiv
p−→Mdiv → 0.

This gives the following surjection

H1
(
G, Mdiv[p]

)
→ H1 (G, Mdiv) [p]→ 0.

This proves

rp

(
H1 (G, Mdiv)

)
≤ rp

(
H1 (G, Mdiv) [p]

)
(3.4)

≤ h1(G) logp

(∣∣Mdiv[p]
∣∣) by Inequality 3.1 (3.5)

= h1(G) corankZp(M). (3.6)
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By Exact Sequence 3.2, we see that

rp

(
H1(G, M)

)
≤ rp

(
H1 (G, Mdiv)

)
+ rp

(
H1 (G, N)

)
Thus, the upper bound follows from Inequalities 3.3 and 3.6.

Second assertion: SupposeM is a trivial G-module. Since cohomology commutes with �nite direct sums,

it su�ces to show

h1(G) = rp

(
H1
(
G, Z/prZ

))
= rp

(
H1

(
G, Qp

/
Zp

))
.

Consider the natural inclusion maps

H1
(
G, Z/pZ

)
↪→ H1

(
G, Z/prZ

)
↪→ H1

(
G, Qp

/
Zp

)
.

From the upper bound estimates and the above inclusions, we have

h1(G) ≤ rp
(
H1
(
G, Z/prZ

))
≤ rp

(
H1

(
G, Qp

/
Zp

))
≤ h1(G).

The result follows.

Lower bound: Consider the short exact sequence,

0→MG →M →M
/
MG → 0.

Taking the cohomology sequence gives

0→
(
M
/
MG

)G
→ H1

(
G, MG

)
→ H1 (G, M) .

This gives the following:

rp

(
H1(G, M)

)
≥ rp

(
H1
(
G, MG

))
− rp

((
M
/
MG

)G)

= h1(G)rp

(
MG

)
− rp

((
M
/
MG

)G)

The equality in the last line follows from the second assertion. K

De�nition 3.1.7. Let F be a number �eld and S be a �nite set of primes containing S∞ ∪ Sp. The

maximal Abelian unrami�ed p-extension of a number �eld F in which all primes in S split completely is

the p-Hilbert S-class �eld of F . It is denoted by HS(F ) or even HS.

The following lemma is a variant of [60, Lemma 4.3]. We give a lower bound for the p-rank of p-�ne

Selmer group in terms of the p-rank of the S-class group.

Lemma 3.1.8. Let A be a d-dimensional Abelian variety de�ned over a number �eld F . Consider a

�nite set of primes S containing Sp ∪ Sbad ∪ S∞. Suppose A(F )[p] 6= 0. Then

rp

(
Rp
(
A/F

))
≥ rp

(
ClS (F )

)
rp
(
A (F ) [p]

)
− 2d.
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Proof. Consider the following diagram with exact rows.

0 −→ Rp(A/F ) −→ H1(GS(F ), A[p]) −→
⊕

v∈S H
1(Fv, A[p])yα yβ yγ

0 −→ Rp(A/HS) −→ H1(GS(HS), A[p]) −→
⊕

v∈S
⊕

w|vH
1(HS,w, A[p])

The vertical maps are given by restriction maps. Write γ = ⊕vγv where

γv : H1
(
Fv, A[p]

)
→
⊕
w|v

H1
(
HS,w, A[p]

)
.

From the in�ation-restriction sequence, one gets that ker γv = H1
(
Gv, A[p]

)
, where Gv is the decom-

position group of G = Gal(HS/F ) at v. By the de�nition of the p-Hilbert S-class �eld, all primes in

S(F ) split completely in HS ; hence Gv = 1. This forces ker γ to be trivial.

By the in�ation-restriction sequence, kerβ = H1
(

Gal
(
HS/F

)
, A (HS) [p]

)
. This gives

H1
(

Gal
(
HS/F

)
, A (HS) [p]

)
↪→ Rp(A/F ).

This implies

rp
(
Rp(A/F )

)
≥ rp

(
H1
(

Gal
(
HS/F

)
, A (HS) [p]

))
.

Lemma 3.1.6 implies that

rp

(
H1
(

Gal
(
HS/F

)
, A (HS) [p]

))
≥ h1

(
Gal

(
HS/F

))
rp
(
A (F ) [p]

)
− 2d.

From class �eld theory, Gal(HS/F ) ' ClS(F ). The result follows since the class group (and hence the

S-class group) is always �nite; therefore

h1

(
Gal(HS/F )

)
= rp

(
ClS(F )

)
.

This �nishes the proof of the lemma. K

Remark 3.1.9. Under the stronger assumption A[p] ⊆ A(F ), it is possible to show a stronger relationship

between p-�ne Selmer groups and p-torsion of class groups. The assumption forces A[p] ' (Z/pZ)2d as

GS(F )-modules. Note that GS(F ) acts trivially on A[p], hence

H1
(
GS(F ), A[p]

)
= Hom

(
GS(F ), A[p]

)
.

We have similar equalities for the local cohomology groups as well. Thus,

Rp(A/F ) = Hom
(
ClS(F ), A[p]

)
' ClS(F )[p]2d

as Abelian groups. Therefore

rp
(
Rp(A/F )

)
= 2drp

(
ClS(F )

)
.

Observe Rp(A/F ) depends on the choice of S, even though in the limit, R(A/F ) does not. For ease of

notation, we avoid writing RSp (A/F ); but the dependence of Rp(A/F ) on S is crucial in our proofs.
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Proof of Proposition 3.1.2

We �rst recall the statement of the Grunwald-Wang Theorem [76, Theorem 9.2.8].

Grunwald-Wang Theorem. Let S be a �nite set of primes of a global �eld F and let G be a �nite

Abelian group. For all p ∈ S, let the �nite Abelian extensions Fp | Fp be given such that Gal(Fp | Fp)

may be embedded into G. Then there exists a global Abelian extension F | F with Galois group G such

that F has the given completions Fp for all p ∈ S.

Proposition 3.1.10. [60, Proposition 6.1] Let S be a �nite set of primes of F containing the Archimedean

primes. Then there exists a sequence {Ln} of distinct number �elds such that each Ln is a Z/pZ extension

of F and such that for every n ≥ 1,

rp
(
ClS (Ln)

)
≥ n.

Proof. Set r1 and r2 to denote the number of real and the number of pairs of complex embeddings of F .

Let S1 be a set of primes of F containing S such that

|S1| = |S|+ r1 + r2 + δ + 1

where δ = 1 if F contains a primitive p-root of unity, and is 0 otherwise.

By the Grunwald-Wang theorem, there exists a Z/pZ extension L1/F such that it is rami�ed at all

�nite places of S1 and is unrami�ed outside of it. It follows (see [76, Proposition 10.10.3]),

rp
(
ClS (L1)

)
≥|S1| −|S| − r1 − r2 − δ = 1.

Repeat the above process; choose a set S2 containing S1 with the property

|S2| = |S1|+ 1 = |S|+ r1 + r2 + δ + 2.

By the Grunwald-Wang theorem, there exists a Z/pZ-extension L2/F rami�ed at all �nite places of S2

and unrami�ed outside of it. L2 is distinct from L1 by construction. For this �eld,

rp
(
ClS (L2)

)
≥ 2.

Since F has in�nitely many primes, we can continue this process inde�nitely. Each of the Li's are distinct

by construction. This proves the proposition. K

Remark 3.1.11. We emphasize that in using [76, Proposition 10.10.3] we need Li/F is a Z/pZ-extension.

Proposition 3.1.10 combined with Lemma 3.1.8 proves Proposition 3.1.2. We recall the statement

Proposition. Let A be a d-dimensional Abelian variety de�ned over a number �eld F . Let S be a �nite

set of primes of F including the in�nite primes, the primes where A has bad reduction and the primes

above p. Suppose A(F )[p] 6= 0. Then

sup{rp
(
Rp(A/L)

)
| L/F is a cyclic extension of degree p} =∞.

Corollary 3.1.12. Let A be an Abelian variety of dimension d de�ned over F . If A(F )[p] = 0, de�ne

m = min{[F ′ : F ] | A(F ′)[p] 6= 0}.
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Then

sup{rp(Rp(A/L)) | L/F is an extension of degree pm} =∞.

Remark 3.1.13. By hypothesis, 1 < m ≤
∣∣GL2d(Z/pZ)

∣∣. Consider the Galois group Gal(F (A[p])/F )

which is a subgroup of GL2d(Z/pZ). Let P be a non-trivial point in A[p] and H be the subgroup of G

that �xes P . Consider the extension F ′ = F
(
A[p]

)H
. By Galois theory,

[F ′ : F ] = [G : H] =
∣∣orbG(P )

∣∣ .
But orbG(P ) ⊆ A[P ] \ {0}. Thus

m ≤ [F ′ : F ] =
∣∣orbG(P )

∣∣ ≤ p2d − 1.

Proof of Theorem 3.1.3

In Proposition 3.1.2, we saw that the size of Rp(A/F ) becomes arbitrarily large as we vary over all

Z/pZ-extensions of F . The proof of Proposition 3.1.10 suggests it should be possible to �nd an e�ective

estimate on the conductor. Indeed, we can prove the following theorem.

Theorem. Let A be an Abelian variety of dimension d, de�ned over a number �eld F . Let S be a �nite

set of primes as de�ned above. Suppose A(F )[p] 6= 0. Given a non-negative integer N , there exists a

Z/pZ extension L/F with norm of the conductor, NF/Q
(
f
(
L/F

))
∼ κN where κ is a constant depending

on S, A and F , such that rp
(
Rp
(
A/L

))
≥ N .

When F = Q, the notation simpli�es considerably. We prove the theorem in detail for this case.

Theorem 3.1.14. Let A be an Abelian variety of dimension d de�ned over Q. Let S = Sp ∪Sbad ∪S∞.
Suppose A(Q)[p] 6= 0. Given a non-negative integer N , there exists a Z/pZ extension L/Q of conductor

f(L/Q) ∼ κN where κ is a constant depending on S and A, such that rp(Rp(A/L)) ≥ N .

Proof. Let L/Q be a Z/pZ-extension and P be the set of rami�ed primes in L. Since L/Q is a Galois

extension, there is a unique p | p for a p ∈ P . The conductor f(L/Q) =
∏
q∈P fq where

fq =

qp−1, when (q, p) = 1

pp−1+sp|p , otherwise.

Note 1 ≤ sp|p ≤ valp(p) = p. The �rst is called tame rami�cation and the second is wild rami�cation.

Taking natural log,

log
(
f
(
L/Q

))
= (p− 1)

∑
q∈P

log q + sp|p log p. (3.7)

Given a non-negative integer N , we wish to �nd the minimal conductor of a Z/pZ extension L/Q
such that rp(Rp(A/L)) ≥ N . By Lemma 3.1.8, it su�ces to �nd a Z/pZ-extension Ln(N)/Q such that

rp
(
ClS (Ln)

)
≥ 2d+N

rp
(
A (Ln) [p]

) =: n(N) = n.

Note that rp
(
A (Ln) [p]

)
is a positive constant, less than or equal to 2d.
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Let S = {v1, . . . , vk}∪S∞ be the �nite set of primes containing the Archimedean primes, the primes

above p, and the primes of bad reduction of A. We construct Sn as in the proof of Proposition 3.1.10.

Here, r1 = 1, r2 = 0 and δ = 0. Therefore we must choose Sn such that |Sn| = |S|+ 1 + n.

De�ne M =
∏k
i=1 vi. Then logM ∼ k log k. To construct Sn from the given set S, we need to add

n + 1 many primes. Choose the �rst prime p1 - M . By the Prime Number Theorem we know we can

�nd p1 ∼ logM . Now choose p2 - Mp1; here p2 ∼ log(M logM). We have S ∪ {p1, p2} = S1. Continue

to choose in the same way as many primes as required to form Sn. By Equation 3.7, as n→∞,

log
(
f(Ln/Q)

)
∼ (p− 1)n log logM.

Equivalently, f(Ln/Q) ∼ cn with c a constant that depends on the given set S. By de�nition of n(N),

f(Ln(N)/Q) ∼ κN for a constant κ that depends on S and A. K

Proving the general case is similar. We point out some similarities and di�erences one needs to keep

in mind. Consider the tower of number �elds, L ⊃ F ⊃ Q where [L : F ] = p. By hypothesis, L/F is

Galois. If q | q is a prime in F that rami�es in L, there will be a unique prime Q | q. The de�nition

of the conductor carries through. Now we are interested in the norm NF/Q(f(L/F )) so as to be able to

do estimates. De�ne M =
∏
iN(vi) and construct Sn from S by adding r1 + r2 + δ + n many primes.

Choose p1 -M as before and the required element of Sn is p1 | p1. From here, the proof follows as before.

Remark 3.1.15. From Equation 2.5, rp
(
Selp(A/F )

)
≥ rp

(
Rp(A/F )

)
. It follows that Theorem 3.1.3

holds if we replace rp(Rp(A/L)) ≥ N by rp(Selp(A/L)) ≥ N .

3.1.2 Growth of p-Fine Selmer Groups in Z/2Z-Extensions

Even though we can not prove that the p-(�ne) Selmer group can be arbitrarily large in quadratic

extensions of Q, we believe it should be true. We can show that this question is equivalent to a well-

known conjecture about class groups of quadratic equations. We prove this for the case of elliptic curves,

a more general statement for Abelian varieties is mentioned later.

Theorem 3.1.16. Fix an odd prime p. Let E/F be an elliptic curve such that E(F )[p] 6= 0. Let S

be a �nite set of primes in F containing the primes above p, the primes of bad reduction of E and the

Archimedean primes. As we vary over all Z/2Z-extensions L/F ,

sup{rp
(
Rp(E/L)

)
| L/F is a quadratic extension} =∞

if and only if

sup{rp
(
Cl(L)

)
| L/F is a quadratic extension} =∞.

To prove the theorem we will need a few lemmas.

Lemma 3.1.17. With the same setting as in Theorem 3.1.16,

rp
(
Rp(E/L)

)
≥ rp

(
Cl(L)

)
rp
(
E(L)[p]

)
+O(1)

Proof. It follows immediately from Lemma 3.1.8 upon observing that∣∣∣rp (Cl(L)
)
− rp

(
ClS(L)

)∣∣∣ = O(1). (3.8)
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Indeed, set the notation Sf (L) to denote the set of �nite primes of L above non-Archimedean primes of

S. We have the following exact sequence (see [76, Lemma 10.3.12])

Z|Sf (L)| → Cl(L)
α−→ ClS(L)→ 0.

Since ker(α) ⊆ Cl(L), it is �nite with p-rank less than equal to
∣∣Sf (L)

∣∣. Equation 3.8 follows from

Lemma 3.1.5 since
∣∣Sf (L)

∣∣ is �nite and bounded, in fact always less than |S|2. K

Let us de�ne a slight variant of the �ne Selmer group. Set B = E(L)[p]. De�ne Rp(B/L) by replacing

E[p] with E(L)[p] in Equation 2.5. In the following lemma, we show that the p-�ne Selmer group and

the modi�ed �ne Selmer group have the same order of growth in an extension of �xed degree.

Lemma 3.1.18. With the setting as Theorem 3.1.16,∣∣∣rp (Rp(B/L)
)
− rp

(
Rp(E/L)

)∣∣∣ ≤ ·rp (ClS(L)
)

+O(1).

Proof. If B = E(L)[p] = E[p], there is nothing to prove. So, assume B 6= E[p].

Consider the following commutative diagram

0 → Rp
(
B/L

)
→ H1

(
GS (L) , B

)
→

⊕
vH

1 (Lv, B)ys yf yg
0 → Rp

(
E/L

)
→ H1

(
GS (L) , E[p]

)
→

⊕
vH

1
(
Lv, E[p]

)
where v runs over all the primes in the �nite set S(L).

By hypothesis, E has an L-rational p-torsion point. This gives the short exact sequence

0→ B → E[p]→ µp → 0. (3.9)

Taking its GS(L)-cohomology, ker(f) = H0(GS(L), µp). Also rp
(
ker(s)

)
≤ rp

(
ker(f)

)
= O(1), as∣∣µp∣∣ is �nite and bounded,. A similar argument for the local cohomology yields rp

(
ker(g)

)
= O(1).

We will show rp
(
coker(s)

)
≤ rp

(
coker (f)

)
≤ rp

(
ClS (L)

)
+ O(1). This su�ces; by Lemma 3.1.5

applied to the map s,∣∣∣∣rp (Rp (B/L))− rp (Rp (A/L))∣∣∣∣ ≤ 2rp
(
ker(s)

)
+ rp

(
coker(s)

)
= rp

(
coker(s)

)
+O(1).

Let O×S be the set of S-units of LS , the maximal unrami�ed outside S extension of L. We know

µp ⊆ O×S and there exists a short exact sequence (see [76, Theorem 8.3.18])

0→ µp → O×S
p−→ O×S → 0.

This yields a long exact sequence which can be rewritten as

0→ O×L,S/
(
O×L,S

)p
→ H1

(
GS(L), µp

)
→ ClS(L)[p]→ 0, (3.10)

where O×L,S is the notation for the S-units of L. We remark, Exact Sequence 3.10 follows from standard
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resultsH0
(
GS(L), O×S

)
' O×L,S andH1

(
GS(L), O×S

)
' ClS(L) (see [76, Theorem 8.3.11]). Therefore,

(p-rank of) coker(f) = H1(GS(L), µp) is �nite.

Furthermore, ∣∣∣rp (coker(f)
)
− rp

(
ClS(L)

)∣∣∣ ≤ rp(O×L,S/(O×L,S)p
)
.

Since
∣∣S(L)

∣∣ is bounded by an absolute constant, the S-units analogue of Dirichlet's Unit Theorem yields∣∣∣rp (coker(f)
)
− rp

(
ClS(L)

)∣∣∣ = O(1).

Equivalently,

rp
(
coker(f)

)
= rp

(
ClS(L)

)
+O(1).

Therefore, ∣∣∣rp (Rp(B/L)
)
− rp

(
Rp(E/L)

)∣∣∣ ≤ rp (ClS(L)
)

+O(1).

This �nishes the proof. K

Proof of the Theorem. In Lemma 3.1.17, we proved

rp
(
Rp(E/L)

)
≥ rp

(
Cl(L)

)
rp
(
E(L)[p]

)
+O(1)

This proves one direction of the theorem: if rp
(
Cl (L)

)
is arbitrarily large then so is the rp

(
Rp
(
E/L

))
.

Equivalently, if rp
(
Rp
(
E/L

))
is bounded then so is rp

(
Cl (L)

)
.

We now prove the other direction.

Claim: If rp(Cl(L)) is bounded, the same is true for the rp(Rp(E/L)).

Justi�cation: Suppose that rp
(
Cl(L)

)
= O(1). By Equation 3.8, the rp

(
Cl(L)

)
is bounded if and only

if rp
(
ClS(L)

)
is bounded.

By hypothesis, the Galois action of GS(L) on E(L)[p] is trivial; the argument in Remark 3.1.9 yields

rp
(
Rp(B/L)

)
≤ 2rp

(
ClS(L)

)
= O(1).

By Lemma 3.1.18, ∣∣∣rp (Rp(B/L)
)
− rp

(
Rp(E/L)

)∣∣∣ = O(1).

From the above two inequalities, the claim follows. This �nishes the proof of the theorem. K

Remark 3.1.19. It is possible to prove an analogue of Theorem 3.1.16 for an Abelian variety A/F provided

it has subquotients isomorphic to Z/pZ or µp.

3.2 Growth of p-Fine Shafarevich-Tate Group in

Z/pZ-Extensions

For an Abelian variety A over F , by Kummer theory, we have the short exact sequence

0→ A(F )/pk → Selpk(A/F )→X(A/F )[pk]→ 0.
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In [107], Wuthrich de�ned a �ne subgroup of the Mordell-Weil group; it is the following kernel

0→Mpk(A/F )→ A(F )/pk →
⊕
v|p

A(Fv)/p
k.

It is now natural to de�ne the pk-�ne Shafarevich-Tate group by the exact sequence,

0→Mpk(A/F )→ Rpk(A/F )→�pk(A/F )→ 0.

One can view �pk(A/F ) as a subgroup of X(A/F )[pk]. Consider the following diagram

0 −→ A(F )/pk −→ Selpk(A/F ) −→ X(A/F )[pk] −→ 0y
y

y0

0 −→
⊕

v|pA(Fv)/p
k −→

⊕
v|pH

1(Fv, A[pk]) −→
⊕

v|pH
1(Fv, A)[pk] −→ 0

By an application of the Snake Lemma, one obtains the following exact sequence

0→Mpk(A/F )→ Rpk(A/F )→X(A/F )[pk]→ Cpk

where Cpk is the cokernel of the left vertical map in the above diagram. Thus, �pk(A/F ) is a subgroup

of X(A/F )[pk] with quotient in Cpk .

Clark and Sharif proved that the p-torsion of the classical Shafarevich-Tate group of an elliptic curve

has unbounded growth in Z/pZ-extensions of a �xed number �eld [14]. Inspired by this result, Lim and

Murty asked the following natural question

Question. Let A be an Abelian variety de�ned over a number �eld F . Suppose A(F )[p] 6= 0. Is

sup{rp
(
�p∞(A/L)

)
| L/F is a cyclic extension of degree p} =∞?

For the case of elliptic curves, using the unboundedness result of Clark and Sharif, we provide an

a�rmative answer to the above question. It would be interesting to give an independent proof.

Lemma 3.2.1. [107, Lemma 3.1] Let v | p and Fv/Qp be a �nite extension of degree nv. Then∣∣∣∣(E(Fv)/p
k
)∣∣∣∣ = pk·nv ·

∣∣∣∣(E(Fv)[p
k]
)∣∣∣∣ .

Sketch of Proof. Observe that E(Fv) has �nite index in Ê(mav) where, Ê is the formal group associated

to E and mav is any power of the maximal ideal in the ring of integers in Fv. Therefore,

#E(Fv)/p
k

#E(Fv)[pk]
=

#Ê(mav)/pk

#Ê(mav)[pk]
.

For su�ciently large a, Ê(mav) ' mav where the isomorphism is given by the formal logarithm [97,

Theorem IV.6.4b]. The lemma follows since Ê(mav)[pk] = 0 and
∣∣∣Ê(mav)/pk

∣∣∣ = pk·nv . K

From our earlier discussion, the quotient of X(E/F )[pk] and �pk(E/F ) is contained in the cokernel
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Cpk of the map E(F )/p→ ⊕v|pE(Fv)/p
k. By Lemma 3.2.1, the codomain of this map has size bounded

by pk[F :Q]
∏
v|p
∣∣E(Fv)[p

k]
∣∣. This proves the following result.

Proposition 3.2.2. [107, Proposition 3.2] The index of �pk(E/F ) inside X(E/F )[pk] is bounded by[
X(E/F )[pk] : �pk(E/F )

]
≤ pk[F :Q]

∏
v|p

∣∣∣E(Fv)[p
k]
∣∣∣ (3.11)

The question asked by Lim-Murty concerns the case k = 1. Consider an elliptic curve E over a number

�eld F . Let L/F be a degree p cyclic extension and w be a prime above p in L. For w|p,
∣∣E(Lw)[p]

∣∣ is
�nite and bounded [97, Corollary III.6.4b]. Since L is a number �eld, there are �nitely many primes w|p
in L. Therefore,

∏
w|p
∣∣E(Lw)[p]

∣∣ is �nite and bounded, as we vary over all Z/pZ-extensions L/F .
In [14], Clark and Sharif proved the following theorem on the unboundedness of the Shafarevich-Tate

group of elliptic curves.

Theorem 3.2.3. Let E/F be an elliptic curve. For any positive integer r, there exists Z/pZ �eld

extensions L/F such that X(E/L) contains at least r elements of order p i.e. there exists a Z/pZ �eld

extension L/F such that X(E/L)[p] is arbitrarily large.

The above results together give an a�rmative answer to the question of Lim-Murty for elliptic curves.

Theorem 3.2.4. Let E be an elliptic curve de�ned over a number �eld F with E(F )[p] 6= 0. Varying

over all Z/pZ-extensions L/F , the p-�ne Shafarevich-Tate group �p(E/L) can be arbitrarily large.

More generally for Abelian varieties, we know �p(A/F ) is a subgroup of X(A/F )[p] with quotient

in Cp. We have
∣∣Cp∣∣ ≤ ∣∣A(Fv)/pA(Fv)

∣∣ ≤ ∣∣H1(Fv, A[p])
∣∣. The right hand side of the inequality is �nite

and bounded independent of the discriminant [76, Theorem 7.1.8(iii)]. The following result is immediate.

Proposition 3.2.5. Let A be an Abelian variety de�ned over a number �eld F . Varying over all Z/pZ-
extensions L/F , �p(A/L) is unbounded if and only if X(A/L)[p] is unbounded.

Remark 3.2.6. 1. Theorem 3.2.4 can be obtained independent of the results of Wuthrich [107]. It

follows from Proposition 3.2.5 and the result of Clark-Sharif (Theorem 3.2.3).

2. In [26], Creutz has proven results on the unboundedness of X(A/L)[p] under certain hypothesis.

3.3 Growth in Zdp-Extensions

In a series of papers in the 1980s, Cuoco and Monsky studied the growth of ideal class groups in Zdp
extensions of number �elds. More precisely, they studied the analogue of Iwasawa's theorem when d > 1.

Let F be a number �eld and d be a �xed positive integer greater than 1. Consider a Zdp-extension
F∞/F with Γd = Gal(F∞/F ) ' Zdp. Let L∞ (resp. LS∞) be the maximal Abelian unrami�ed pro-p

extension of F∞ (resp. with additional property that primes in S are split completely). Write Γd,n = Γp
n

d

and Fn = F
Γd,n
∞ , then Fn/F is the unique (Z/pnZ)d-extension of F inside F∞. If pen is the largest power

of p that divides the class number of Fn, Monsky proved the following formula [71]

en = (m0p
n + l0n+ α∗) p(d−1)n +O(np(d−2)n),

for non-negative constants m0, l0, and a real constant α∗. If d = 2, α∗ is rational.
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The Iwasawa algebra Λd := Λ(Γd) ' ZpJT1, T2, . . . , TdK. Furthermore, we know X∞ := Gal(L∞/F∞)

and XS
∞ := Gal(LS∞/F∞) are modules over this Iwasawa algebra. Set Λd to be the completion with

respect to the powers of the augmentation ideal of the Z/pZ group ring of Γd, i.e.

Λd ' Z/pZJT1, T2, . . . , TdK.

Let X∞ (resp. XS
∞) be the reduction mod p of the Iwasawa-Greenberg module X∞ (resp. S-Iwasawa-

Greenberg module XS
∞). De�ne a (resp. a′) to be the height of the local ring Λd/Ann(X∞) (resp.

Λd/Ann(XS
∞)); so 1 ≤ a (resp. a′) ≤ d.

We state without proof the main result on p-ranks of ideal class groups proved by Monsky.

Theorem 3.3.1. [73, Theorem 1.9] With notation as described in the last paragraph, there is a positive

real constant c, such that

rp
(
Cl(Fn)

)
= cpan +O

(
p(a−1)n

)
.

When a = 1, c is an integer. When a = d, c is the rank of X∞ over Λd.

We prove two results on the p-rank growth in Zdp-extension of a number �eld. In a speci�c Z2
p

extension, we obtain a precise formula for the p-rank growth of �ne Selmer groups. In the general

setting, we can only show that the growth of the p-rank is unbounded.

3.3.1 Growth in a Certain Z2
p-Extension

Consider the setting of Section 2.2.3. We prove the following result.

Proposition 3.3.2. Let E be an elliptic curve over the imaginary quadratic �eld K, such that it has

CM by OK . Set F = K(E[p]) and F∞ be the trivialising extension. Then∣∣∣∣rp (R (E/Fn))− 2rp
(
Cl (Fn)

)∣∣∣∣ = O(1)

where Fn = K(E[pn]) is a (Z/pnZ)2-extension of F contained in F∞.

By [87, Lemma 2] (or [95]), it is guaranteed that E attains good reduction at all primes of F . Since

the de�nition of R(E/Fn) is independent of S, we choose S = Sp∪S∞. In the Z2
p-extension Gal(F∞/F ),

the primes above p ramify and all rami�ed primes are �nitely decomposed. In fact, in this setting all

primes are �nitely decomposed but we will not require this more general fact.

Proof of Proposition 3.3.2. The proposition is proved in three steps. First, we show∣∣∣rp (Cl(Fn)
)
− rp

(
ClS(Fn)

)∣∣∣ = O(1). (3.12)

In the second step we prove ∣∣∣rp (Rp(E/Fn)
)
− rp

(
R(E/Fn)

)∣∣∣ = O(1). (3.13)

In the last step, we draw the �nal conclusion using Remark 3.1.9.

Step 1: The proof is almost identical to that of Equation 3.8. The key point is that primes above p are

�nitely decomposed in this multiple Zp-extension.
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Set the notation Sf (Fn) to denote the set of �nite primes of Fn above the non-Archimedean primes

of S. In our case, Sf (Fn) is the set of primes above p in Fn. For each n, we have the exact sequence

Z|Sf (Fn)| → Cl(Fn)
αn−−→ ClS(Fn)→ 0.

Since ker(αn) ⊆ Cl(Fn), it is �nite with p-rank less than equal to
∣∣Sf (Fn)

∣∣. Equation 3.12 follows from

Lemma 3.1.5 and noticing the primes above p are �nitely decomposed.

Step 2: Consider the commutative diagram below.

0 → Rp(E/Fn) → H1(GS(Fn), E[p]) →
⊕

v∈S(Fn)H
1(Fn,vn , E[p])ysn

yfn
yγn

0 → R(E/Fn)[p] → H1(GS(Fn), E[p∞])[p] →
⊕

vn∈S(Fn)H
1(Fn,vn , E[p∞])[p]

Both fn and γn are surjective. The kernel of these maps are

ker(fn) = E(Fn)[p∞]
/
p

ker(γn) =
⊕

vn∈S(Fn)

E(Fn,vn)[p∞]
/
p

Observe that rp
(
ker (sn)

)
≤ rp

(
ker (fn)

)
≤ 2. It follows that rp

(
ker (γn)

)
≤ 2
∣∣Sf (Fn)

∣∣. It follows that
rp
(
coker (sn)

)
is �nite and bounded. Lemma 3.1.5 for the map sn gives Equation 3.13.

Step 3: In Remark 3.1.9 we showed rp
(
Rp(E/Fn)

)
= 2rp

(
ClS(Fn)

)
. The proposition follows from this

equality and the previous two steps. K

The following result is a straightforward corollary of Monsky's theorem (Theorem 3.3.1).

Theorem 3.3.3. Let E be an elliptic curve over an imaginary quadratic �eld K, such that it has CM

by OK . Set F = K(E[p]) and F∞ be the trivialising extension. Then for Fn and a as de�ned before,

rp
(
R(E/Fn)

)
= cpan +O(p(a−1)n).

When a = 1, c is an integer and when a = 2, c = rankΛ2
(X∞).

Proof. Consider Theorem 3.3.1 with d = 2. Apply this to Proposition 3.3.2. K

Remark 3.3.4. When a = 1, by [73, Theorem 1.18] there exists a periodic function δn such that

rp
(
R(E/Fn)

)
= cpan + δn.

3.3.2 Growth in a General Zd
p Extension

Using [73], we prove that in a general Zdp-extension, the �ne Selmer rank growth is unbounded.

Lemma 3.3.5. Let F∞ be a Zdp extension of F and Fn be a sub�eld of F∞ such that [Fn : F ] = pnd.

Let S = Sp ∪ S∞. Then ∣∣∣∣rp (Cl(Fn)
)
− rp

(
ClS(Fn)

) ∣∣∣∣ = O(1).
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Proof. The proof is the same as that of Step 1 of Proposition 3.3.2, since primes above p undergo �nite

decomposition in F∞/F (see [27, Page 249]). K

Remark 3.3.6. If F∞/F is the compositum of Zp-extensions where all primes are �nitely decomposed,

it is possible to drop the hypothesis S = Sp ∪ S∞.

Proposition 3.3.7. Let A be an Abelian variety de�ned over F and p be an odd prime. Suppose A has

good reduction everywhere over F and A(F )[p] 6= 0. Let F∞ be a Zdp-extension of F and Fn be a sub�eld

of F∞ such that [Fn : F ] = pnd. Then

rp
(
R(A/Fn)

)
≥ rp

(
Cl(Fn)

)
rp
(
A(Fn)[p]

)
+O(1) (3.14)

Proof. Recall Lemma 3.1.8. We had shown that

rp
(
Rp(A/F )

)
≥ rp

(
ClS(F )

)
rp(A(F )[p])− 2d

holds for any d-dimensional Abelian variety A de�ned over F and p an odd prime such that A(F )[p] 6= 0.

The set S was a �nite set of primes in F chosen to contain the Archimedean primes, the primes of bad

reduction of A, and the primes above p. But, rp
(
R(A/F )

)
≥ rp

(
Rp(A/F )

)
. Therefore

rp
(
R(A/F )

)
≥ rp

(
ClS(F )

)
rp(A(F )[p])− 2d. (3.15)

If an Abelian variety A has good reduction everywhere over F , then it also has good reduction

everywhere over Fn. The same argument is valid at every layer Fn/F in the Zdp-tower.
The de�nition of R(A/Fn) is independent of S. By hypothesis, we may choose S = S(Fn) = S∞∪Sp.

For each layer, the result follows from Inequality 3.15 and Lemma 3.3.5. K

Remark 3.3.8. In view of Remark 3.3.6, if F∞/F is the compositum of Zp-extensions where all primes

are �nitely decomposed, we may drop the hypothesis that A has good reduction everywhere over F .

Theorem 3.3.9. Let A be an Abelian variety de�ned over F , p be an odd prime such that A(F )[p] 6= 0.

Suppose A has good reduction everywhere over F . Let F∞/F be a Zdp extension such that X∞ is in�nite.

Let Fn/F be the n-th layer of this tower. Then as n→∞, rp
(
R(A/Fn)

)
is unbounded.

Proof. We are in the same setting as Proposition 3.3.7. By Monsky's theorem on p-ranks, X∞ being

in�nite implies that rp
(
Cl(Fn)

)
is unbounded as n→∞. The theorem follows. K

Remark 3.3.10. In view of Proposition 3.3.8, if F∞/F is the compositum of Zp-extensions where all

primes are �nitely decomposed, we do not need to assume that A has good reduction everywhere over F .

By the same argument, if F∞/F is any Zdp-extension such that all primes in Sbad are �nitely decomposed,

we can drop the hypothesis A has good reduction everywhere over F and choose S = Sp ∪ Sbad ∪ S∞.

The following version of Monsky's Theorem will allow us to prove a variant of Theorem 3.3.9 for all

Zdp-extensions of F without assuming A has good reduction everywhere.

Theorem 3.3.11. With notation introduced at the start of the section, there is a positive real constant

c, such that

rp
(
ClS(Fn)

)
= cpa

′n +O
(
p(a′−1)n

)
.
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The fact that c > 0, follows from [72, Corollary to Theorem 1.8].

Theorem 3.3.12. Let A be an Abelian variety de�ned over F , p be an odd prime such that A(F )[p] 6= 0.

Let F∞/F be a Zdp extension such that XS
∞ is in�nite. Let Fn/F be the n-th layer of this tower. Then

as n→∞, rp
(
R(A/Fn)

)
goes to in�nity.

Proof. By Theorem 3.3.11, if XS
∞ is in�nite then rp

(
ClS(Fn)

)
approaches in�nity as n → ∞. The

conclusion follows from Inequality 3.15 which is independent of the reduction type at p. K

Remark 3.3.13. In Theorem 3.3.12, we do not impose any restrictions on the reduction type at p. This

comes at a cost that we require a smaller group XS
∞ to be in�nite.

3.3.3 Growth in Non-Cyclotomic Zp-Extensions

Growth of �ne Selmer groups in cyclotomic Zp-extensions will be studied in Chapter 5. Here, we deduce

an immediate variant of Proposition 3.3.7 with interesting consequences in non-cyclotomic towers.

Let F be a number �eld and F∞/F be any Zp-extension with Γ = Gal(F∞/F ) ' Zp. We know that

the Iwasawa algebra Λ(Γ) can be identi�ed with a formal power series ring in one variable ZpJT K. The
structure theorem asserts that for a �nitely generated Λ(Γ)-module M , there is a pseudo-isomorphism

M → Λ(Γ)r ⊕
s⊕
i=1

Λ(Γ)
/(
pmi
)⊕ t⊕

j=1

Λ(Γ)
/(

f
lj
j

)
(3.16)

where s, t are �nite, mi, lj > 0, and each fj is a distinguished polynomial.

The following lemma is an easy consequence of the structure theorem.

Lemma 3.3.14. [59, Lemma 5.3] Let M be a �nitely generated Λ(Γ)-module and wn = (1 + T )p
n − 1.

For n� 0,

rp

(
M
/

(p, wn)M

)
=
(
r(M) + s(M)

)
pn +O(1)

Proof. Computing the terms in the summands, for n� 0

rp

(
Λ(Γ)

/
(p, wn)Λ(Γ)

)
= rp

(
Z/pZ[T ]

/
T p

n

)
= pn

rp

((
Λ(Γ)/pmi

)/
(p, wn)

)
= rp

(
Z/pZ[T ]

/
T p

n

)
= pn

rp

((
Λ(Γ)/f

lj
j

)/
(p, wn)

)
= rp

(
Z/pZ[T ]

/(
T p

n

, f
lj
j

))
= lj deg(fj)

The lemma is now immediate. K

Let A/F be an Abelian variety. The Pontryagin dual of the �ne Selmer group over the Zp-extension
F∞/F is denoted by Y(A/F∞). Note

Y(A/F∞)
/
pY(A/F∞) '

(
R(A/F∞)[p]

)∨
.

Proposition 3.3.7 for �nitely generated Λ(Γ)-modules will allow us to prove a �ne version of a theorem

of Lim and Murty [59, Theorem 5.6] and �esnavi£ius [11, Proposition 7.1].
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Theorem 3.3.15. Let p 6= 2. Let A be an Abelian variety de�ned over F with good reduction everywhere

over F and A(F )[p] 6= 0. Let F∞ be any Zp-extension of F . Then

r
(
Y(A/F∞)

)
+ s

(
Y(A/F∞)

)
≥ s

(
X(F∞)

)
rp
(
A(F∞)[p]

)
where X(F∞) is the Iwasawa module over the Zp-extension.

Proof. Set Γn = Gal(F∞/Fn). Consider the following commutative diagram with the vertical maps

given by restriction

0 → R(A/Fn) → H1(GS(Fn), A[p∞]) →
⊕

vn
H1(Fn,vn , A[p∞])ysn

yfn
yγn

0 → R(A/F∞)Γn → H1(GS(F∞), A[p∞])Γn →
(

lim−→n

⊕
vn
H1(Fn,vn , A[p∞])

)Γn

Note that rp
(
ker(fn)

)
≤ 2d. Thus, ker(sn) has bounded p-rank. Using Lemma 3.3.14(

r
(
Y(A/F∞)

)
+ s

(
Y(A/F∞)

))
pn ≥ rp

(
R(A/Fn)

)
+O(1)

≥ rp
(
Cl(Fn)

)
rp
(
A(Fn)[p]

)
+O(1)

where the last inequality follows from Proposition 3.3.7. There exists n0, such that for n ≥ n0

Cl(F )
/
pCl(F )→

X(F∞)
/(

p, wnwn0

)→ 0.

The kernel of this map is bounded independent of n (see [76, Lemma 11.1.5]). Since X(F∞) is always a

�nitely generated torsion Λ(Γ)-module, it follows from Lemma 3.3.14 that

rp
(
Cl(Fn)

)
= s(X(F∞))pn +O(1).

The result follows since rp(A(F∞)[p]) = rp(A(Fn)[p]) for n su�ciently large. K

Corollary 3.3.16. Let p 6= 2. Given an Abelian variety A over a number �eld F , there exists a �nite

extension L/F and a Zp-extension L∞/L, such that Y(A/L∞) is not Λ(Γ)-torsion or µ(Y(A/L∞)) > 0.

Proof. Given a �xed positive integer N , there exists a �nite extension F ′/F and a Zp-extension F ′∞/F ′,
such that µ-invariant of the corresponding Iwasawa module X(F ′∞) is positive; in fact µ

(
X(F ′∞)

)
> N

[49, Theorem 1]. Therefore, s
(
X(F ′∞)

)
must be positive.

Consider a �nite extension L/F ′ such that A has good reduction everywhere over L and A[p] ⊆ A(L).

Consider L∞ = LF ′∞, this is a Zp-extension of L. We know µ
(
X(L∞)

)
≥ µ

(
X(F ′∞)

)
[49]. Thus,

r
(
Y(A/L∞)

)
+ µ

(
Y(A/L∞)

)
≥ r

(
Y(A/L∞)

)
+ s

(
Y(A/L∞)

)
≥ s

(
X(L∞)

)
rp(A(L∞)[p])

≥ s
(
X(F ′∞)

)
rp(A(L∞)[p])

> 0.
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If r
(
Y(A/L∞)

)
is positive, it follows Y(A/L∞) is not Λ(Γ)-torsion. Else, s

(
Y(A/L∞)

)
is positive,

hence the µ-invariant is positive. With this the proof is complete. K

Remark 3.3.17. The Abelian variety analogue of the weak Leopoldt Conjecture is believed to be true

for all Zp-extensions of a number �eld F . By Remark 2.5.2, this is equivalent to Y(A/F∞) being Λ(Γ)-

torsion; conjecturally r
(
Y(A/F∞)

)
should always be 0. However, there is little unconditional evidence

towards this claim for an anti-cyclotomic Zp-extension. Conditional on the Heegner hypothesis, Bertolini

proved the elliptic curve analogue of the weak Leopoldt Conjecture for the anti-cyclotomic extension of

an imaginary quadratic �eld [4].

The close relationship between �ne Selmer groups and class groups in Zp-extensions raises the fol-

lowing natural question: does an analogue of Iwasawa's theorem for anti-cyclotomic Zp-extensions [49,
Theorem 1] hold for �ne Selmer groups, i.e. can the µ-invariant associated with a �ne Selmer group

be arbitrarily large in an anti-cyclotomic Zp-extension. For the rest of this section, we focus on this

question and answer it in the a�rmative.

Review of Iwasawa's Result

We will begin by recalling a result of Chevalley [13] on ambiguous class number formula which was

crucially used in Iwasawa's proof.

De�nition 3.3.18. Let F be a number �eld and L/F be a cyclic Z/pZ-extension with σ a generator of

the Galois group G = Gal(L/F ). An ideal class [a] ∈ Cl(L) is called

• ambiguous if [a]σ = [a], i.e. there exists an element α ∈ L× such that aσ−1 = (α).

• strongly ambiguous if aσ−1 = (1).

The subgroup of the class group Cl(L) consisting of ambiguous ideal classes is denoted by Am(L/F ).

The subgroup of strongly ambiguous ideal classes is denoted Amst(L/K).

Ambiguous Class Number Formula. The number of ambiguous ideal classes is given by

# Am(L/F ) = h(F )× pT−1

[EF : EF ∩NL×]
(3.17)

# Amst(L/F ) = h(F )× pT−1

[EF : NEL]
(3.18)

where h(F ) is the class number of the base �eld F , T is the number of rami�ed primes, EF is the unit

group of F , and EF ∩ NL× is the subgroup of units that are norms of elements of L. Moreover, the

above two formulas are equivalent.

Proof. See [58, Theorem 1]. K

We will require a p-rank version of the (ambiguous) class number formula.

Proposition 3.3.19. Let F be a number �eld and L/F be a cyclic Z/pZ-extension with σ a generator

of the Galois group G = Gal(L/F ). Let D be the degree of the extension F/Q and T be the number of

primes of F that ramify in L. Then,

rp
(
Cl (L)

)
≥ T − 1−D.
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Sketch. The following inequality of p-ranks is a standard fact [91, Proposition 3.1]

rp
(
Cl (L)

)
≥ T − 1− rp

(
EF
/
EF ∩NL/FUL

)
where UL is the notation for idéle units.

The proposition follows from the above fact combined with the observations that

EpF ⊆ EF ∩NL/FL
× ⊆ EF ∩NL/FUL.

Therefore, one can see that

rp

(
EF
/
EF ∩NL/FUL

)
≤ rp

(
EF
/
EpF

)
≤ [F : Q].

The last inequality is a consequence of the fact that the quotient EF
/
EpF

has order p[F :Q]. K

We now sketch the proof of Iwasawa's theorem for non-cyclotomic Zp-extensions.

Theorem 3.3.20. [49, Theorem 1] Let F be the cyclotomic �eld of p-th or 4-th roots of unity according

as p > 2 or p = 2. For any given integer N ≥ 1, there exists a cyclic extension L/F of degree p and a

Zp-extension L∞/L such that

µ
(
X (L∞)

)
≥ N.

Sketch of the Proof: The proof can be divided into three main steps.

Step 1: Let Fac/F be an anti-cyclotomic Zp-extension. Let F+ be the maximal totally real sub�eld of

F . The anti-cyclotomic Zp-extension satis�es a special property: if F ac
n is the n-th layer of the Zp-tower,

then F ac
n is Galois over F+. Furthermore, Gn = Gal(F ac

n /F+) is the dihedral group of order 2pn.

Step 2: Let l+ - p be a prime ideal of F+ which is inert in F , and l be the unique prime ideal of F

above l+. Note l+ is unrami�ed in F ac
n . Using group theoretic properties of the dihedral group and class

�eld theory, it can be shown that l is totally split in F ac
n . This holds for every n, therefore l is totally

split in Fac/F . By Chebotarev density theorem, there are in�nitely many prime ideals l+ in F+ which

are inert in F . Thus, there are in�nitely many prime ideals l in F which split completely in Fac/F .

Step 3: Choose prime ideals l1, . . . , lt, t ≥ 1, in F which are prime to p and are totally split in Fac/F .

We know from Step 2 that there are in�nitely many such primes. Let η be a non-zero element of F

which is divisible exactly by the �rst power of li for 1 ≤ i ≤ t. Set

L = F
(
p
√
η
)

; L∞ = LFac.

Note Fac ∩ L = F and L∞/L is a Zp-extension. Let Ln be the n-th layer of the Zp tower L∞/L, then

Ln = F ac
n

(
p
√
η
)
, n ≥ 0.

Thus, Ln/Fn is a cyclic extension of degree p. If pe
L
n is the largest power of p dividing the h(Ln), by

Theorem 2.1.1, we know that for su�ciently large n,

eLn = λLn+ µLp
n + νL
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where λL = λ(X(L∞)), µL = µ(X(L∞)), and νL = ν(X(L∞)). Since li is totally split in Fac/F , it has

pn prime ideal factors in F ac
n . By construction, these prime ideals are rami�ed in Ln. Let the number

of such prime divisors be Tn. It follows that

Tn ≥ tpn n ≥ 0.

Using Chevalley's ambiguous class number formula,

h(Ln) ≥ # Am(Ln/Fn) ≥ h(Fn)× pTn−1

pdn

where dn = (p− 1)pn = [Fn : Q]. The manipulation of the denominator of the formula follows from the

observation that EpFn is contained in the subset of units of EFn which are norms of elements in Ln. Now

comparing the p-parts of the above inequality,

eLn ≥ eFn + Tn − 1− dn

≥
(
µ
(
X (F∞)

)
+ t− p+ 1

)
pn.

Therefore,

µ
(
X (L∞)

)
≥ t− p+ 1.

The theorem follows, since we know t can be arbitrarily large. K

Remark 3.3.21. Theorem 3.3.20 is true for any �eld F which has an anti-cyclotomic Zp-extension Fac/F .

In particular, it is true for all CM �elds.

We can now state and prove the main theorem of this section.

Theorem 3.3.22. Let F be the cyclotomic �eld of p-th roots of unity for p > 2. Let A/F be an Abelian

variety of dimension d such that A(F )[p] 6= 0. Suppose the analogue of the weak Leopoldt conjecture

holds. Given integer N ≥ 1, there exists a cyclic Galois extension L/F of degree p and a Zp-extension
L∞/L such that

µ
(
Y
(
A/L∞

))
≥ N.

To prove the theorem, we will need the following lemma. Since the de�nition of the p-primary �ne

Selmer group is independent of the choice of S, we set S = S(L) = Sp ∪ Sbad ∪ S∞. Denote the subset
of �nite primes of S by Sf . Further, we set

∣∣Sf ∣∣ = s0

Lemma 3.3.23. Let F be the cyclotomic �eld of p-th roots of unity for p > 2. Let A/F be an Abelian

variety of dimension d such that A(F )[p] 6= 0. Suppose the analogue of the weak Leopoldt conjecture

holds. Let L/F be a Z/pZ extension as constructed in Theorem 3.3.20. Then,

rp
(
R(A/Ln)

)
≥ rp

(
A (Ln) [p]

) (
s
(
X(L∞)

)
pn
)
− 4ds0p

n + c

where c is a constant.

Proof. The proof follows the same steps as Proposition 3.3.2. Since primes in the Zp-extension L∞/L
no longer satisfy the condition that primes are �nitely decomposed, our analysis will be more intricate.
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Step 1: By [76, Lemma 10.3.12], we have the following short exact sequence for all n,

Z|Sf (Ln)| → Cl(Ln)
αn−−→ ClS(Ln)→ 0.

Since primes in S are no longer �nitely decomposed in Zp-extension L∞/L, by Lemma 3.1.5 we obtain∣∣∣rp (Cl (Ln)
)
− rp

(
ClS (Ln)

)∣∣∣ ≤ 2s0p
n.

Step 2: We imitate the proof of Step 2 of Proposition 3.3.2. This gives∣∣∣∣rp (R (A/Ln))− rp (Rp (A/Ln))∣∣∣∣ ≤ 2ds0p
n.

Step 3: Lemma 3.1.8 applied to the number �eld Ln yields

rp

(
Rp
(
A/Ln

))
≥ rp

(
ClS (Ln)

)
rp
(
A (Ln) [p]

)
− 2d.

From the above two steps, it is evident that

rp

(
R
(
A/Ln

))
≥ rp

(
Rp
(
A/Ln

))
≥ rp

(
Cl (Ln)− 2s0p

n
)
rp
(
A (Ln) [p]

)
− 2d

≥ rp
(
Cl (Ln)

)
rp
(
A (Ln) [p]

)
− 4ds0p

n − 2d.

By the Structure Theorem (in particular Lemma 3.3.14), we know that

rp
(
Cl (Ln)

)
= s

(
X(L∞)

)
pn +O(1).

Plugging this back into the above inequality, proves the lemma. K

We will now prove Theorem 3.3.22. The condition A/F is an Abelian variety such that A(F )[p] 6= 0

is a mild one. We can base change to an extension F ′/F such that A(F ′)[p] 6= 0. Theorem 3.3.22 can

then be stated (and proved) in terms of this extension F ′.

Proof of Theorem 3.3.22. Let L/F be a cyclic extension of degree p as constructed in Iwasawa's theorem

(cf. Theorem 3.3.20). The choice of L/F determines t, the minimum number of primes of F which ramify

in L and are totally decomposed in Fac/F . We are assuming that the analogue of the weak Leopoldt

Conjecture hold for the Zp-extension L∞/L where L∞ = LFac. Now,

s
(
Y(A/L∞)

)
pn ≥ rp

(
R
(
A/Ln

))
+O(1)

≥ rp
(
A (Ln) [p]

) (
s
(
X(L∞)

)
pn
)
− 4ds0p

n +O(1)

≥ rp
(
A (Ln) [p]

) (
t− (p− 1)− 4ds0

)
pn +O(1)

The �rst inequality follows from Lemma 3.3.14. The last line follows from Proposition 3.3.19 by observing

that at least tpn primes of Fn ramify in Ln (by construction) and [Fn : Q] = (p − 1)pn. We discussed

while sketching the proof of Theorem 3.3.20 that t can be chosen to be arbitrarily large. Therefore, given
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N ≥ 1 there exists L/F such that

s
(
Y(A/L∞)

)
≥ N.

Since µ
(
Y(A/L∞)

)
≥ s

(
Y(A/L∞)

)
, the theorem follows. K

Remark 3.3.24. In view of recent results of Hajir-Maire [42], we believe it might be possible to extend

Theorem 3.3.22 to more general situations.

3.4 Growth in p-Hilbert Class Field Tower

Recall the setting of Section 2.2.3: F is a �nite Galois extension over the imaginary quadratic �eld K,

p|p is an unrami�ed prime in F , and E is an elliptic curve de�ned over F with CM by OK .
Denote by FS∞ the maximal unrami�ed p-extension of F such that all primes in S split completely.

Set Σ = ΣF = Gal(FS∞/F ) and write {Σn}n≥0 for its derived series. Here, for each n ≥ 0, the �xed �eld

Fn corresponding to Σn is the p-Hilbert S-class �eld of Fn−1.

Set Ln = FnL for every n ≥ 0. Note Ln is the unique Zp-extension of Fn inside L̃n = Fn(E[p∞]),

which is unrami�ed outside p. Denote by Γn the Galois group Gal(Ln/Fn); note Γn ' Zp. We emphasize

Γn is not a multiple Zp-extension in this section.

The �eld diagram is drawn below for convenience.

Q

K

K∞

K(E[p∞])

F

Fn

FS∞ L

L̃Ln

L̃n

Γ

∆

Γn

∆

For every n ≥ 0 we have the following isomorphisms

Gal(L̃n/Ln) ' Gal(L̃/L) = ∆; Gal(L̃n/Fn) ' ∆× Γn,

where ∆ is a subgroup of µp−1.

Set r1(F ) and r2(F ) to denote the number of real and complex embeddings of F respectively. In

[33], Golod and Shafarevich proved that if the following inequality holds

rp
(
ClS(F )

)
≥ 2 + 2

√
r1(F ) + r2(F ) + δ +

∣∣S \ S∞∣∣,
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then ΣF is in�nite. This is referred to as the Golod-Shafarevich inequality. Here,

δ =

1 if µp ⊆ F

0 otherwise.

Little is known about the structure of the Galois group ΣF . Stark posed the following natural question.

Question. Assume the Golod-Shafarevich inequality holds. Is rp(ClS(Fn)) bounded as n→∞?

This question is equivalent to asking

Question. Assume the Golod-Shafarevich inequality holds. Is ΣF a p-adic analytic group, i.e. is ΣF a

pro-p group which is a Lie group over the �eld of p-adic numbers?

The equivalent formulation can be understood as follows. For any pro-p group G, Z/pZ is a trivial

G-module. In particular, take G = Σn, the n-th term of the derived series. By class �eld theory and

�niteness of Cl(Fn) (and hence of ClS(Fn))

rp
(
ClS(Fn)

)
= rp

(
ClS (Fn) /p

)
= dimZ/pZ

(
H1
(

Gal
(
HS (Fn) /Fn

)
, Z/pZ

))
= dimZ/pZ

(
H1
(
Σn, Z/pZ

))
= dimZ/pZ Hom

(
Σn, Z/pZ

)
.

This is the number of minimal generators of Σn. By the following theorem of Lubotzky and Mann, the

two questions are equivalent.

Theorem 3.4.1. [62, Theorem A] A pro-p group is p-adic analytic if and only if the ranks of its open

subgroups are bounded.

This question posed by Stark is in fact closely related to the Fontaine-Mazur conjecture. In [31],

Fontaine and Mazur conjectured (as a special case of a vast principle) that ΣF can not be an in�nite

pro-p analytic group. There are unconditional answers to Stark's question. The following theorem was

proven independently by Boston [8], Hajir [41], and Matar [63].

Theorem 3.4.2. Let F be a number �eld. If the Golod-Shafarevic inequality holds, then ΣF is not

p-adic analytic.

3.4.1 Main Result and its Proof

In view of Theorem 3.4.2, we can not hope to study the growth of �ne Selmer groups in the p-Hilbert

class �eld tower using traditional Iwasawa theoretic tools.

Before we can state the main result of this section, we will make a few de�nitions.

(i) Analogous to the de�nition of p-�ne Selmer group and p-primary �ne Selmer group, de�ne p-�ne

Selmer group and p-primary �ne Selmer group by replacing p with p everywhere in the de�nitions.

(ii) When M is an O-module, write Mp for its p-primary part. De�ne the Z/pZ-rank of Mp[p] as the

p-rank of M , and denote it by rp(M).
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Theorem 3.4.3. Let F be a �nite Galois extension of the imaginary quadratic �eld K. Let p 6= 2, 3

be a prime that splits in K as pp̄ such that p is unrami�ed in F/K. Let E be an elliptic curve over

F with CM by OK such that E(F )[p] 6= 0. Choose S to be a �nite set of primes in F containing the

Archimedean primes, primes above p, and primes where E has bad reduction. Assume F satis�es the

Golod-Shafarevich inequality. Let FS∞ be the maximal unrami�ed non-constant pro-p extension of F

where primes in S split completely; let Fn be the n-th layer of this class �eld tower. Then the p-rank of

the �ne Selmer group of E/Fn is unbounded as n→∞.

Remark 3.4.4. 1. The result of Lim-Murty [59, Theorem 6.2] crucially needs E(F )[p] 6= 0 (else, the

inequality they establish is vacuous). We expect Theorem 3.4.3 should hold without assuming

E(F )[p] 6= 0. This assumption in our theorem forces Ln = L̃n, which simpli�es notation consider-

ably.

2. Theorem 3.4.3 is the �ne Selmer variant of a result of Murty-Ouyang [75, Theorem 4]. Our result

implies their result; indeed, we show the �ne Selmer rank (hence the Selmer rank) is unbounded

in the p-Hilbert S-class �eld tower (hence in the p-Hilbert class �eld tower).

3. Theorem 3.4.3 also implies the result of Lim-Murty [59, Theorem 6.2].

We begin by making the following observations.

Lemma 3.4.5. If E(F )[p] is trivial, then Ln 6= L̃n and E(Ln)[p] = 0 for every n ≥ 0. If E[p] ⊂ E(F ),

then Ln = L̃n and for every n ≥ 0, E(Ln)[p] = E[p∞].

Proof. Either E(F )[p] is trivial or it is all of E[p]. Therefore, by Lemma 3.1.4 there are only two

possibilities for E(Ln)[p]. K

Lemma 3.4.6. The intersection of FS∞ and L is a �nite extension of F . In particular, if E[p] ⊆ E(F )

then FS∞ and L are disjoint over F .

Proof. Consider the intersection FS∞ ∩ L. This is an Abelian extension of F as L/F is a Zp-extension
and hence Abelian. By construction, the maximal Abelian quotient of FS∞/F is the p-Hilbert S-class

�eld F1/F . Thus, FS∞ ∩ L ⊂ F1.

When E[p] ⊂ E(F ), L = L̃. Further, the prime p is totally rami�ed in the split prime Zp-extension
L/F . But FS∞/F is totally unrami�ed, so the two extensions are disjoint over F . K

Thus, we see that the hypothesis in the theorem implies Ln = L̃n. Let MS
n be the maximal Abelian

pro-p unrami�ed extension of Ln such that all primes of S(Ln) split completely. Here, S(Ln) is the

set of primes in Ln which are above the primes in the �nite set S. Note S(Ln) is a �nite set. Indeed,

Ln/Fn is a split prime Zp extension; hence primes of S(Fn) are �nitely decomposed in Ln/Fn. Set

XSn = Gal(MS
n /Ln). Using standard Iwasawa theory techniques, we have XSn is a Zp[∆]JT K-module.

Lemma 3.4.7. Zp-corank of Rp∞(E/Ln)→∞ as n→∞.

Proof. Since the Galois action is trivial on E[p∞], we know by [89, 6.1]

Rp∞(E/Ln) = Hom
(
XSn , E[p∞]

)
.

It is therefore enough to show that the Zp[∆]-rank of XSn tends to ∞.
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Fn+1/Fn is an Abelian extension where primes in S(Fn) split completely and Ln/Fn is an Abelian

extension unrami�ed outside p. Their compositum is Ln+1. Note that the �nitely many primes in S(Ln)

split completely in Ln+1. Ln+1/Ln is therefore a subextension of MS
n /Ln. We have

Gal
(
Ln+1/Ln

)
= Gal

(
Fn+1/Fn+1 ∩ Ln

)
= Gal

(
Fn+1/Fn

)
;

the last equality follows from hypothesis. Theorem 3.4.2 implies that the p-rank of Gal(Fn+1/Fn)

approaches ∞. Thus, the p-rank of Gal(Ln+1/Ln) tends to ∞. K

Remark 3.4.8. Note (XSn)Γn contains the Galois group Gal(Ln+1/Ln). Therefore Lemma 3.4.7 implies

p-rank of Rp∞(E/Ln)Γn is unbounded as n tends to ∞.

In Chapter 2, we introduced Mazur's Control Theorem for Selmer groups (Theorem 2.2.4). Rubin

[89, chapter VII] and Wuthrich [106] have proven a �ne analogue of the Control Theorem.

Theorem 3.4.9. (Control Theorem for �ne Selmer groups) The following map

sn : Rp∞(E/Fn)→ Rp∞(E/Ln)Γn

induced by the natural restriction is a pseudo-isomorphism with a �nite kernel and cokernel whose orders

are bounded as n→∞. More precisely,

∣∣ker(sn)
∣∣ ≤ ∣∣E(F )(p)

∣∣∣∣coker(sn)
∣∣ ≤∏

v|p

∣∣(Fv)(p)∣∣∏
v-p

c(p)v

where c(p)v denotes the maximum power of p that divides the Tamagawa number.

The �ne analogue of the Control Theorem and Remark 3.4.8 prove that p-rank of Rp∞(E/Fn) is

unbounded in the p-Hilbert S-class �eld tower. This completes the proof of Theorem 3.4.3.

Remark 3.4.10. An analogue of the main theorem holds for any d-dimensional CM Abelian variety.



Chapter 4

Riemann-Hurwitz Type Formula

for λ Invariant of Fine Selmer

Groups

4.1 Kida's Formula

The classical Riemann-Hurwitz formula gives the relationship of the Euler characteristics of two surfaces

when one is a rami�ed covering of the other. Let π : R1 → R2 be an n-fold covering of compact,

connected Riemann surfaces and g1, g2 be their respective genus; the Riemann-Hurwitz formula is

2g2 − 2 = (2g1 − 2)n+
∑(

e (P2)− 1
)

where the sum is over all points P2 on R2 and e(P2) denotes the rami�cation index of P2 for the covering

π [97, Chapter II Theorem 5.9]. Kida proved an analogous formula for algebraic number �elds [55].

Kida's formula describes the change of Iwasawa λ-invariants in a p-extension in terms of the degree and

the rami�cation index. Soon after Kida published his results, Iwasawa proved this formula using the

theory of Galois cohomology for extensions of Q which are not necessarily �nite. More precisely,

Theorem 4.1.1 (Kida's Formula). [51, Theorem 6] Let p ≥ 2 and F be a number �eld. Let Fcyc be the

cyclotomic Zp-extension of F and L/Fcyc be a cyclic extension of degree p, unrami�ed at every in�nite

place of Fcyc. Assume that the classical µ-invariant µ(X(Fcyc)) = 0. Then

λ
(
X (L)

)
= pλ

(
X
(
Fcyc

))
+
∑
w

(
e
(
w | v

)
− 1
)

+ (p− 1) (h2 − h1)

where w ranges over all non-p places of L and hi is the rank of the Abelian group Hi(L/Fcyc, EL); here

EL is the group of all units of L.

In [39], Hachimori and Matsuno proved an analogue of Kida's formula and described the behaviour

of the Selmer groups of elliptic curves in p-extensions of the cyclotomic Zp-extension of a number �eld.

In [82], Pollack and Weston proved a similar formula for Selmer groups of a general class of Galois

representations including the case of p-ordinary Hilbert modular forms and p-supersingular modular

43
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forms. In this chapter, we use Galois cohomology theory to prove an analogue of Kida's formula for

the �ne Selmer group. We prove an interesting corollary in the spirit of results proved in [18] and [43].

Finally in Section 4.5, we prove an analogue of Kida's formula in the false Tate curve extension.

4.2 Main Result

In this section we mention the main theorem and reduce the proof to the calculation of Herbrand

quotients. For computational simplicity we assume p ≥ 5. If p = 3, the same proof goes through under

the additional assumption that E/F is semi-stable.

Throughout this chapter we assume that Conjecture A holds for Y(E/Fcyc). Since the dual �ne

Selmer group is a Noetherian torsion Λ(Γ)-module, its Zp-rank is equal to λ
(
Y
(
E/Fcyc

))
.

4.2.1 Statement of the Theorem and a Reduction Step

The main theorem proved in this chapter is the following.

Theorem 4.2.1. Let p ≥ 5 be a prime. Let E/F be an elliptic curve with good ordinary reduction at all

primes above p. Let L/F be a �nite Galois p-extension. Assume the dual �ne Selmer group Y(E/Fcyc)

is �nitely generated as a Zp-module. Then Y(E/Lcyc) is �nitely generated as a Zp-module. Also,

λ
(
Y
(
E/Lcyc

))
= [Lcyc : Fcyc]λ

(
Y
(
E/Fcyc

))
+

∑
w∈P1(L)

(
eLcyc/Fcyc

(w)− 1
)

+2
∑

w∈P2(L)

(
eLcyc/Fcyc

(w)− 1
)

where eLcyc/Fcyc
(w) is the rami�cation index of w in Lcyc/Fcyc and P1(L), P2(L) are sets of primes in

Lcyc de�ned as

P1(L) = {w : w - p and E has split multiplicative reduction at w}

P2(L) = {w : w - p and E has good reduction at w, E(Lcyc,w)[p] 6= 0}.

The fact that E has good ordinary reduction at primes above p is used only in proving Lemma 4.3.3.

Set the notation G = Gal(Lcyc/Fcyc). The �rst step in proving this theorem is a reduction step. The

following lemma shows it is enough to prove the main theorem for the case G = Z/pZ.

Lemma 4.2.2. [65] Let F ⊂ L ⊂ M be number �elds such that M/F is a Galois p-extension. If

Theorem 4.2.1 is true for any two extensions M/L, M/F , L/F it is true for the third one.

Proof. Let v - p be a prime in the cyclotomic Zp-extension Lcyc/L. Let w be primes lying above v in

Mcyc. Suppose there are g many primes above v in Mcyc. Since there is no p-extension of the residue

�eld of Lcyc at v, [Mcyc : Lcyc] = eMcyc/Lcyc
(w)g. Thus,

[
Mcyc : Lcyc

] (
eLcyc/Fcyc

(v)− 1
)

=
∑
w

(
eMcyc/Fcyc

(w)− eMcyc/Lcyc
(w)
)
.

This proves the lemma. K

From here on, we assume G = Gal(Lcyc/Fcyc) = Z/pZ. Since the de�nition of the p-primary �ne

Selmer group is independent of S, we can choose it to include all primes of F that are rami�ed in L/F .

Therefore, by our choice of S the maximal extension of L unrami�ed outside S(L) is FS .
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The next proposition is the �ne Selmer variant of a well-known result of Iwasawa [49, Theorem 2].

This will �nish the proof of the �rst part of the main theorem.

Proposition 4.2.3. Assume Conjecture A holds for Y(E/Fcyc). Then Conjecture A holds for Y(E/Lcyc).

Proof. Consider the following commutative diagram:

0 R(E/Fcyc) H1(GS(Fcyc), E[p∞])
⊕

v∈S(Fcyc)H
1
(
Fcyc,v, E[p∞]

)

0 R(E/Lcyc)G H1(GS(Lcyc), E[p∞])G
(⊕

w∈S(Lcyc)H
1
(
Lcyc,w, E[p∞]

))Gα β γ

Here, ker(β) = H1
(
G, E(Lcyc)[p∞]

)
and coker(β) = H2

(
G, E(Lcyc)[p∞]

)
. Both ker(β) and

coker(β) are �nite; indeed, if M is a Zp[G]-module of co-�nite type, Hi(G, M) is �nite for i = 1, 2.

For each v, ker(γv) = ⊕w|vH1
(
Gv, E(Lcyc,w)[p∞]

)
. Here, Gv = Gal(Lcyc,w/Fcyc,v) is the decompo-

sition group of G. The dual of E(Lcyc)[p∞] (resp. E(Lcyc,w)[p∞]) are �nitely generated over Zp and

hence over Λ(G) (resp. Λ(Gv)). The dual of the map α gives rise to the following map

Y(E/Lcyc)G
α∨−−→ Y(E/Fcyc)

where the kernel and cokernel are �nitely generated Zp-modules. Since Y(E/Lcyc) is compact, by the

Nakayama's lemma for compact local rings it is �nitely generated as a Zp[G]-module. But G is �nite,

so Y(E/Lcyc) is a �nitely generated Zp-module. Equivalently, Conjecture A holds for Y(E/Lcyc) (see

Proposition 5.2.1). K

4.3 Proof via Calculation of Herbrand Quotients

In this section we will prove the remainder of the main theorem. We emphasize that even though the

idea behind the proof is very similar to that of [39], the details are signi�cantly di�erent, specially in

the simpli�cation of the Herbrand quotient.

4.3.1 Reduction to Calculation of Herbrand Quotients

The next step is to reduce the proof to the calculation of the Herbrand quotient. Since we are assuming

that Y(E/Fcyc) (and hence Y(E/Lcyc)) is a �nitely generated Zp-module, we have

λ
(
Y
(
E/Lcyc

))
= corankZp

(
R
(
E/Lcyc

))
;

λ
(
Y(E/Fcyc)

)
= corankZp

(
R
(
E/Fcyc

))
= corankZp

(
R
(
E/Lcyc

)G)
The last equality is not obvious. It requires the restriction map, α to have a �nite kernel and cokernel.

This follows from an application of the Snake Lemma once we know ker(β), ker(γ) and coker(β) are

�nite. From the proof of Proposition 4.2.3 above, we have ker(β) and coker(β) are �nite. We are yet to

show that ker(γ) is �nite. When v - p, it is obvious. When v | p, it follows from [92, Cor 2, page 130].

This can also be seen from the proof of Lemma 4.3.3.
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Classical Theory of Zp-Modules

Before proceeding any further, we recall some classical theory of Zp-modules [51, section 9].

Let G be a cyclic group of order p and M be a divisible Zp[G]-module of co-�nite type. Write

M 'Ma
1 ⊕M b

p−1 ⊕M c
p (4.1)

where each Mi is indecomposable and de�ned as

M1 = Z∨p = Qp/Zp, Mp−1 = I
(
Zp[G]

)∨
, Mp = Zp[G]∨.

I
(
Zp[G]

)
is the notation for the augmentation ideal and as before (−)∨ = HomZp(−, Qp/Zp) denotes

the Pontryagin dual. Note that Zp = Zp[G]/I
(
Zp[G]

)
.

For each torsion Zp-module T , de�ne

V (T ) := HomZp
(
T, Qp/Zp

)
⊗Zp Qp

= T∨ ⊗Zp Qp.

The map T 7→ V (T ) is an exact contravariant functor from torsion Zp-modules into vector spaces over

Qp. With this de�nition in hand, set

Vi = V (Mi), πi : G→ GL(Vi) for i = 1, p− 1, p.

Here π1 is the trivial representation of G over Qp, πp−1 is the unique faithful irreducible representation

of G over Qp, and
πp = π1 ⊕ πp−1 = πG (4.2)

where πG is the regular representation of G over Qp.

For the representation π of G on the space V (M), we get the following from Equation 4.1.

π = aπ1 ⊕ bπp−1 ⊕ cπp. (4.3)

The task is to compute the integers a, b, c.

Since G is cyclic of order p, the cohomology groups of G are Abelian groups of exponent p. The

ranks rn,i of the Abelian groups Hn (G, Mi) are

r1,1 = 1, r1,p−1 = 0, r1,p = 0,

r2,1 = 0, r2,p−1 = 1, r2,p = 0.

Combining this with Equation 4.1, one obtains

r
(
H1 (G, M)

)
= a, r

(
H2 (G, M)

)
= b.

The �rst and second cohomology groups of M are �nite. Thus, the Herbrand quotient de�ned as

follows

hG(M) :=
#H2(G, M)

#H1(G, M)
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exists and equals pb−a. Since Equation 4.1 implies

MG ' (Qp/Zp)a+c ⊕ (Z/pZ)b,

the corankZp(MG) = a+ c. Rewrite Equation 4.3 as

π = aπ1 ⊕ bπp−1 ⊕ cπp
= (a+ c)πp ⊕ (b− a)πp−1

= corankZp(MG)πG ⊕ ordp
(
hG(M)

)
πp−1.

The second equality follows from Equation 4.2. Now, comparing the degrees of the representations,

corankZp(M) = p corankZp(MG) + (p− 1) ordp
(
hG (M)

)
.

In our case, M = R(E/Lcyc). This gives us the main formula which we will need to evaluate.

λ
(
Y
(
E/Lcyc

))
= pλ

(
Y
(
E/Fcyc

))
+ (p− 1) ordp

(
hG

(
R
(
E/Lcyc

)))
. (4.4)

4.3.2 Herbrand Quotient Calculation

We need to calculate hG
(
R
(
E/Lcyc

))
obtained in Equation 4.4. From the de�nition of �ne Selmer

groups and an elementary property of Herbrand quotients we have

hG

(
R
(
E/Lcyc

))
=

hG

(
H1
(
GS
(
Lcyc

)
, E[p∞]

))
hG

(⊕
wH

1
(
Lcyc,w, E[p∞]

)) (4.5)

Simplify the Numerator

We �rst simplify the numerator using the Hochschild-Serre spectral sequences.

Lemma 4.3.1. hG

(
H1
(
GS
(
Lcyc

)
, E[p∞]

))
= hG

(
E
(
Lcyc

)
[p∞]

)
= 1.

Proof. Note the �rst equality follows, if for i = 1, 2 we can prove

Hi

(
G, H1

(
GS
(
Lcyc

)
, E[p∞]

))
' Hi

(
G, E

(
Lcyc

)
[p∞]

)
. (4.6)

Since we are assuming that Conjecture A holds for Y(E/Fcyc) (hence also for Y(E/Lcyc)), it follows that

the dual �ne Selmer group is Λ(Γ)-torsion. Equivalently, the analogue of the weak Leopoldt Conjecture

holds. By Equation 2.6,

H2
(
GS
(
Fcyc

)
, E[p∞]

)
= H2

(
GS
(
Lcyc

)
, E[p∞]

)
= 0.

We know that GS
(
Lcyc

)
and GS

(
Fcyc

)
have p-cohomological dimension less than equal to 2, i.e.

Hi
(
GS
(
Lcyc

)
, E[p∞]

)
= Hi

(
GS
(
Fcyc

)
, E[p∞]

)
= 0 for i ≥ 3.
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Now by Hochschild-Serre spectral sequences, we obtain the following exact sequence

· · · → H2
(
GS
(
Fcyc

)
, E[p∞]

)
→ H1

(
G, H1

(
GS
(
Lcyc

)
, E[p∞]

))
f1−→ H3

(
G, E

(
Lcyc

)
[p∞]

)
→ H3

(
GS
(
Fcyc

)
, E[p∞]

)
→ H2

(
G, H1

(
GS
(
Lcyc

)
, E[p∞]

))
f2−→ H4

(
G, E

(
Lcyc

)
[p∞]

)
→ H4

(
GS
(
Fcyc

)
, E[p∞]

)
→ · · ·

(4.7)

From the above discussion, f1, f2 are isomorphisms. Equation 4.6 follows; indeed, since G is cyclic we

have Hi
(
G, E

(
Lcyc

)
[p∞]

)
= Hi+2

(
G, E

(
Lcyc

)
[p∞]

)
. This gives the �rst equality.

The second equality follows from a result in [45]. Imai proved that E(Lcyc)[p∞] is �nite; hence we

have hG
(
E
(
Lcyc

)
[p∞]

)
= 1 [92, Proposition 8, page 134]. K

Simplify the Denominator

To simplify the denominator of Equation 4.5, we divide it into two cases, when v - p and when v | p.
First rewrite

hG

 ⊕
w∈S(Lcyc)

H1
(
Lcyc,w, E[p∞]

) =
⊕

v∈S(Fcyc)

hG

⊕
w|v

H1
(
Lcyc,w, E[p∞]

) .

Lemma 4.3.2. Let v ∈ S(Fcyc) be a prime not above p. For i = 1, 2, we have

Hi

G, ⊕
w|v

H1
(
Lcyc,w, E[p∞]

) =

0 if v splits in Lcyc/Fcyc

Hi
(
G, E

(
Lcyc,w

)
[p∞]

)
otherwise

Proof. We divide it into two cases. First when w | v is totally split. We have⊕
w|v

H1
(
Lcyc,w, E[p∞]

)
' H1

(
Fcyc,v, E[p∞]

)
⊗Zp Zp[G]

The right hand side is cohomologically trivial.

Consider the non-split case. The p-primary part of the Brauer group Br(Lcyc,w)(p) = 0 [94, Ch

II, Lemma 3]. Thus, the p-cohomological dimension of Lcyc,w is 1. By the same argument, the p-

cohomological dimension of Fcyc,v is also 1. An application of Hochschild-Serre spectral sequence gives

a diagram similar to Exact Sequence 4.7. From this we conclude

Hi
(
G, H1

(
Lcyc,w, E[p∞]

))
' Hi

(
G, E

(
Lcyc,w

)
[p∞]

)
.

This �nishes the proof of the lemma. K

When v | p, we have the following lemma.

Lemma 4.3.3. Let v ∈ S(Fcyc) be a prime lying above p. Then for i = 1, 2, the Herbrand quotient

hG

(⊕
w|vH

1
(
Lcyc,w, E[p∞]

))
= 1
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Proof. When v splits completely in Lcyc/Fcyc, Hi
(
G,
⊕

w|vH
1
(
Lcyc,w, E[p∞]

))
is trivial using the

same argument as above. We need to study the case when v does not split in the extension Lcyc/Fcyc.

The absolute Galois group of Fcyc,v and Lcyc,w have p-cohomological dimension at most 2. Further,

by Tate duality, H2(Lcyc,w, E[p∞]) = H2(Fcyc,v, E[p∞])) = 0 [20, Proof of Theorem 1.12]. Using the

Hochschild-Serre spectral sequence argument we arrive at the following isomorphism for i = 1, 2,

Hi
(
G, H1

(
Lcyc,w, E[p∞]

))
' Hi

(
G, E

(
Lcyc,w

)
[p∞]

)
.

Observe it is enough to show that E(Lcyc,w)[p∞] is �nite. This is known to be true by a result of Imai

[45]. Therefore, the required Herbrand quotient is 1 by the same argument as in Lemma 4.3.1.

K

Putting it Together

The series of lemmas above simpli�es Equation 4.5 to

hG

(
R
(
E/Lcyc

))
=

1⊕
w∈S′(Lcyc) hG

(
E
(
Lcyc,w

)
[p∞]

) . (4.8)

In the above equation, w runs over those primes of S(Lcyc) which are not above p and which do not split

in the extension Lcyc/Fcyc. Set Hw = ordp

(
hG

(
E
(
Lcyc,w

)
[p∞]

))
. We can rewrite Equation 4.4 as

λ
(
Y
(
E/Lcyc

))
= [Lcyc : Fcyc]λ

(
Y
(
E/Fcyc

))
− (p− 1)

∑
w

Hw

The �nal task to �nish the proof of Theorem 4.2.1 is to explicitly solve for Hw.

Calculating Hw

The calculation of Hw is exactly as done in the paper of Hachimori and Matsuno [39, Section 5]. We

need to study the p-primary torsion points of E in the unrami�ed Zp-extension of an `-adic �eld. By

the computations we have done so far, we can focus only on the case p 6= `. We prove

Proposition 4.3.4. [39, Corollary 5.2] For w ∈ S′(Lcyc), we have

Hw =


−1 if w ∈ P1(L)

−2 if w ∈ P2(L)

0 otherwise

where P1(L), P2(L) were de�ned in Theorem 4.2.1.

To prove Proposition 4.3.4 we need the next lemma.

Lemma 4.3.5. [39, Proposition 5.1] Let p, ` be distinct primes. Let k/Q` be a �nite extension and

k ⊇ µp. Set k∞ = k(µp∞) and E be de�ned over k.
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(i) If E has good reduction over k∞, then

E(k∞)[p∞] '

E[p∞] if E(k)[p] 6= 0

0 if E(k)[p] = 0

(ii) If E has split multiplicative reduction over k∞, there exists an element q ∈ k× and a non-negative

integer m such that E(k∞)[p∞] is isomorphic to the subgroup of k×∞/q
Z generated by µp∞ and q1/pm

as a Gal(k∞/k)-module.

(iii) If E has non-split multiplicative reduction or additive reduction over k∞, then E(k∞)[p∞] is �nite.

Proof. Since k is an `-adic �eld, k∞/k is unrami�ed at primes above p and therefore the reduction type

of E does not change since p ≥ 5.

(i) By Nakayama's lemma, it follows that E(k)[p] = 0 implies E(k∞)[p∞] = 0. When E(k)[p] 6= 0,

by the Weil pairing we know k
(
E[p]

)
/k is a p-extension because k ⊇ µp. Therefore, k

(
E[p∞]

)
/k

is a pro-p extension. Since E has good reduction, k
(
E[p∞]

)
/k is unrami�ed. The �eld k∞ is

the maximal unrami�ed pro-p extension of k, thus k
(
E[p∞]

)
⊆ k∞. This gives the necessary

isomorphism, E(k∞)[p∞] ' E[p∞].

(ii) E is isomorphic to a Tate curve over k with Tate period q ∈ k× [97, Theorem C14.1]. As Gal(k∞/k)-

modules, E(k∞) ' k×∞/qZ. Let qn be the pn-th root of q. Then, qpn = qn−1. Since, q is a unit in an

`-adic �eld, ord`(q) > 0; there is an integer m such that qm ∈ k∞ but qm+1 /∈ k∞. By assumption,

µp∞ ⊂ k∞, we get the desired assertion.

(iii) Let k̃n be the residue �eld of kn and Ẽns(k̃n) be the group of non-singular points of the reduction

of E on k̃n. There exists a short exact sequence of Abelian groups

0→ E1(kn)→ E0(kn)
red−−→ Ẽns(k̃n)→ 0

where E0(kn) is the subgroup of E(kn) consisting of points with non-singular reduction and E1(kn)

is the kernel of the reduction map, red [97, VII.2.1].

By assumption, k ⊇ µp so
∣∣∣k̃n∣∣∣ ≡ 1 mod p, and

(∣∣∣∣Ẽns (k̃n)∣∣∣∣ , p
)

= 1 [97, Prop II.2.5]. Since

` 6= p, the subgroup E1(kn) has no non-trivial points of of order p [97, Prop VII.3.1]. The above

exact sequence implies E0(kn)[p∞] is trivial. To �nish the proof, we need to show E(kn)/E0(kn)

is bounded. By the Kodaira-Neron theorem [97, Theorem VII.6.1], E(kn)/E0(kn) is �nite and

independent of n. It has order at most 4. Thus, E(kn)[p∞] must be bounded independent of n for

all n. This gives the desired result.

K

Proof of Proposition 4.3.4. Recall the notation v = w |Fcyc
, v - p, and v does not split in Lcyc/Fcyc.

Lcyc,w/Fcyc,v is a Galois extension of degree p. By local class �eld theory, it is in fact a unique rami�ed

extension. Furthermore, Fcyc,v ⊃ µp∞ .
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• When E has good reduction at w: If w /∈ P2(L), there is no point of order p, i.e.

E(Lcyc,w)[p] = E(Fcyc,v)[p] = 0.

Thus, there is nothing to prove. When w ∈ P2(L), the above lemma gives

E(Lcyc,w)[p∞] = E(Fcyc,w)[p∞] = E[p∞] ' (Qp/Zp)2

with trivial G-action. Now note that

Hw = ordp

(
#H2(G, E(Lcyc,w)[p∞])

#H1(G, E(Lcyc,w)[p∞])

)
= ordp

(
#{0}

#(Z/pZ)2

)
= −2

• When E has split multiplicative reduction at w: w ∈ P1(L). There is an exact sequence

0→ µp∞ → E(Lcyc,w)[p∞]→ T → 0

where T is a �nite group. Action of G on µp∞ is trivial and hence

Hw = ordp
(
hG(µp∞)

)
= −1.

• When E has non-split or additive reduction at w: w /∈ P1(L)∪P2(L). By Lemma 4.3.5, E(Lcyc,w)[p∞]

is �nite and hence Hw = 0.

With this, the proof of the theorem is complete. K

4.4 Application

Let F be a number �eld, E/F be an elliptic curve, and p be an odd prime. Set Fn = F (E[pn+1]), i.e.

the �eld obtained by adjoining the pn+1-torsion points of E to F . Let F∞ be the �eld obtained by

adjoining all the p-power torsion points on E to F . Set G = Gal(F∞/F ). As discussed earlier, when E

has CM by the ring of integers of an imaginary quadratic �eld, G contains an (Abelian) open subgroup

isomorphic to Z2
p. Thus, it is a p-adic Lie group of dimension 2. When E does not have CM, G is an

open subgroup of GL2(Zp); the Galois group is a non-Abelian, p-adic Lie group of dimension 4.

The following assertions are consequences of asymptotic results proved by Harris [43, Lemma 3.4.1].

For an elliptic curve E without CM, let p ≥ 5 and suppose R(E/F cyc
n ) is co-�nitely generated as a

Zp-module; as n→∞,

corankZp(R(E/F cyc
n )) = O(p3n).

In the CM case, under the same assumptions as above, as n→∞,

corankZp(R(E/F cyc
n )) = O(pn).

More precise results are obtained using Theorem 4.2.1. The following result is inspired by results of

Coates and Howson [18, Proposition 6.9]. The proof in the CM and non-CM case are identical. We

provide a proof in the non-CM case.
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Proposition 4.4.1. Assume the following

(i) p ≥ 5

(ii) G = Gal(F∞/F ) is a pro-p group

(iii) Y(E/Fcyc) is a �nitely generated Zp-module, i.e. Conjecture A holds for Y(E/Fcyc).

Let r(n) be the number of primes of F cyc
n not dividing p and at which E has split multiplicative reduction.

Let m be the smallest non-negative integer such that

Gal(F∞/Fn) = ker

(
GL2(Zp)

red−−→ GL2(Z/pn+1Z)

)
.

Then, for n ≥ m,

λ
(
Y
(
E/F cyc

n

))
=

[
λ
(
Y
(
E/F cyc

m

))
+ r(m)

]
p3(n−m) − r(n).

Proof. By hypothesis, Theorem 4.2.1 gives the formula

λ
(
Y
(
E/F cyc

n

))
= [F cyc

n : F cyc
m ]λ

(
Y
(
E/F cyc

m

))
+

∑
w∈P1(L)

(
en,m (w)− 1

)
.

The third term in the general formula gives no contribution for the extension Fn/Fm. Since w - p,
therefore F cyc

n,w/F
cyc
m,w is a totally rami�ed extension. The assumptions force that E has split multiplicative

reduction over F cyc
n,w if and only if E has split multiplicative reduction over F cyc

m,w. P1(L) is the set of

those r(n) primes of F cyc
n which divide the r(m) primes of F cyc

m , do not divide p, and at which E has

split multiplicative reduction. So,∑
w∈P1(L)

(
en,m(w)− 1

)
= [F cyc

n : F cyc
m ]r(m)− r(n).

The formula follows from the choice of m.

Justi�cation: for n ≥ m, Fn+1/Fn has degree p4. By the Weil pairing, the intersection F cyc
n ∩ Fn+1 is

the �eld generated over Fn by the pn+2-th roots of unity. Therefore, [F cyc
n+1 : F cyc

n ] = p3 for all n ≥ m.

This �nishes the proof. K

4.5 Kida's Formula in the False Tate Curve Extension

We begin by recalling the de�nition of a false Tate curve extension. Let p be a �xed odd prime and F

be a number �eld containing µp. The false Tate curve extension denoted F∞ is obtained by adjoining

the p-power roots of a �xed integer m > 1 to Fcyc, i.e.

F∞ = F
(
µp∞ , m

1
pn : n = 1, 2, . . .

)
.

The Galois group Gal
(
F∞/F

)
' Zp o Zp. This is a non-Abelian p-adic Lie extension. Further, set

HF = Gal
(
F∞/Fcyc

)
' Zp.



Chapter 4. Riemann-Hurwitz Type Formula for λ Invariant of Fine Selmer Groups 53

Let E/F be an elliptic curve such that p is a prime of good reduction. Let S be any �nite set of

primes of F containing the Archimedean primes, the primes above p, the primes of bad reduction of E,

and primes dividing m. Then, F∞ is an S-admissible extension. The �ne Selmer group R
(
E/F∞

)
is

de�ned as in Section 2.3. Throughout this section, we assume Conjecture A holds for Y
(
E/Fcyc

)
.

The following fact is well-known.

Theorem 4.5.1. With notation as above, Y
(
E/F∞

)
is a �nitely generated Λ(HF )-module.

When G is a pro-p, p-adic Lie group without any elements of order p, we had de�ned the rank of a

�nitely generated Λ(G)-module M , in Section 2.4 as

rankΛ(G)M :=
∑
i≥0

(−1)
i
rankZp H

i (G, M) .

For �nitely generated Λ(HF )-modules, it was proposed by Coates and Howson that Λ(HF )-rank is the

right analogue of the classical λ-invariant [18].

Recall the i-th Iwasawa cohomology groups are de�ned as

Zi
(
E/F∞

)
:= lim←−

L

Hi
(
GS (L) , Tp (E)

)
,

where i ≥ 0. The natural map from Z1
(
E/F∞

)
to Z1

(
E/Fcyc

)
induces a canonical map

ρF : Z1
(
E/F∞

)
HF
→ Z1

(
E/Fcyc

)
.

Let T (F ) be the set of primes of Fcyc which are rami�ed in F∞. This set consists of primes of Fcyc

which either divide p or divide m. De�ne the subsets

T1(F ) = {w ∈ T (Fcyc), w - p : E has split multiplicative reduction at w}

T2(F ) = {w ∈ T (Fcyc), w - p : E has good reduction at w,E(F∞,w)[p] 6= 0}.

Theorem 4.5.2. [22, Theorem 4.11] Let F∞ be the false Tate curve extension of F and p be an odd

prime such that E/F has good reduction at p. Suppose Conjecture A holds for Y
(
E/Fcyc

)
. Then

rankΛ(HF )

(
Y
(
E/F∞

))
+ rankZp

(
coker (ρF )

)
= λ

(
Y
(
E/Fcyc

))
+ t1(F ) + 2t2(F ),

where ti(F ) = #Ti (F ).

Theorem 4.5.3. Let p be �xed odd prime and F be a number �eld containing µp. Let L/F be a Galois

extension of degree p. Consider the false Tate curve extensions F∞/F and L∞/L. Assume Conjecture

A holds for Y(E/Fcyc). Then

rankΛ(HL)

(
Y
(
E/L∞

))
+ rankZp

(
coker (ρL)

)
= p

(
rankΛ(HF )

(
Y
(
E/F∞

))
+ rankZp

(
coker (ρF )

))
+

∑
w-m,w∈P1(L)

(
eLcyc/Fcyc

(w)− 1
)

+ 2
∑

w-m,w∈P2(L)

(
eLcyc/Fcyc

(w)− 1
)



Chapter 4. Riemann-Hurwitz Type Formula for λ Invariant of Fine Selmer Groups 54

Lemma 4.5.4. With notation as in Theorem 4.5.3,∑
w∈Pi(L)

(
eLcyc/Fcyc

(w)− 1
)

= pti(F )− ti(L) +
∑

w∈Pi(L),w-m

(
eLcyc/Fcyc

(w)− 1
)
.

Proof. Suppose v is a prime of Fcyc and w | v be a prime of Lcyc. Observe that v ∈ Ti(F ) if and only if

w ∈ Ti(L). Further, since w - p, the residue degree fw
(
Lcyc/Fcyc

)
= 1 for primes in Ti(L). Thus,

∑
w∈Pi(L)

(
eLcyc/Fcyc

(w)− 1
)

=
∑

w∈Ti(L)

(
eLcyc/Fcyc

(w)− 1
)

+
∑

w∈Pi(L),w-m

(
eLcyc/Fcyc

(w)− 1
)

= pti(F ) − ti(L) +
∑

w∈Pi(L),w-m

(
eLcyc/Fcyc

(w)− 1
)

This completes the proof of the lemma. K

Proof of Theorem 4.5.3. Theorem 4.5.2 for L∞/L yields,

rankΛ(HL)

(
Y
(
E/L∞

))
+ rankZp

(
coker (ρL)

)
= λ

(
Y
(
E/Lcyc

))
+ t1(L) + 2t2(L). (4.9)

Using Theorem 4.2.1, it is possible to rewrite λ
(
Y
(
E/Lcyc

))
,

λ
(
Y
(
E/Lcyc

))
= pλ

(
Y
(
E/Fcyc

))
+

∑
w∈P1(L)

(
eLcyc/Fcyc

(w)− 1
)

+ 2
∑

w∈P2(L)

(
eLcyc/Fcyc

(w)− 1
)
.

(4.10)

By rearranging terms and multiplying throughout by p, Theorem 4.5.2 for F∞/F yields,

pλ
(
Y
(
E/Fcyc

))
= p rankΛ(HF )

(
Y
(
E/F∞

))
+ p rankZp

(
coker (ρF )

)
− pt1(F )− 2pt2(F ). (4.11)

Substituting the formula in Lemma 4.5.4 and Equation 4.11 into Equation 4.10 and plugging this ex-

pression of λ
(
Y
(
E/Lcyc

))
into Equation 4.9, proves the theorem. K

Remark 4.5.5. Theorem 4.5.2 holds any pro-p, p-adic Lie extension of F of dimension 2 (see [96]).

Therefore, Theorem 4.5.3 can be proven for any such extension in exactly the same way. In particular,

if E/F is an elliptic curve with CM by an imaginary quadratic �eld, an analogous Kida's formula exists

over the trivializing extension F∞/F .



Chapter 5

Conjecture A and its Relation

with the Classical Conjecture

In this chapter, we prove two kinds of results. First we provide some evidence towards Conjecture

A. Second, we show that there is a deep relationship between Conjecture A and the Classical µ = 0

Conjecture. This is not surprising, given that in Chapter 3 we have seen that in a large number of cases

the p-ranks of ideal class groups and the p-ranks of �ne Selmer groups have the same order of growth.

5.1 Trivial Selmer Groups over the Cyclotomic Extension

We begin by reminding the reader the precise formulation of Conjecture A.

Conjecture A. Let E be an elliptic curve de�ned over a number �eld F . The Pontryagin dual of the

�ne Selmer group Y(E/Fcyc) is Λ(Γ)-torsion and the associated µ-invariant is 0.

Throughout this section we assume that the following hypothesis holds.

Hypothesis. The Shafarevich-Tate group of an elliptic curve is �nite.

Let E be a rank 0 elliptic curve de�ned over a number �eld F . In this section, we prove that for

density one primes of good ordinary reduction, Sel(E/Fcyc) (and hence R(E/Fcyc)) is trivial in the

cyclotomic Zp-extension.
Fix a number �eld F and an odd prime p. Let E be an elliptic curve over F with good ordinary

reduction at all primes above p. In Corollary 2.2.5, we saw the following consequence of the Control The-

orem: when Sel(E/F ) is �nite, Sel(E/Fcyc) is Λ(Γ)-cotorsion, where Γ = Gal(Fcyc/F ). The hypothesis

Sel(E/F ) is �nite holds for example, if E is a rank 0 elliptic curve over F .

Let fE(T ) be the characteristic polynomial generating the characteristic ideal of X(E/Fcyc). When

Sel(E/F ) is �nite, by the Control Theorem we know Sel(E/Fcyc)Γ is �nite. By Nakayama's Lemma, it

follows that X(E/Fcyc)/TX(E/Fcyc) is �nite. Therefore, T - fE(T ) and fE(0) 6= 0 [17].

The reduction of E modulo v over the residue �eld κv is denoted by Ẽv. Recall v is called an

anomalous prime if p divides
∣∣∣Ẽv(fv)∣∣∣ [66, Section 1(b)]. Also,

∣∣∣Ẽv(fv)∣∣∣ = (1− αv)(1− βv)

55
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where αvβv = N(v), αv + βv = av ∈ Z, and av is not divisible by p. Both αv, βv must therefore be in

Qp. If we further assume that αv ∈ Z×p , then an equivalent de�nition of a prime being anomalous is that

av ≡ 1 (mod p). Let cv be the Tamagawa number and denote the highest power of p dividing it by c(p)v .

In this section, we prove the following theorem. This is a joint result with R. Sujatha.

Theorem 5.1.1. Let F be a number �eld and E be an elliptic curve of rank 0 over F . Assume that the

Shafarevich-Tate group of E/F is �nite. Varying over primes of good ordinary reduction, Sel(E/Fcyc)

is trivial for all primes outside a set of density 0. In particular, Conjecture A holds for Y(E/Fcyc).

In [67], Mazur and Rubin show that given F , there exist `many' rank 0 elliptic curves over F . This

guarantees that the statement has content.

Proof. We divide this proof into two steps. In Step 1, we show that under the hypothesis of the theorem,

Sel(E/Fcyc) is �nite. This implies that R(E/Fcyc) is also �nite, hence Conjecture A holds. In Step 2,

we prove that in fact Sel(E/Fcyc) is trivial.

Step 1: With the setting as in the theorem, it is known [17, Section 4]

fE(0) ∼

 ∏
v bad

c(p)v

∏
v|p

∣∣∣Ẽv(fv)(p)∣∣∣2
∣∣Sel(E/F )

∣∣/∣∣E(F )(p)
∣∣2 (5.1)

where a ∼ b for a, b ∈ Q×p means that a, b have the same p-adic valuation.

It follows from Equation 5.1 that if E is an elliptic curve de�ned over F satisfying the following

conditions, fE(0) is a unit.

(i) E is a rank 0 elliptic curve de�ned over F , with E(F )[p] is trivial.

(ii) E has good ordinary non-anomalous reduction at primes above p

(iii) X(E/F )(p) is trivial

(iv) p does not divide the Tamagawa number cv, where v is a bad prime.

Note that for rank 0 elliptic curves with E(F )[p] = 0, Sel(E/F ) = X(E/F )(p). When fE(0) is a unit,

X(E/Fcyc) (and hence Y(E/Fcyc)) is �nite. Equivalently, both Sel(E/Fcyc) and R(E/Fcyc) are �nite.

We have to check that given such a rank 0 elliptic curve, fE(0) is a unit for density 1 primes of good

ordinary reduction. This follows from the following observations,

(i) it is a result of Merel that given an elliptic curve E, over a �xed number �eld F , for all but �nitely

many primes E(F )[p] is trivial.

(ii) given an elliptic curve E/F , it has good reduction at primes above p for all but �nitely many

p. Using a Chebotarev density argument, for density 1 ordinary primes, it is known E has non-

anomalous reduction at p [74].

(iii) since we assume �niteness of the Shafarevich-Tate group, given an elliptic curve E, condition (iii)

holds away from a �nite set of primes.

(iv) at bad places, the Tamagawa number is �nite and bounded. Given an elliptic curve E, condition

(iv) holds away from a �nite set of primes.
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Step 2: To prove that Sel(E/Fcyc) is in fact trivial we need the following lemma proved by Greenberg

[17]. This is also proven by Hachimori and Matsuno [40].

Lemma 5.1.2. Let E be an elliptic curve de�ned over F with good, ordinary reduction at all primes of

F lying over p. Suppose Sel(E/F ) is �nite and that E(F )[p] is trivial. Then Sel(E/Fcyc) has no proper

Λ(Γ)-submodules of �nite index.

Proof. There is the following canonical surjective map coming from the Cassels pairing

E(F )(p)→ Sel(E/Fcyc)Γ.

By hypothesis, E(F )(p) = Sel(E/Fcyc)Γ is trivial. Suppose Sel(E/Fcyc) has a �nite, non-zero Λ(Γ)

quotient M ; this must be a non-zero, �nite, Abelian p-group with Γ-action. MΓ is non-zero but it is a

homomorphic image of Sel(E/Fcyc)Γ. This gives the desired contradiction. K

We note that the following stronger statement is true [17, Proposition 4.14]. However, we avoid

giving a proof as we do not need the full force of the statement.

Lemma 5.1.3. Let E be an elliptic curve de�ned over F and that X(E/Fcyc) be Λ(Γ)-torsion. If E(F )[p]

is trivial, then Sel(E/Fcyc) has no proper Λ(Γ)-submodules of �nite index.

If E(F )[p] is trivial, by Lemma 5.1.2 if Sel(E/Fcyc) is non-zero it must be in�nite. Therefore, in our

setting Sel(E/Fcyc) (and hence R(E/Fcyc)) must be trivial. The proof is now complete. K

Remark 5.1.4. (i) Theorem 5.1.1 strengthens a result of Greenberg, where the same statement is

proved for F = Q [17, Proposition 5.1].

(ii) It is important to emphasize that for a �xed elliptic curve over F , it is possible that fE(0) = 1

when E(F )[p] is non-trivial; for example if there is anomalous reduction at the prime p. It is also

possible that such elliptic curves have trivial Sel(E/Fcyc) [20, Theorem 3.11 and Remark 3.12(v)].

Elliptic curves with these properties exist [20, Chapter 5]. However, these are some elliptic curves

that are excluded by our theorem. This raises the following natural question.

Question. Let E be a rank 0 elliptic curve de�ned over F . Is Y(E/Fcyc) trivial for all but �nitely

many primes?

In this direction, for F = Q, we have the following proposition of Greenberg [17, Proposition 5.1].

This approach however can not be extended to the case of general number �elds.

Proposition 5.1.5. Let E be an elliptic curve of rank 0 over Q such that X(E/Q) is �nite. If E(Q) has

a point of order 2 or if E is Q-isogenous to an elliptic curve E′ such that
∣∣E′(Q)

∣∣ > 1, then Sel(E/Qcyc)

is trivial for all but �nitely many primes.

Proof. Note Q-isogenous elliptic curves have the same set of primes of bad reduction. If p is a prime of

good reduction for E, the prime-to-p-part of E′(Q)tors injects into Ẽ′(Fp); both Ẽ′(Fp) and Ẽ(Fp) have
the same order.

Claim: If E(Q) has a point of order 2 and p ≥ 7, then p is non-anomalous.

Justi�cation: If ap ≡ 1 (mod p), then 2p must divide
∣∣∣Ẽ(Fp)

∣∣∣. But then
2p < 1 + p+ 2

√
p.
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This can not happen if p ≥ 7.

Claim: Let E be isogenous to E′ and suppose E′(Q)tors has a subgroup of order q > 2, then p is non-

anomalous if p - q.
Justi�cation: Suppose p is an anomalous prime and p - q, then qp must divide

∣∣∣Ẽ(Fp)
∣∣∣. But then

qp < 1 + p+ 2
√
p,

which can not happen since q > 2.

With this the proof is complete. K

5.2 Relating Conjecture A to the Classical µ=0 Conjecture

There is growing evidence that the ideal class groups and the �ne Selmer groups are closely related to

one another. The goal of this section is to make explicit the relationship between the two conjectures

concerning the vanishing of the respective µ-invariants in the cyclotomic Zp-extension.

5.2.1 Equivalent Formulations of the Conjectures

We remind the reader the precise formulation of the Classical µ = 0 Conjecture.

Classical µ = 0 Conjecture. Let F be a number �eld and consider the cyclotomic Zp-extension
Fcyc/F . Let An denote the p-part of the class group of the n-th layer; set X = lim←−An. Then µ(X) = 0.

The following proposition is well-known. It gives an equivalent condition for the vanishing of the µ

invariant of any torsion Λ(Γ)-module.

Proposition 5.2.1. Let M be a �nitely generated torsion Λ(Γ)-module. Then µ(M) = 0 if and only if

M is �nitely generated as a Zp-module.

Proof. Suppose µ(M) = 0. By the Structure Theorem, we have the following pseudo-isomorphism

M ∼
t⊕

j=1

Λ(Γ)
/(
fj(T )

)
where fj is a distinguished polynomial and

∑
j deg(fj) = λ. Applying the division algorithm,

Λ(Γ)
/(
fj(T )

) ' Zdeg(gj)
p .

Hence, it follows that

M ' Zλp ⊕ (�nite p-group).

The converse is straight forward. K

There are several equivalent ways of formulating the Classical µ = 0 Conjecture. The following

equivalent formulation is proven in [100, Proposition 4.10(1)].

Proposition 5.2.2. The Classical µ = 0 Conjecture holds for Fcyc/F if and only if

H2
(
GS
(
Fcyc

)
, µp

)
= 0.
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The following result is standard and is proven in [105, Proposition 13.23].

Proposition 5.2.3. µ(X) = 0 if and only if p-rank of An is �nite and bounded as n→∞.

Similar to Proposition 5.2.3, it is possible to express the vanishing of the µ-invariant associated with

the dual �ne Selmer group Y(A/Fcyc) in terms of boundedness of p-ranks.

Proposition 5.2.4. Let A be a d-dimensional Abelian variety de�ned over F . Conjecture A holds for

Y(A/Fcyc) if and only if p-rank of R(A/Fn) is �nite and bounded as n→∞.

Proof. Set Γn = Gal(Fcyc/Fn). Consider the following commutative diagram with the vertical maps

given by restriction

0 → R(A/Fn) → H1(GS(Fn), A[p∞]) →
⊕

vn
H1(Fn,vn , A[p∞])yrn

yfn
yγn

0 → R(A/Fcyc)Γn → H1(GS(Fcyc), A[p∞])Γn →
(

lim−→n

⊕
vn
H1(Fn,vn , A[p∞])

)Γn

From this diagram, one notices that fn, γn are surjective and

rp
(
ker(fn)

)
≤ 2d

rp
(
ker(γn)

)
≤ 2d

∣∣S(Fn)
∣∣ .

Using Lemma 3.1.5 for the map rn yields∣∣∣∣rp (R (A/Fn))− rp (R (A/Fcyc

)Γn)∣∣∣∣ = O(1). (5.2)

Recall that the Pontryagin dual of R
(
A/Fcyc

)Γn
[p] is equal to Y

(
A/Fcyc

)
/ (p, wn). By [105, Lemma

13.20], Y(A/Fcyc) is �nitely generated as a Zp-module if and only if the p-rank of R(A/Fcyc)Γn is

bounded independent of n. By Equation 5.2 the proposition follows. K

We give a formulation of Conjecture A in terms of the vanishing of Galois cohomology group. This

was established independently by Greenberg [36] and Sujatha [101].

Proposition 5.2.5. Suppose the analogue of the weak Leopoldt conjecture for elliptic curves holds i.e.

H2
(
GS
(
Fcyc

)
, E[p∞]

)
= 0. Then Conjecture A for Y

(
E/Fcyc

)
is equivalent to the assertion

H2
(
GS
(
Fcyc

)
, E[p]

)
= 0.

Sketch of Proof. Consider the Λ(Γ)-modules

Z2
(
Tp (E) /Fcyc

)
= lim←−

L

H2
(
GS (L) , Tp (E)

)
,

Z2
(
E[p]/Fcyc

)
= lim←−

L

H2
(
GS (L) , E[p]

)
.

By hypothesis, H2
(
GS
(
Fcyc

)
, E[p∞]

)
= 0. By Lemma 2.5.1, Z2

(
Tp (E) /Fcyc

)
is Λ(Γ)-torsion.

From the Poitou-Tate sequence, it follows that Z2(Tp(E)/Fcyc) and Y(E/Fcyc) di�er by �nitely gener-
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ated Zp-modules. Note that

Z2
(
Tp (E) /Fcyc

)/
pZ2

(
Tp (E) /Fcyc

) ' Z2
(
E[p]/Fcyc

)
.

Therefore, Z2
(
Tp (E) /Fcyc

)
is a �nitely generated Zp-module if and only if Z2(E[p]/Fcyc) is �nite

(hence its µ-invariant is 0). But, Z2(E[p]/Fcyc) and H2(GS(Fcyc), E[p])∨ have the same µ-invariant.

Furthermore, Z2(E[p]/Fcyc) is �nite if and only if H2(GS(Fcyc), E[p]) is trivial. K

Finally, we record a theorem of Sujatha and Witte [100, Theorem 4.1].

Theorem 5.2.6. Let F be a number �eld and M be a GF -representation on a �nite dimensional vector

space over Fp, where GF is the absolute Galois group Gal
(
F/F

)
. Assume that S is a �nite set of primes

of F containing the primes above p and the primes where M is rami�ed. The following are equivalent

(i) H2
(
GS
(
Fcyc

)
, M

)
= 0.

(ii) Z2
(
M/Fcyc

)
is �nite.

(iii) the �ne Selmer group R
(
M∨(1)/Fcyc

)
is �nite.

(iv) the in�ation map H2
(
GS
(
Fcyc

)
, M

)
→ H2

(
GT
(
Fcyc

)
, M

)
is injective for every �nite set of

primes T containing S.

Previous Results in this Direction

We mentioned in Theorem 2.3.1 a close relationship between Conjecture A and the Classical µ = 0

Conjecture. Using very di�erent techniques the theorem was proved in [22, Theorem 3.4] and [60,

Theorem 5.5]. We restate the theorem for convenience and also provide a proof.

Theorem. Let p 6= 2. Suppose F (E[p])/F is a �nite p-extension. Then Y(E/Fcyc) is a �nitely generated

Zp-module if and only if the Classical µ = 0 Conjecture holds for Fcyc.

The following facts are well known and will be used in the proof of the above theorem.

(i) Iwasawa proved that for a �nite p-extension L/F , the Classical µ = 0 Conjecture holds for Lcyc if

it holds for Fcyc [49, Theorem 3]. An analogous statement is true for Conjecture A. We provided

a proof of this fact earlier in Proposition 4.2.3.

(ii) Let L/F be any �nite extension, the Classical µ = 0 Conjecture holds for Fcyc if it holds for Lcyc

[49, Remark on Page 10]. The analogue is true for Conjecture A; we prove it below.

Lemma 5.2.7. Let L/F be any �nite extension. If Conjecture A holds for Y
(
E/Lcyc

)
, then it holds

for Y
(
E/Fcyc

)
as well.

Proof. Choose a set S large enough so that L/F is unrami�ed outside S. The p-cohomological dimension

of GS(Fcyc) is at most 2, hence the following co-restriction map is surjective

H2
(
GS
(
Lcyc

)
, A[p]

)
→ H2

(
GS
(
Fcyc

)
, A[p]

)
.

By Proposition 5.2.5, the hypothesis says H2
(
GS
(
Lcyc

)
, A[p]

)
= 0; the lemma follows. K



Chapter 5. Conjecture A and its Relation with the Classical Conjecture 61

We will now prove the theorem. The proof we present is due to Lim and Murty.

Proof of the Theorem. In view of Lemma 5.2.7 and the hypothesis of the theorem, WLOG we replace F

by F (E[p]) and assume E[p] ⊆ E(F ). This is the setting of Remark 3.1.9. In this case, we know∣∣∣∣rp (Rp (E/Fn))− 2rp
(
ClS (Fn)

)∣∣∣∣ = O(1).

Since in the cyclotomic extension, the primes in S are �nitely decomposed, Equations 3.12 and 3.13

hold. Therefore one concludes ∣∣∣∣rp (R (E/Fn))− 2rp
(
Cl (Fn)

)∣∣∣∣ = O(1).

Notice rp
(
R
(
E/Fn

))
is �nite and bounded independent of n if and only if the same holds for rp

(
Cl (Fn)

)
.

The theorem follows from Proposition 5.2.3 and Proposition 5.2.4. K

The only property of the cyclotomic extension used in the proof is that in this Zp-extension, primes

are �nitely decomposed. Therefore using the same technique, the following general statement is true.

Theorem 5.2.8. Let p 6= 2 and F∞/F be any Zp-extension such that all primes are �nitely decomposed

in this tower. Further assume F (E[p])/F is a �nite p-extension. Then Y(E/F∞) is a �nitely generated

Zp-module if and only if the classical µ-invariant associated to F∞/F is zero.

The following result of Bloom and Gerth III [6] combined with the above theorem yields an interesting

corollary for the vanishing of µ-invariants of dual �ne Selmer groups.

Theorem 5.2.9. Let F be a number �eld such that it has at least two Zp-extensions. Assume that for at
least one Zp-extension F∞/F , the associated classical µ-invariant is 0. There are at most �nitely many

Zp-extensions of F which potentially have a positive µ-invariant.

We will consider the case of CM elliptic curves. Let p 6= 2, 3 and K be an imaginary quadratic �eld

such that p splits in K as pp. Let E/K be an elliptic curve with CM by the ring of integers OK and

consider the �nite �eld extension F = K(E[p])/K. The trivializing extension K(E[p∞])/F is an Abelian

pro-p extension which is the compositum of the two disjoint split prime Zp extensions over F ; one is

unrami�ed outside primes above p (call it N/F ) and the other is unrami�ed outside primes above p (call

it N∗/F ). Primes are �nitely decomposed in the Zp-extensions, N and N∗ [28, Page 45]. Therefore, the

same is true for the compositum. By the independent work of Gillard [32] and Schneps [90], we know

that the classical µ-invariant associated to N/F (and by symmetry also for N∗/F ) is 0. We may now

apply Theorem 5.2.9. Thus, there are only �nitely many Zp-extensions of F contained in the trvializing

extension where the classical µ-invariant might be positive. All Zp-extensions of F contained in the

trivializing extension have the property that primes are �nitely decomposed; applying Theorem 5.2.8

the next result is immediate.

Theorem 5.2.10. Let p 6= 2, 3. Let K be an imaginary quadratic �eld such that p splits completely in

K. Consider an elliptic curve E/K with CM by OK . Set F = K(E[p]). There are at most �nitely many

Zp-extensions F∞/F over which the µ-invariant associated with Y(E/F∞) might potentially be positive.

Remark 5.2.11. The bound on the number of Zp-extensions which might have a positive µ-invariant is

explicitly computable.
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The ideas in the above proof of Lim and Murty can be pushed to prove stronger results in either

direction. This will be the main focus of the next few sections.

5.2.2 Conjecture A implies the Classical µ = 0 Conjecture

In simple words, the �rst theorem we prove in this section says the following: given a number �eld F ,

to prove the Classical µ = 0 Conjecture for Fcyc/F , it su�ces to �nd one elliptic curve E/F such that

it has non-trivial torsion points over F and Conjecture A holds for Y(E/Fcyc).

Theorem 5.2.12. Let E be an elliptic curve de�ned over the number �eld F . Let p be any odd prime.

Further assume that E(F )[p] 6= 0. If Conjecture A holds for Y(E/Fcyc), then the Classical µ = 0

Conjecture holds for Fcyc/F .

The above theorem follows from the following lemma when A is an elliptic curve. The idea of the proof

is similar to some of the technical lemmas proved in Chapter 3 and can be obtained from Theorem 3.3.15

by making necessary modi�cations. For the sake of completeness, we include a detailed proof.

Lemma 5.2.13. Let Fcyc/F be the cyclotomic Zp-extension and Fn be the sub�eld of Fcyc such that

[Fn : F ] = pn. Let A be a d-dimensional Abelian variety over F and S be as de�ned before. Assume

A(F )[p] is non-trivial. Then for some positive constant k1 that depends on A(F )[p],

k1rp
(
ClS(Fn)

)
≤ rp

(
R(A/Fn)

)
+O(1) (5.3)

Proof. For the ease of notation, set Hn = HS(Fn) and Hn,w = HS(Fn)w. Consider the following

commutative diagram

0 → R(A/Fn) → H1(GS(Fn), A[p∞]) →
⊕

vn
H1(Fn,vn , A[p∞])yrn

yfn
yγn

0 → R(A/Hn) → H1(GS(Hn), A[p∞]) →
⊕

vn

⊕
w|vn H

1(Hn,w, A[p∞])

Here vn runs over all primes in S(Fn), the �nite set of primes in Fn that lie above the primes in S.

Observe

ker γn =
⊕
vn

ker γn,vn .

Each ker γn,vn = H1
(
Gn,vn , A

(
Hn,vn

)
[p∞]

)
whereGn,vn is the decomposition group ofGn := Gal(Hn/Fn).

By de�nition of p-Hilbert S-class �eld, Gn,vn = 1. So, ker γn = coker γn = 0.

By a standard in�ation-restriction argument, ker(fn) = H1(Gn, A(Hn)[p∞]). By a diagram chase

one obtains

ker(fn) ↪→ R(A/Fn).

Therefore we obtain the following inequality

rp

(
H1
(
Gn, A (Hn) [p∞]

))
≤ rp

(
R
(
A/Fn

))
.
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Combining this with Lemma 3.1.6 gives

h1(Gn)rp
(
A(Fn)[p∞]

)
− 2d ≤ rp

(
R(A/Fn)

)
. (5.4)

By de�nition of S-class group, Gal(Hn/Fn) = ClS(Fn). So

h1(Gn) = h1

(
Gal(Hn/Fn)

)
= rp

(
ClS(Fn)/p

)
= rp

(
ClS(Fn)

)
where the last equality follows from the �niteness of the S-class group. Also,

rp
(
A(Fn)[p∞]

)
≥ rp

(
A(F )[p∞]

)
= rp

(
A(F )[p]

)
.

From Inequality 5.4 and the above discussion it follows,

rp
(
A(F )[p]

)
rp
(
ClS(Fn)

)
≤ rp

(
R(A/Fn)

)
+O(1). (5.5)

This proves the lemma as the hypothesis forces rp
(
A(F )[p]

)
6= 0. K

We now provide a proof of Theorem 5.2.12.

Proof. By Proposition 5.2.4, Conjecture A holds for Y(E/Fcyc) if and only if rp
(
R(E/Fn)

)
= O(1). In

other words, Conjecture A holds if and only if the p-rank remains bounded in the cyclotomic tower.

We have assumed Conjecture A holds for Y(E/Fcyc), thus rp
(
R(E/Fn)

)
= O(1). By hypothesis,

E(F )[p] 6= 0. Inequality 5.5 implies rp
(
ClS(Fn)

)
is bounded independent of n. In the cyclotomic tower

the primes in S are �nitely decomposed, so Equation 3.12 holds; i.e.∣∣∣rp (Cl(Fn)
)
− rp

(
ClS(Fn)

)∣∣∣ = O(1).

Thus, rp
(
Cl(Fn)

)
is bounded independent of n. It follows from Proposition 5.2.3 that the Classical

µ = 0 Conjecture holds. K

Brief Remarks

Proving Conjecture A independent of the Classical µ = 0 Conjecture appears to be a di�cult task. By

a result of Merel, given a number �eld F our theorem can at best prove the Classical Iwasawa µ = 0

conjecture for �nitely many primes. However, it improves upon a result of �esnavi£ius [11].

Theorem 5.2.14. For a prime p and a number �eld F , to prove the classical Iwasawa µ = 0 conjecture,

it su�ces to �nd an Abelian F -variety, A such that

(i) A has good ordinary reduction at all places above p,

(ii) A has Z/pZ as an F -subgroup,

(iii) X(A/Fcyc) is Λ(Γ)-torsion and has µ-invariant 0.
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Our theorem is an improvement over previous results because

(i) there is no condition on the reduction type at primes above p, unlike when one is working with the

Selmer group. This is because the dual Selmer group is expected to be Λ(Γ)-torsion only at primes

of good ordinary reduction.

(ii) there are no known examples where µ(Y(E/Fcyc)) > 0 but there are several examples where

µ(X(E/Fcyc)) > 0 even when the base �eld is Q and p is a prime of good ordinary reduction.

(iii) in our theorem, we do not need the requirement that F (E[p])/F be a p-extension as in [60]. This

appears to be a relatively strict condition to impose when giving concrete examples.

5.2.3 The Classical µ = 0 Conjecture Implies Conjecture A

We now prove the converse of Theorem 5.2.12. It generalizes the following result of Coates and Sujatha.

Theorem 5.2.15. [22, Corollary 3.6] Assume F is an Abelian extension of Q, p is an odd prime, and

E(F )[p] 6= 0. Then Conjecture A holds for Y(E/Fcyc).

We will prove the following theorem.

Theorem 5.2.16. Let F be a number �eld and suppose the Classical µ = 0 Conjecture holds for Fcyc.

Let E be an elliptic curve over F with E(F )[p] 6= 0, then Conjecture A holds for Y(E/Fcyc).

Proof. We break the proof into two parts.

Case (i) Suppose F ⊃ µp.
Since E(F )[p] 6= 0, it follows from the Weil pairing that F (E[p])/F is either trivial or cyclic of order p.

This is precisely the situation of Theorem 2.3.1. There is nothing left to prove.

Case (ii) Suppose F 6⊃ µp.
First, note that it su�ces to prove the following inequality where k2 is a positive constant,

rp
(
R(E/Fn)

)
≤ k2rp

(
Cl(Fn)

)
+O(1). (5.6)

By Proposition 5.2.3, the Classical µ = 0 Conjecture is equivalent to rp
(
Cl(Fn)

)
being bounded inde-

pendent of n. If the Classical µ = 0 Conjecture holds, it follows from Equation 5.6 that for an elliptic

curve E, rp
(
R(E/Fn)

)
is bounded independent of n. Therefore Conjecture A holds by Proposition 5.2.4.

In the cyclotomic tower, the primes are �nitely decomposed. Thus the following estimates hold.∣∣∣rp (Cl(Fn)
)
− rp

(
ClS(Fn)

)∣∣∣ = O(1)∣∣∣rp (R(E/Fn)
)
− rp

(
Rp(E/Fn)

)∣∣∣ = O(1).

It follows that to prove the theorem, it is enough to show the following variant of Inequality 5.6,

rp
(
Rp(E/Fn)

)
≤ k2rp

(
ClS(Fn)

)
+O(1). (5.7)

De�ne RS(E(Fn)[p]/Fn) by replacing E[p] with E(Fn)[p] in Exact Sequence 2.5. The Galois action

of GS(Fn) on E(Fn)[p] is trivial; it is possible to relate RS
(
E (Fn) [p]/Fn

)
with ClS(Fn) and similarly
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their p-ranks. Since the Galois action is trivial,

H1
(
GS (Fn) , E (Fn) [p]

)
= Hom

(
GS (Fn) , E (Fn) [p]

)
and there are similar identi�cations for the local cohomology groups. It follows

RS
(
E (Fn) [p]/Fn

)
= Hom

(
ClS (Fn) , E (Fn) [p]

)
' ClS(Fn)[p]rp(E(Fn)[p])

where the isomorphism is as Abelian groups. This gives the following inequality of p-ranks

rp

(
RS
(
E (Fn) [p]/Fn

))
= rp

(
E(Fn)[p]

)
· rp
(
ClS(Fn)

)
≤ 2rp

(
ClS(Fn)

)
.

Now Inequality 5.7 follows from the above inequality if we can show that p-ranks of Rp(E/Fn) and

RS(E(Fn)[p]/Fn) have the same order of growth in the cyclotomic tower. This is the content of the next

lemma. With this, the proof of the theorem is complete. K

Lemma 5.2.17. Let F be a number �eld and E/F be an elliptic curve with E(F )[p] 6= 0. Let Fcyc/F

be the cyclotomic Zp-extension and suppose the Classical µ = 0 Conjecture holds for Fcyc. Let S be as

de�ned before. Then ∣∣∣rp (RS(E(Fn)[p]/Fn)
)
− rp

(
Rp(E/Fn)

)∣∣∣ = O(1). (5.8)

Proof. If E(F )[p] = E[p], then the Lemma is trivial. We focus on the case E(F )[p] 6= 0, E[p].

Set Bn = E(Fn)[p]. Consider the commutative diagram

0 → RS(Bn/Fn) → H1(GS(Fn), Bn) →
⊕

vn
H1(Fn,vn , Bn)ysn yfn ygn

0 → Rp(E/Fn) → H1(GS(Fn), E[p]) →
⊕

vn
H1(Fn,vn , E[p])

where vn runs over all the primes in the �nite set S(Fn).

By hypothesis, E has an Fn-rational p-torsion point. This gives the short exact sequence

0→ Bn → E[p]→ µp → 0. (5.9)

This is because, if E has an Fn-rational p-torsion point, this point gives an injection Z/pZ ↪→ E[p].

Therefore,

0→ Z/pZ→ E[p]→M → 0.

By Cartier duality and the Weil pairing, the above short exact sequence turns into

0→M∨ → E[p]→ µp → 0,

where µp is viewed as a quotient of E[p]. Since the Weil pairing is alternating, the orthogonal complement

of Z/pZ is Z/pZ, thus M∨ = Z/pZ as a subgroup of E[p].

Taking the GS(Fn)-cohomology of Exact Sequence 5.9, ker(fn) ⊆ H0(GS(Fn), µp). Since µp is

�nite, therefore rp
(
ker(fn)

)
= O(1) and hence rp

(
ker(sn)

)
= O(1). A similar argument for the local

cohomology gives rp
(
ker(gn)

)
= O(1).



Chapter 5. Conjecture A and its Relation with the Classical Conjecture 66

By Lemma 3.1.5 applied to the map sn,∣∣∣rp (RS(Bn/Fn)
)
− rp

(
Rp(E/Fn)

)∣∣∣ ≤ 2rp
(
ker(sn)

)
+ rp

(
coker(sn)

)
= rp(coker(sn)) +O(1).

If rp
(
coker(sn)

)
= O(1), the proof is complete.

Observe, coker(fn) ⊆ H1
(
GS (Fn) , µp

)
and coker(gn) ⊆

⊕
vn
H1(Fn,vn , µp). Further, note that

rp

ker

H1
(
GS (Fn) , µp

)
→
⊕
vn

H1
(
Fn,vn , µp

)
 = O(1)⇒ rp

(
coker(sn)

)
= O(1).

For ease of notation, refer to the kernel as a �ne Selmer group, RS(µp/Fn).

By hypothesis, the Classical µ = 0 Conjecture holds for Fcyc/F . By Proposition 5.2.2, it is equivalent

to H2
(
GS
(
Fcyc

)
, µp

)
= 0. This latter statement is often referred to as Conjecture A for µp. Using

equivalent reformulations recorded in Theorem 5.2.6,

H2
(
GS
(
Fcyc

)
, µp

)
= 0⇔ lim←−

n

(
H2
(
GS (Fn) , µp

))
is �nite

⇔ RS
(
µp/Fcyc

)
is �nite

⇔ lim−→
n

RS
(
µp/Fn

)
is �nite

⇔ RS
(
µp/Fn

)
is �nite and bounded.

This implies rp
(
coker(sn)

)
= O(1) and the proof is now complete. K

5.2.4 Isogeny Invariance

In [22], the authors claimed that Conjecture A should be invariant under isogeny. However, proving this

isogeny invariance appears to be just as hard. Theorems 5.2.12 and 5.2.16 prove isogeny invariance of

Conjecture A in some previously unknown cases (see [100]).

Corollary 5.2.18. Let F be a number �eld and E, E′ be isogenous elliptic curves such that both have

non-trivial p-torsion points over F . Then, Conjecture A holds for Y(E/Fcyc) if and only if Conjecture

A holds for Y(E′/Fcyc).

Proof. Let E be an elliptic curve isogenous to E′ over F with the additional property that both

E(F )[p], E′(F )[p] are non-trivial. WLOG if Conjecture A holds for Y(E/Fcyc), then by Theorem 5.2.12

the Classical µ = 0 Conjecture holds for Fcyc/F . Now, by Theorem 5.2.16 Conjecture A holds for

Y(E′/Fcyc). This proves the corollary. K

Remark 5.2.19. All statements made in this section hold for Abelian varieties of dimension d, with the

only caveat that the factor 2 gets replaced by 2d in some of the statements. Further, the only property

of the cyclotomic Zp-extension we require in all our proofs is that primes in a certain (�nite) set are

�nitely decomposed. The theorems are stated for elliptic curves over the cyclotomic Zp-extension as the

original Conjecture A was made in this setting.
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5.3 p-Rational Fields

The notion of p-rational number �elds was introduced by Movaheddi and Nguyen Quang Do [29].

De�nition 5.3.1. Let F be a number �eld, p be an odd prime, and Sp be the set of primes above p.

The maximal p-rami�ed extension of F is denoted FSp ; set FSp(p) to be its maximal pro-p quotient. Let

GSp(F ) denote the Galois group Gal(FSp(p)/F ).

F is called a p-rational number �eld if and only if GSp(F ) is pro-p-free.

Here are some examples of p-rational �elds [29, Page 163],

(i) the �eld of rational numbers, Q.

(ii) an imaginary quadratic �eld K, such that p does not divide its class number.

(iii) the Abelian �eld Q(µpn), where p is a regular prime and n ≥ 1.

More recently, p-rational number �elds have been studied by Greenberg [37], wherein he explains

heuristic reasons to believe that given a number �eld F , it should be p-rational for all primes outside a

set of density 0. In [3], Barbulescu and Ray provide examples of non-Abelian p-rational number �elds.

5.3.1 The Classical µ = 0 Conjecture for p-Rational Fields

In this section, we show that the Classical µ = 0 Conjecture holds for p-rational number �elds. The

results in this section might be known to experts but as per the knowledge of the author they have not

been written down in the literature.

Let F be a number �eld. Let S be a �nite set of primes of F containing the primes above p and the

Archimedean primes. The weak Leopoldt conjecture in the classical setting is the assertion

H2
(

Gal
(
FS/Fcyc

)
, Qp/Zp

)
= 0. (5.10)

It holds for the cyclotomic extension of a number �eld [76, Theorem 10.3.25]. If Equation 5.10 holds

for a �nite set S as mentioned above, it also holds for the set S = Σ = Sp ∪ S∞ [76, Theorem 11.3.2].

Therefore, the weak Leopoldt Conjecture is independent of the choice of S. From here on, �x S = Σ.

The following theorem is well-known.

Theorem 5.3.2. [76, Theorem 11.3.7] The Classical µ = 0 Conjecture holds for Fcyc if and only if

GΣ(Fcyc) = Gal(FΣ(p)/Fcyc) is a free pro-p group.

Proposition 5.3.3. [94, Page 23] A pro-p group G is free if and only if its p-cohomological dimension

cdp(G) ≤ 1.

By a standard fact in Galois cohomology of pro-p groups [94, Chapter I, Section 4, Proposition 21],

an equivalent formulation of Theorem 5.3.2 is the following: the Classical µ = 0 Conjecture holds for

Fcyc if and only if

H2(GΣ(Fcyc), Z/pZ) = 0. (5.11)

Corollary 5.3.4. Let F be a p-rational number �eld. The Classical µ = 0 Conjecture holds for Fcyc.
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Proof. Note p 6= 2, we can replace Sp by Σ in the de�nition of p-rational �elds. By de�nition, for

p-rational number �elds, GΣ(F ) = Gal(FΣ(p)/F ) has p-cohomological dimension at most 1, i.e.

H2(GΣ(F ), Z/pZ) = 0.

Since GΣ(Fcyc) = Gal(FΣ(p)/Fcyc) is a closed normal subgroup of GΣ(F ), we know by Proposition A.3.4,

cdp
(
GΣ(Fcyc)

)
≤ cdp

(
GΣ(F )

)
≤ 1.

Thus,

H2(GΣ(Fcyc), Z/pZ) = 0.

By Equation 5.11, the result follows. K

This allows us to provide new evidence for Conjecture A.

Corollary 5.3.5. Let F be a p-rational number �eld and E/F be an elliptic curve with E(F )[p] 6= 0.

Then Conjecture A holds for Y(E/Fcyc).

Proof. This follows from Theorem 5.2.16 and Corollary 5.3.4. K

In some cases, Conjecture A can be shown to hold independent of the Classical µ = 0 Conjecture.

Proposition 5.3.6. Let F be a p-rational �eld and E be an elliptic curve with good reduction everywhere

over F (or bad reduction at primes above p) such that E[p] ⊂ E(F ). Then Conjecture A holds for

Y(E/Fcyc).

Proof. By hypothesis, we may choose S = Σ = Sp ∪ S∞. By p-rationality of F and the isomorphism of

the in�ation map [76, Corollary 10.4.8], it follows

H2
(
GΣ (F ) , E[p]

)
= H2

(
GΣ (F ) , E[p]

)
= 0. (5.12)

By Hochschild-Serre spectral sequence, we have the following exact sequence [76, Page 119]

H2
(
GΣ (F ) , E[p]

)
→ H0

(
Γ, H2

(
GΣ

(
Fcyc

)
, E[p]

))
→ 0,

where Γ = Gal(Fcyc/F ). The �rst term is 0, thus H0

(
Γ, H2

(
GΣ

(
Fcyc

)
, E[p]

))
is trivial. Further-

more, H2
(
GΣ

(
Fcyc

)
, E[p]

)
is a discrete module, so it must be 0. Once again by the isomorphism of

the in�ation map,

0 = H2
(
GΣ

(
Fcyc

)
, E[p]

)
= H2

(
GΣ

(
Fcyc

)
, E[p]

)
.

By Proposition 5.2.5, Conjecture A holds for Y(E/Fcyc). K

Remark 5.3.7. We seem to crucially need that E[p] ⊂ E(F ), so as to ensure E[p] is a GΣ(Fcyc)-module.



Chapter 6

Conjecture B and its Relation

with Greenberg's Conjecture on

Pseudo-nullity

Recently, there has been a renewed interest in studying pseudo-null modules over Iwasawa algebras [5].

It is natural to investigate Conjecture B, whose validity has been established by few concrete examples.

We remind the reader of both the pseudo-nullity conjectures. In the classical setting we have the

conjecture of Greenberg over a Zdp-extension.

Generalized Greenberg's Conjecture. Let F be a number �eld. Let F̃ be the compositum of all Zp-
extensions of F with Gal

(
F̃ /F

)
' Zdp and let L̃ denote its pro-p Hilbert class �eld. Then Xd = Gal(L̃/F̃ )

is a pseudo-null Λ(Γd)-module.

For elliptic curves, we have the conjecture of Coates and Sujatha over admissible p-adic Lie extensions.

Conjecture B. Let E be an elliptic curve de�ned over a number �eld F , such that Conjecture A holds

for Y(E/Fcyc). Let L/F be an admissible p-adic Lie extension, and GL = Gal(L/F ) be a pro-p p-adic

Lie group of dimension strictly greater than 1. Then Y(E/L) is a pseudo-null Λ(GL)-module.

We prove that Conjecture B holds for special classes of admissible p-adic Lie extensions whenever the

dual �ne Selmer group over the cyclotomic extension is �nite for a CM elliptic curve. For elliptic curves

over Q and a regular prime p, we show that Conjecture B holds over the pro-p trivializing extension

Q(Ep∞)/Q(µp). This is also proven for a large class of imaginary Galois extensions.

Concrete examples for the validity of Conjecture B have been rather sparse. Our result settles the

case of some numerical examples that were considered in [22, Examples 4.7 and 4.8] but were not fully

settled there. Example 4.8 was shown to satisfy Conjecture B provided the elliptic curve had no point of

in�nite order over the trivialising extension associated to the corresponding Galois representation. This

latter condition could not be veri�ed despite advances in computational methods.

Conjecture B is in the spirit of generalising Greenberg's pseudo-nullity conjecture to elliptic curves

[35]. We clarify this relationship by proving that for CM elliptic curves over an imaginary quadratic

�eld K, the Generalized Greenberg's Conjecture (GGC) is equivalent to Conjecture B for certain pro-p

p-adic Lie extensions. Furthermore, Conjecture B over a trivializing extension of K implies GGC for K.

69
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6.1 Powerful Diagram

We begin this chapter by recalling the Powerful Diagram [77, Section 4]. The proof of our main results

will depend heavily on analysing this diagram.

Fox-Lyndon Resolution

Let G be a �nitely generated pro-p group of p-cohomological dimension ≤ 2. Suppose the set of generators

of G has d elements, then it has a free representation,

0→ N → F(d)
s−→ G → 0

where F(d) a free pro-p group of rank d andN is the kernel of the surjective map s. To this representation

one can associate the Fox-Lyndon resolution,

0→ N ab(p)→ Λ(G)d → Λ(G)→ Zp → 0.

Since cdp(G) ≤ 2, the Λ(G)-module N ab(p) is projective. It is called the p-relation module of G.

Twists

Let A be a �xed p-divisible, p-primary Abelian group of �nite Zp co-rank r, with a continuous G-action.
For a �nitely generated Λ(G)-module M , de�ne the twist,

M# := HomZp,cont (M, A)
∨

= M ⊗Zp A
∨.

Note that G acts diagonally on the tensor product.

The Diagram

In [77], Ochi and Venjakob developed a general theory. However, we will restrict ourselves to the following

speci�c case: let p be a �xed odd prime, E be an elliptic curve de�ned over a number �eld F such that

F∞/F is a pro-p extension, and S ⊇ Sp ∪ Sbad ∪ S∞. The p-divisible, p-primary module A is Ep∞ . Fix

the following Galois groups

G = maximal pro− p part of Gal(FS/F )

H = maximal pro− p part of Gal(FS/F∞)

G = Gal(F∞/F ) (this is a pro− p group by assumption)

There is a composition of maps, F(d)→ G → G. Set R to be the kernel of this composition.

De�ne the augmentation ideal I(G) as ker
(
Λ (G)→ Zp

)
. It is a free Λ(G)-module of rank d.

Consider the following short exact sequence

0→ I(G)# → Λ(G)# → A∨ → 0,
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where it is known that Λ(G)# is a projective Λ(G)-module. Taking the H-homology yields

0→ H1(H, A∨)→
(
I(G)#

)
H
→
(

Λ(G)#
)
H
→ (A∨)H → 0.

For ease, we introduce the following notation

YA,F∞ = (I(G)#)H

JA,F∞ = ker

((
Λ(G)#)

)
H
→ (A∨)H

)
.

The following commutative diagram is a generalization of the work of Jannsen. It is referred to as

the Powerful Diagram [77, Lemma 4.5].

0 0

JA,F∞ JA,F∞

0 H2
(
GS (F∞) , A

)∨ (
N ab (p)

#
)
H

Λ(G)2d YA, F∞ 0

0 H2
(
GS (F∞) , A

)∨ (
H1
(
N ab (p) , A

)H)∨
H1 (R, A) H1

(
GS (F∞) , A

)∨
0

0 0

'

Figure 6.1: Powerful Diagram

(
N ab(p)#

)
H is a projective module. It is known that if H2(GS(F∞), A) = 0, YA,F∞ has projective

dimension ≤ 1. Further, JA,F∞ has no non-zero torsion submodules. If H-action on A is trivial,

(
N ab(p)#

)
H
'
(
N ab(p)H

)#

.

6.2 pseudo-nullity Conjecture for Elliptic Curves

In this section, the goal is to provide new evidence for Conjecture B when L = F∞, i.e. when it is the

trivializing extension as de�ned in Equation 2.4. We study it in two separate cases. First, for CM elliptic

curves we prove that Conjecture B holds provided the �ne Selmer group is �nite over the cyclotomic

extension. Second, we prove Conjecture B over a large class of imaginary Galois extensions for regular

primes. This proof works for all elliptic curves.

6.2.1 Finite Fine Selmer Group at the Cyclotomic Level

Recall the set up introduced in Section 2.2.3. Let K be an imaginary quadratic number �eld and E be

a CM elliptic curve de�ned over a a �nite extension F/K. Let p 6= 2, 3 be an unrami�ed prime in F

at which E has good ordinary reduction. In this case, Gal(F∞/F ) contains an open subgroup which is

Abelian and isomorphic to Zp × Zp. Assume G = Gal(F∞/F ) is pro-p, and set H = Gal(F∞/Fcyc).

Let G be any p-adic Lie group. Recall that for a �nitely generated Λ(G)-moduleM , the co-invariance

MG := H0(G,M) = M
/
IM is a �nitely generated Λ(G)-module.



Chapter 6. Conjecture B and its Relation with Greenberg's Conjecture on Pseudo-nullity72

Lemma 6.2.1. With the setting as above, the following natural map is a pseudo-isomorphism, i.e. it

has a �nite kernel and cokernel,

Y(E/F∞)H → Y(E/Fcyc).

Proof. Consider the following diagram

0 R(E/Fcyc) Sel(E/Fcyc) C(Fcyc)(p) 0

0 R(E/F∞)H Sel(E/F∞)H C(F∞)(p)H

α β γ

By a result of Perrin-Riou, β is an isomorphism [79, Lemma 1.1(i) and Lemma 1.3]. Therefore,

ker(β) = coker(β) = 0; hence ker(α) = 0. Also, ker(γ) =
⊕

v|pH
1(Hv, E(F∞,v)[p

∞]) is �nite [23]. Now,

by an application of the snake lemma, coker(α) must be �nite. K

Note that E is an elliptic curve with CM, therefore Λ(H) ' Zp[[T ]].

Lemma 6.2.2. Let M be a �nitely generated Λ(H)-module. If MH is a �nite module, then M is a

pseudo-null Λ(G)-module.

Proof. If MH is �nite, the higher homology groups Hi(H,M) are trivial for all i > 0 [93, Chapter IV,

Appendix II]. Since Λ(H) is a regular local ring, we know from Equation 2.7 that the rank of a module

is equal to its homological rank. By hypothesis, Λ(H)-rank of M is 0, equivalently M is Λ(H)-torsion.

The lemma follows from the equivalent de�nition of pseudo-nullity for p-adic Lie extensions �arising from

geometry� (see Section 2.4.2). K

Theorem 6.2.3. With the set up as above, if Y(E/Fcyc) is �nite, Y(E/F∞) is a pseudo-null Λ(G)-

module, i.e. Conjecture B holds for Y(E/F∞).

Proof. By Lemma 6.2.1, it follows that Y(E/F∞)H is �nite when Y(E/Fcyc) is �nite. By Lemma 6.2.2,

�niteness of Y(E/F∞)H implies that Y(E/F∞) is pseudo-null. K

Note this proof can not be extended to the non-CM case. The primary reason for that is β is no

longer an isomorphism. In fact, by the work of Coates and Howson, it is known that ker(β) and coker(β)

are �nitely generated as Zp-modules with Zp-rank equal to the number of primes at which E has split

multiplicative reduction over Fcyc [18]. Also, in the non-commutative setting an analogue of Lemma 6.2.2

is not well understood.

6.2.2 Conjecture B for Regular Primes

In this section we prove Conjecture B over the trivializing extension when p does not divide the class

number of the base �eld. The main theorem is the following statement.

Theorem 6.2.4. Consider a Galois extension F/Q containing µp such that p - |Cl(F )| and p is totally
rami�ed in F . Suppose F∞/F is a pro-p extension. For E an elliptic curve de�ned over F , Conjecture

B holds for Y(E/F∞).

Lemma 6.2.5. Let L be an S-admissible p-adic Lie extension of F with Gal(L/F ) = G. Suppose GS(L)

acts trivially on E[p∞]. Then H2
(
GS (L) , E[p∞]

)
= 0 and Z2

(
E/L

)
is a Λ(G)-torsion module.
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Proof. As a GS(L)-module, E[p∞] is isomorphic to (Qp/Zp)2 and the Galois action is trivial. In [50],

Iwasawa proved that for the cyclotomic Zp-extension Lcyc/L,

H2
(
GS(Lcyc), Qp/Zp

)
= 0

for every �nite extension L/F . Taking the inductive limit one obtains

H2
(
GS(L), Qp/Zp

)
= 0.

The last assertion follows from Lemma 2.5.1. K

Proposition 6.2.6. With the setting as in the statement of Theorem 6.2.4,

E1
(
Z2
(
E/F∞

))
:= Ext1

Λ(G)

(
Z2
(
E/F∞

)
, Λ(G)

)
= 0.

Proof. The rightmost column of the Powerful Diagram is the short exact sequence

0→ H1
(
GS (F∞) , Ep∞

)∨ → Y∞ → J∞ → 0. (6.1)

The following isomorphism is known by a result of Ochi and Venjakob [78, Proposition 3.5]

E1
(
Z2
(
E/F∞

))
' H1

(
GS (F∞) , Ep∞

)∨
tors

. (6.2)

To prove the proposition it is enough to show H1(GS(F∞), Ep∞)∨tors = 0. Since J∞ has no non-zero

torsion submodules, the proposition follows if Y∞ has no Λ-torsion submodules. This is done by a

thorough analysis of the Powerful Diagram.

Since F∞ is the trivializing extension, the top row of the Powerful Diagram is the following short

exact sequence,

0→
(
N ab(p)⊗Zp E

∨
p∞

)
H
→ Λ(G)2d → Y∞ → 0 (6.3)

where d := dimFp H
1(G, Fp). We now analyse the �rst term of the exact sequence. It is known [78,

Proof of Theorem 3.2] (
N ab(p)⊗Zp E

∨
p∞

)
H

= Λ(G)2s

where s = d− r2 − 1 when p 6= 2. Therefore Exact Sequences 6.3 becomes

0→ Λ(G)2s → Λ(G)2d → Y∞ → 0. (6.4)

By [76, Lemma 10.7.3] we know

d = 1 +
∑
p∈S

δp − δ + dimFp(ClS(F )/p). (6.5)

where δp (resp. δ) is 1 if µp ⊆ Fp (resp. µp ⊆ F ) and 0 otherwise. By hypothesis, F contains µp,

so δ = 1. Also by hypothesis, p - |Cl(F )|. Since the class group of a number �eld is always �nite

and the S-class group is a subgroup of the class group, it follows that dimFp(ClS(F )/p) = 0. Choose

S = Sp ∪Sbad ∪S∞. Since p rami�es totally in F , |Sp| = 1. Further, since F is a totally imaginary �eld,
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|S∞| = r2. Thus,

|S| = |Sp|+ |S∞|+ |Sbad|

= 1 + r2 + |Sbad|

Under our hypothesis, the contribution of δq = 0 for q ∈ S \ Sp. Therefore from Equation 6.5

d = r2 + 1.

⇒ s = d− r2 − 1 = 0.

Since s = 0, from Exact Sequence 6.4 it follows Y∞ ' Λ(G)2d and hence it is torsion free. K

We restate the main theorem of this section for convenience.

Theorem. Consider a Galois extension F/Q containing µp such that p - |Cl(F )| and p is totally rami�ed
in F . Suppose F∞/F is a pro-p extension. For E/F an elliptic curve, Conjecture B holds for Y(E/F∞).

Proof. By de�nition of pseudo-nullity (see (2.8)), to prove the theorem, we need to prove

Ei
(
Y
(
E/F∞

))
= 0 for i = 0, 1. (6.6)

By Poitou-Tate duality introduced in Exact Sequence 2.9,

Y
(
E/F∞

)
↪→ Z2

(
E/F∞

)
.

Therefore Y
(
E/F∞

)
is a pseudo-null Λ(G)-module if Z2(E/F∞) is pseudo-null, i.e.

Ei
(
Z2
(
E/F∞

))
= 0 for i = 0, 1.

Since F∞ is the trivializing extension, by Lemma 6.2.5 H2
(
GS(F∞), Ep∞

)
= 0 and Z2(E/F∞) is a

torsion Λ(G)-module. Thus, E0
(
Z2
(
E/F∞

))
= 0. By Proposition 6.2.6, E1

(
Z2
(
E/F∞

))
= 0. With

this the proof is complete. K

6.2.3 Trivial Fine Selmer Groups over the Trivializing Extension

Under some restrictive conditions, it will be possible to show that the �ne Selmer group is in fact trivial

over the trivializing extension. This will be proved as a corollary of the following result of Iwasawa.

Theorem 6.2.7. [46, Theorem II] Let F be a number �eld and F ′ be a cyclic extension of p-power

degree. Suppose p is the unique prime above p in F , it remains totally rami�ed in F ′, and there are no

rami�ed primes other that p in F ′. Then

p - Cl(F )⇒ p - Cl(F ′).

An iterative application of the above theorem yields the following corollary.

Corollary 6.2.8. Let p be a �xed odd prime. Let F be a number �eld such that p - Cl(F ) and p is the

unique prime above p in F . Let E/F be an elliptic curve such that it has good reduction everywhere over
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F or has bad reduction at primes above p. Suppose the trivializing extension F∞/F is a pro-p extension,

then Y(E/F∞) = 0.

Proof. Set the notation M(F∞)/F∞ to denote the maximal unrami�ed Abelian p-extension in which

every prime above p splits completely. It is well known [22, Lemma 3.8]

R
(
E/F∞

)
= Hom

(
Gal

(
M (F∞) /F∞

)
, Ep∞

)
.

Since p - Cl(F ), iterative application of Theorem 6.2.7 yields that the p-part of the Iwasawa algebra over

the trivializing extension is trivial. Since Gal
(
M (F∞) /F∞

)
is a quotient of the p-part of the Iwasawa

algebra, it follows that the �ne Selmer group is trivial. K

6.3 Numerical Examples for Conjecture B

In [22], the authors mentioned two possible examples of elliptic curves where Conjecture B could hold.

For the �rst, they could show that the Λ(H)-rank of Y(E/F∞) is even but could not rule out the

possibility of the rank being 2; for the other it could not be shown that there is no point of in�nite order

over F∞. A special case of Theorem 6.2.4 resolves Conjecture B for both these examples.

Theorem 6.3.1 (Special Case of Theorem 6.2.4). Let E be an elliptic curve de�ned over Q. Set

F = Q(µp) such that p is a regular prime. Then Conjecture B is true for Y
(
E/Q

(
Ep∞

))
.

Proof. Recall, an odd rational prime p, is called regular if it does not divide the class number of Q(µp).

It follows that this is a particular case of Theorem 6.2.4. K

For historical reasons, elliptic curves of conductor 11 are very special in Iwasawa theory. It is known

that there are three elliptic curves up to isomorphism of conductor 11; all three of them are isogenous

over Q. Conjecture A is known to be true for all three of these elliptic curves [106].

We note that Conjecture B is isogeny invariant [22, Page 827]. Indeed, if E
ϕ−→ E′ is an isogeny, the

dual isogeny ϕ∨ induces Λ(G)-homomorphisms in both directions between the dual �ne Selmer groups

Y(E/F∞) and Y(E′/F∞). The kernels and the cokernels are annihilated by the degree of the isogeny.

This proves Y(E/F∞) is Λ(H)-torsion if and only if Y(E′/F∞) is Λ(H)-torsion.

Example 6.3.2. [20, Chapter 5] Consider the elliptic curve E/Q de�ned by

E : y2 + y = x3 − x2.

This is an elliptic curve of conductor 11 without CM. When F = Q(µ5) and p = 5, Sel(E/Fcyc)p = 0

[20, Theorem 5.4]. Theorem 6.3.1 shows that Conjecture B holds for Y(E/F∞) where F∞ = Q(E5∞).

By the above discussion, Conjecture B holds at the prime p = 5 for all three elliptic curves (up to

isomorphism) of conductor 11.

6.3.1 Example 1: Curve of Conductor 294

We need the following theorem for the discussion.

Theorem 6.3.3. [22, Theorem 4.5] Let p ≥ 5. Assume F∞/F is the trivializing extension such that

G = Gal(F∞/F ) is pro-p and X(E/Fcyc) has µ-invariant 0. Set H = Gal(F∞/Fcyc).
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(i) If rankΛ(H)(X(E/F∞)) is odd,

rankΛ(H)

(
Y
(
E/F∞

))
≤ rankΛ(H)

(
X
(
E/F∞

))
− 1.

(ii) If rankΛ(H)

(
X
(
E/F∞

))
is even and E(F∞) has a point of in�nite order,

rankΛ(H)

(
Y
(
E/F∞

))
≤ rankΛ(H)

(
X
(
E/F∞

))
− 2.

Example. [22, Example 4.7] Consider the following elliptic curve E/Q,

E : y2 + xy = x3 − x− 1.

This is a non-CM elliptic curve of conductor 294. Take p = 7. Here, F∞ = Q(E7∞) is a pro-7 extension of

F = Q(µ7). E has good ordinary reduction at the unique prime above 7, split multiplicative reduction at

the primes above 2, and the unique prime above 3. For this elliptic curve, Sel(E/Fcyc) = 0 [20, Theorem

5.32]. Then

rankΛ(H)

(
X
(
E/F∞

))
= rankZp

(
X
(
E/Fcyc

))
+ r

where r is the number of primes of Fcyc at which E has split multiplicative reduction [44, Theorem 2.8].

There are three primes of Fcyc where E has split multiplicative reduction, so rankΛ(H)

(
X
(
E/F∞

))
= 3.

By Theorem 6.3.3(i),

rankΛ(H)

(
Y
(
E/F∞

))
≤ rankΛ(H)

(
X
(
E/F∞

))
− 1.

Since Y(E/F∞) must always have even Λ(H)-rank, rankΛ(H)(Y(E/F∞)) = 0 or 2. It had not been

possible to rule out the latter possibility. The conditions of Theorem 6.3.1 are satis�ed, so Conjecture

B holds for Y
(
E/Q (E7∞)

)
.

6.3.2 Example 2: Curve of Conductor 150

Corollary 6.3.4 (Corollary to Theorem 6.3.3). Let p ≥ 5. Assume F∞/F is the trivializing extension

such that G = Gal(F∞/F ) is pro-p and X(E/Fcyc) has µ-invariant 0. If rankΛ(H)

(
X
(
E/F∞

))
= 2,

then either E(F∞) is a torsion Abelian group or Y(E/F∞) is pseudo-null.

Example. [22, Example 4.8] Consider the elliptic curve E/Q de�ned by

E : y2 + xy = x3 − 3x− 3.

This is an elliptic curve of conductor 150 without CM. With p = 5, F∞ = Q(E5∞) is a pro-5 extension

of F = Q(µ5). It is known Sel(E/Fcyc) = 0 [20, section 4.3]. At the unique primes of F above 2 and 3,

E has split multiplicative reduction. Therefore r = 2 and

rankΛ(H)

(
X
(
E/F∞

))
= 2.

By Corollary 6.3.4, either E(F∞) has no point of in�nite order over F∞ or Y(E/F∞) is pseudo-null.

Computationally, it had not been possible to check that there is no point of in�nite order. Our theorem
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settles this theoretically as the hypotheses are satis�ed.

6.3.3 Example 3: Curve of Conductor 256

Consider the elliptic curve E/Q de�ned by

E : y2 + y = x3 + 156.

This is an elliptic curve of conductor 256 with CM by Q(
√
−3). When F = Q(µ3) and p = 3, it is known

[61, Elliptic Curve 225.d2] that E(Q)tors = Z/3Z. Set F∞ = Q(E3∞). It follows from the Weil pairing

that F∞/F is a pro-3 extension. Theorem 6.3.1 shows that Conjecture B holds for Y(E/F∞).

We will see in Remark 6.4.6, that this example allows us to recover GGC for Q(µ3).

6.4 Relating Conjecture B to the Generalized Greenberg's

Conjecture

In this section, we clarify the relationship between the Generalized Greenberg's Conjecture and Conjec-

ture B for CM elliptic curves. We are in the setting of Section 2.2.3.

Let K be an imaginary quadratic �eld and OK be its ring of integers. Let E be an elliptic curve over

K with CM by OK and good reduction at the primes above p. Set

F = K(Ep), F∞ = K(Ep∞), G = GF∞ = Gal(F∞/F ), G∞ = Gal(F∞/K).

By our choice of F , G is a pro-p group. In fact, G ' Z2
p. Set K̃ (resp F̃ ) to be the compositum of all

Zp-extensions of K (resp F ). It is the unique Z2
p Galois extension of K; this is because by the work of Ax

and Brumer, Leopoldt conjecture is known for quadratic number �elds. Whereas, F̃ /F is a Zdp-extension
with r2(F ) + 1 ≤ d ≤ [F : Q]. Throughout this section, we assume the following.

Hypothesis. p ≥ 5 is a prime. p is unrami�ed in K.

Recall that by the theory of CM, G∞ = G×∆ where ∆ ' Gal(F/K) is a �nite Abelian group. Since

p does not ramify in K, p - |∆|.
By the Weil pairing, K(Ep) ⊃ K(µp). Furthermore, if E(K)[p] 6= 0, then K(Ep) is a trivial or a

degree p extension of K(µp). But we know p - |∆|, this forces

F = K(Ep) = K(µp).

The theory of CM tells us that F∞ = FK̃. By the Weil pairing, the trivializing extension contains the

cyclotomic Zp-extension, hence it is an admissible p-adic Lie extension. Furthermore, F∞ ⊆ F̃ .
Denote by L̃ (resp L∞) the pro-p Hilbert class �eld tower of F̃ (resp. F∞). This is the maximal

Abelian unrami�ed pro-p-extension of F̃ (resp. F∞). Denote by T̃ the maximal Abelian extension of F̃

unrami�ed outside S. Set the notation

Xd = X F̃
nr = Gal(L̃/F̃ ), XF∞

nr = Gal(L∞/F∞), X F̃
S = Gal(T̃ /F̃ ).

For convenience, the �eld diagram of the set up is drawn below.

http://www.lmfdb.org/EllipticCurve/Q/225/d/2
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Q

K

K̃

F

Fcyc

F∞

M(F∞)F̃

L∞

L̃

T̃

Z2
p

Zp

Zp

∆

In this section, we often vary the p-adic Lie extension, therefore we want to keep track of it in our

notation. For any p-adic Lie extension L/F , denote its Galois group Gal(L/F ) by GL. Denote by M(L)

the maximal unrami�ed Abelian p-extension of L such that primes above p split completely.

Let E be an elliptic curve over F and L/F be as above. If GS(L) acts trivially on Ep∞ , Conjecture

B for Y(E/L) can be formulated in terms of pseudo-nullity of a Galois extension of L [21].

Conjecture B for CM Elliptic Curves. Let E be an elliptic curve de�ned over F . Let L/F be a

pro-p, p-adic Lie extension such that GS(L) acts trivially on Ep∞ . Set Y(L) = Gal
(
M(L)/L

)
. Then

Y(L) is a pseudo-null Λ(GL)-module.

Sketch of equivalence of the two conjectures. Since we assume that F (E[p∞]) ⊆ L and GL is pro-p, we

know that Conjecture A for Y(E/Fcyc) is equivalent to the Classical µ = 0 Conjecture for Fcyc. We will

assume these equivalent conjectures hold. Further, since the Galois action is trivial

R(E/L) = Hom
(

Gal
(
M (L) /L

)
, E[p∞]

)
.

It follows that

Y(E/L) = Gal
(
M(L)/L

)#
where on the right hand side of the equality the twist is by E[p∞]∨. Set H = Gal(L/Fcyc); by comparing

Λ(H)-ranks, Y(E/L) is a Λ(H)-torsion module if and only if the same is true for Gal
(
M(L)/L

)
. K

The �rst statement we prove in this section says that the Generalized Greenberg's Conjecture and

Conjecture B for CM elliptic curves are equivalent over an extension containing the trivializing extension.

In proving this, we use several results from [103]. Most of the results we use are in a far more general

setting and their proofs are involved; we therefore avoid providing a sketch of these lemmas.

We begin by stating a result from [103]. See also [103, Page 32].
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Lemma 6.4.1. [103, Theorem 4.9] Assume that µp ⊂ F and let L = F∞ or F̃ . XLnr is pseudo-null if

and only if XLS is torsion-free.

Theorem 6.4.2. With notation as above, let L = F∞ or F̃ . Then XLnr is pseudo-null if and only if

Conjecture B holds for Y(E/L). Equivalently, XLnr is pseudo-null if and only if Y(L) is pseudo-null.

Proof. By Lemma 6.4.1, to prove the theorem it is enough to prove

XLS is torsion-free ⇔ Conjecture B holds for Y(E/L). (6.7)

Simplifying the LHS of Equivalence 6.7: In the classical setting [103, Section 4.1.1],

XLS = H1
(
GS (L) ,Qp/Zp

)∨ ' Gal(FS/L)ab(p).

In this setting, the rightmost column of the Powerful Diagram becomes (cf Figure 6.1)

0→ XLS → Y LS → JL → 0.

Since it is well-known that JL has no non-zero torsion submodules, it follows

XLS is torsion-free ⇔ Y LS is torsion-free. (6.8)

Simplifying the RHS of Equivalence 6.7: From the standard Poitou-Tate sequence (see [22, Equation

45]) we know Conjecture B for Y(E/L) is equivalent to the pseudonullity of the Iwasawa cohomology

module Z2(E/L). It is known [103, Propostion 2.12]

Z2(E/L) = Z2
(
Zp (1)

)
⊗ Tp(E/L). (6.9)

This gives

Conjecture B holds for Y(E/L)⇔ Z2(E/L) is pseudo-null

⇔ Z2
(
Zp (1)

)
is pseudonull.

To prove Equivalence 6.7, it su�ces to show Y LS is torsion-free if and only if Z2
(
Zp (1)

)
is pseudonull.

This is precisely [103, Proposition 2.16]. K

Theorem 6.4.3. With the notation above, if there exists one CM elliptic curve E over an imaginary

quadratic �eld K such that Y(E/K(Ep∞)) is pseudo-null, then GGC holds for K, K(µp), and K(Ep).

To prove this theorem, we need to record some lemmas. The following result of Bandini assures

pseudo-nullity over a larger tower, once it holds for a non-trivial quotient.

Lemma 6.4.4 (Pseudo-nullity Lifting Lemma). Let F/Q be a �nite Galois extension that contains µp.

As before, F̃ is the compositum of all Zp-extensions of F . Let Gal(F̃/F) ' Znp and let F ′ ⊂ F̃ such that

Gal(F ′/F) ' Zdp for some 2 ≤ d < n. If XF
′

nr is pseudo-null then GGC holds for F̃/F .

Proof. This lemma is a special case of [2, Theorem 12]. Since it is assumed that F contains µp, the

technical conditions in the mentioned theorem are satis�ed by [57, Theorem 3.2] or [2, Remark 15]. K
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The next result of Kleine studies pseudonullity of Galois modules for base change.

Lemma 6.4.5 (Pseudo-nullity Shifting Down Lemma). Let F be a number �eld and F ′/F be a Zdp-
extension. Let F1/F be a �nite extension such that F = F ′ · F1. If XF

nr is a pseudo-null module, then

XF
′

nr is a pseudo-null module.

Proof. For a proof, see [56, Theorem 3.1(1)]. K

We now provide a proof of the theorem.

Proof of Theorem 6.4.3. Let E/K be a CM elliptic curve such that Conjecture B holds forY
(
E/K

(
Ep∞

))
.

Recall F = K(Ep) ⊃ µp and by hypothesis, E has good reduction everywhere over F [87, Lemma 2].

Since the de�nition of the �ne Selmer group is independent of the choice of the set S, choose it to be

precisely the set of Archimedean primes and primes above p.

(i) We had earlier set the notation F∞ = K(Ep∞). By Theorem 6.4.2, pseudo-nullity of Y(F∞) is

equivalent to the pseudo-nullity of XF∞
nr . Using Lemma 6.4.4 with F = F = K(Ep) and F ′ = F∞,

Conjecture B for Y
(
E/K

(
Ep∞

))
implies GGC holds for K(Ep).

(ii) Since K is an (imaginary) quadratic �eld, the Leopoldt conjecture holds, i.e. Gal(K̃/K) ' Z2
p. K̃

is the unique Z2
p extension of K; it is the compositum of all Zp-extensions of K.

By the theory of CM, F∞ = FK̃. Applying Lemma 6.4.5 with F = F∞ = FK̃, pseudo-nullity

of XF∞
nr can be "shift down" to pseudo-nullity of XK̃

nr. This is precisely GGC for the imaginary

quadratic �eld K.

(iii) Now, K(µp) ⊆ K(Ep). So, there is a Z2
p- extension of K(µp), call it K ′∞, such that

K ′∞ = K(µp)K̃; F∞ = FK ′∞.

Applying Lemma 6.4.5 with F = F∞ = FK ′∞, pseudo-nullity of XF∞
nr can be "shift down" to the

pseudo-nullity of XK′∞
nr . By Lemma 6.4.4, pseudo-nullity over the Z2

p-tower can be lifted to the

compositum, i.e. GGC holds for K(µp).

K

Remark 6.4.6. It is possible to imitate the proof of Theorem 6.4.3 to show that if there exists one CM

elliptic curve E/Q such that Conjecture B holds for Y
(
E/Q

(
Ep∞

))
, then GGC holds for Q(µp). This

recovers a result of McCallum [69].

6.5 Conjecture B and its Relation with the Iwasawa Main

Conjecture

In this section, we study the implications of Conjecture B to the four term exact sequence studied in

proving the Main Conjecture. For simplicity, assume the base �eld is Q.
Let E be an elliptic curve de�ned over Q. Since E is modular, there is an associated weight 2 cusp

form fE with Fourier expansion fE =
∑
n≥1 anq

n. The coe�cients of this Fourier expansion are integral

and the L-series associated to this modular form is L(fE , s) =
∑
n≥1 ann

−s.
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Given a pr-th power root of unity ζ = ζpr , we have a homomorphism,

φζ : Λ(Γ)→ Zp[ζ] ⊂ Qp
γ 7→ ζ

where γ is the topological generator of Γ. Denote by ψζ the Dirichlet character of
(
Z/pr+1Z

)×
such that

the image of γ ∈ Γ ' 1 + pZp is sent to ζ.

Suppose E has good ordinary or multiplicative reduction at p. There exists a p-adic L-function

L(E/Qcyc) such that for any ζ,

φζ

(
L
(
E/Qcyc

))
= ep(ζ)

L
(
fE , ψ

−1
ζ , 1

)
ΩfE

.

Here, L
(
fE , ψ

−1
ζ , 1

)
is the twist of the L-series L(fE , s) by the Dirichlet character ψ−1

ζ , ΩfE is the

canonical period of fE , and

ep(ζ) =


α
−(r+1)
p

pr+1

G(ψ−1
ζ )

ζ 6= 1

α−1
p

(
1− 1

αp

)mp
, ζ = 1.

In the above expression, G(ψ−1
ζ ) denotes the Gauss sum. When p is a prime of good ordinary reduction,

αp is the p-adic unit root of X2 − ap(E)X + p and mp = 1. If E has multiplicative reduction at p, then

αp = ap(E) is either 1 or -1, and mp = 1.

We now state the cyclotomic Main Conjecture for the p-primary Selmer group Sel(E/Qcyc).

Cyclotomic Main Conjecture. Let E be an elliptic curve de�ned over Q with good ordinary

or multiplicative reduction at p. The Pontryagin dual X(E/Qcyc) of the Selmer group is a torsion

Λ(Γ)-module. Furthermore, its characteristic ideal is generated by a p-adic L-function L(E/Qcyc) in

Λ(Γ)⊗Zp Qp. If E[p] is an irreducible Gal(Q/Q)-representation, then L(E/Qcyc) is in Λ(Γ).

As a consequence of global duality, we have the following short exact sequence of torsion Λ(Γ)-modules

0→ Z
1(E/Qcyc)

〈Z〉
→
Z1
p(E/Qcyc,p)

〈Zp〉
→ X(E/Qcyc)→ Y(E/Qcyc)→ 0. (6.10)

Here, Z1(E/Qcyc) is the compact Iwasawa cohomology group and Z1
p(E/Qcyc,p) is the local Iwasawa

cohomology group which can be de�ned analogously. We denote by 〈Z〉 the submodule generated by the

Euler system Z constructed by Kato. It is a free Λ(Γ)-module inside Z1(E/Qcyc). Under the natural

functorial map, the image of 〈Z〉 generates a submodule of the local Iwasawa cohomology group, denoted

by 〈Zp〉.

The Coleman isomorphism interpolates the (dual) Bloch-Kato exponential maps. This isomorphism,

yields the following identi�cation

Col : Z1
p

(
E/Qcyc,p

)
' Λ(Γ).

It was further shown by Kato that the image Col(Zp) is precisely the p-adic L-function that appears in

the statement of the Main Conjecture.

The philosophy in proving the Main Conjecture is to show that the �rst and the last term of the
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Exact Sequence 6.10 have the same characteristic power series. Since the characteristic power series is

multiplicative in exact sequences, this forces the second and the third term to have the same characteristic

power series which is precisely the statement of the Main Conjecture.

In a large number of examples considered in the earlier sections, X(E/Qcyc) was trivial. This yields

the isomorphism
Z1(E/Qcyc)

〈Z〉
'
Z1
p(E/Qcyc,p)

〈Zp〉
.

If the Main Conjecture holds, the triviality of the dual �ne Selmer group implies that the �rst term

is pseudo-null (equivalently �nite in a Zp-extension). But we know that the second term of the Exact

Sequence 6.10 is of projective dimension 1, so it has no non-zero �nite submodules. Thus, the �rst term

is trivial. This shows that if the dual Selmer group is trivial over the cyclotomic extension, all terms in

the exact sequence 6.10 are trivial. In particular, the Euler system generates Z1(E/Qcyc).

More generally, consider a p-adic Lie extension L/Q of dimension at least 2. We obtain a short exact

sequence similar to the one above

0→ Z
1(E/L)

〈Z〉
→
Z1
p(E/Lp)
〈Zp〉

→ X(E/L)→ Y(E/L)→ 0, (6.11)

where Lp is the localization of L at p and the other terms are de�ned as before. We note that in this

full generality, existence of the Euler system Z is still conjectural. However, they have been constructed

in some special cases and the validity of the Main Conjecture has been veri�ed, see [81], [88], [99].

Let E/Q be an elliptic curve. If the Main Conjecture is valid over Q(Ep∞) and Conjecture B holds for

Y
(
E/Q

(
Ep∞

))
, then by the same argument as before we have that

Z1
(
E/Q(Ep∞)

)
〈Z〉 must be pseudo-null

and therefore trivial.
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Appendix

A.1 Nakayama's's Lemma

Informally, the Nakayama Lemma gives a precise sense in which �nitely generated modules over a

commutative ring behave like vector spaces over a �eld. It is important as it allows modules over local

rings to be studied point-wise as vector spaces over the residue �eld of the ring.

A.1.1 Commutative Case

Lemma A.1.1 (Nakayama's Lemma). Let M be a compact Λ(Γ)-module and m be the unique maximal

ideal of Λ(Γ). The following are equivalent

(i) M is �nitely generated over Λ(Γ).

(ii) M/TM is a �nitely generated Zp-module.

(iii) M/m is a �nitely generated Fp-vector space.

Proof. (i) ⇒ (ii) ⇒ (iii). We now show (iii) ⇒ (i).

Consider a set of generators {x1, . . . xn} of M/mM as an Fp-vector space. De�ne
N = Λ(Γ)x1 + . . . + Λ(Γ)xn ⊆ M ; it is compact and hence closed. Thus M/N is also compact. By

assumption N + mM = M . Thus

M
/
N = N + mM

/
N = mM

/
N.

Therefore,
M
/
N = mnM

/
N for all n > 0.

Consider a small neighbourhood U around 0 in M/N . Since mn → 0 in Λ(Γ), for any z ∈M/N , there is

a neighbourhood Uz around z and some integer nz such that mnzUz ⊆ U . But by compactness of M/N ,

mkM/N ⊆ U for all k su�ciently large. Thus

M
/
N =

⋂
mkM

/
N = 0.

It follows M = N is �nitely generated over Λ(Γ). K

83
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The following theorem is a straightforward application of the Nakayama's Lemma.

Theorem A.1.2. Let M be an Abelian pro-p group on which Γ acts continuously. Regard M as a

Λ(Γ)-module. Then

(i) M = 0 ⇔M/TM = 0 ⇔M/mM = 0.

(ii) For a �nitely generated Λ(Γ)-moduleM , the minimal number of generators ofM is dimFp
(
M/mM

)
(iii) If M/TM is �nite, then M is Λ(Γ)-torsion.

Proof. The �rst two statements are rephrasing of the Nakayama's Lemma. However, we give a di�erent

proof of (i) which can be imitated as is in the non-commutative case.

(i) By hypothesis, M = Hom
(
A, Qp/Zp

)
where A is a discrete p-primary Abelian group. M/TM is

dual to AΓ. We need to show AΓ = 0 if and only if A = 0. When A = 0, there is nothing to show.

Suppose AΓ = 0 but A 6= 0. Since A is a discrete Γ-module, there exists an open normal subgroup

U of Γ such that AU 6= 0. Therefore, there exists a non-zero �nite Γ-module B of AU . On the other

hand, AΓ = 0 so BΓ/U = 0; Γ/U is a �nite p-group so B = 0. This gives the desired contradiction.

(ii) Rephrasing of the Nakayama's Lemma.

(iii) AssumeM/TM is �nite; the same is true forM/mM . Thus,M is a �nitely generated Λ(Γ)-module

with generators {x1 . . . , xn}. If M/TM has exponent pk, pkxi ∈ TM for 1 ≤ i ≤ n. Write

pkxi =

n∑
i=1

Tαij(T )xj 1 ≤ i ≤ n,

with αij(T ) ∈ Λ(Γ). For each i, this can be rewritten as

n∑
j=1

(
pkδij − Tαij(T )

)
xj = 0 (A.1)

Consider the n × n matrix [pkδij − Tαij(T )] and A∗ be its adjoint matrix. A∗A = det(A)In. Set

f(T ) = det(A); f(T ) is a non zero element of Λ(Γ) as f(0) = pnk. From Equation A.1, we see that

for each i, f(T )xi = 0; hence it annihilates M .

K

A.1.2 Non-Commutative Case

There are unexpected subtleties in the question of giving a su�cient condition for a compact left Λ(G)-

module M to be �nitely generated when G is any arbitrary pro�nite group [1]. These di�culties can be

avoided when M is itself pro�nite; fortunately this is the case we care about.

De�ne the augmentation ideal I(G) of Λ(G) by

I(G) = ker
(
Λ(G)→ Zp

)
.

Theorem A.1.3 (Nakayama's Lemma). Assume G is a pro-p group and M is a pro-p Abelian group

which is a left Λ(G)-module.
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1. M = 0 if and only if M/I(G)M = 0.

2. If M/I(G)M is a �nitely generated Zp-module, then M is a �nitely generated Λ(G)-module.

Remark A.1.4. In [1], Balister and Howson show that the analogue of Theorem A.1.2(iii) breaks down

when G is any pro-p open subgroup of GL2(Zp).

A.2 Fundamental Diagram

Let A be an Abelian variety de�ned over the number �eld F . Consider an in�nite Galois extension

L/F such that G = Gal(L/F ) is a p-adic Lie group with dim(G) ≥ 1. The following Fundamental

Diagram plays a key role in studying the Λ(G)-module X(A/L) (i.e. the Pontryagin dual of Sel(A/L)).

0 Sel(A/L)G H1(GS(L), A[p∞])G
⊕

v∈S lim←−
(
⊕w|vH1(Lw, A)(p)

)G
0 Sel(A/F ) H1(GS(F ), A[p∞])

⊕
v∈S H

1(Fv, E)(p)

α β γ

A.3 Facts About p-Cohomological Dimension

De�nition A.3.1. [94] Let p be any prime and G be a pro�nite group. The p-cohomological dimen-

sion cdp(G), is the lower bound of the integers n satisfying the following condition:

For every discrete torsion G-module A, and for every q > n, the p-primary component of Hq(G,A)

is null.

Proposition A.3.2. [94, Section 3.1, Proposition 11]. Let G be a pro�nite group, p be a prime and

let n be an integer. The following properties are equivalent

(i) cdp(G) ≤ n.

(ii) Hq(G,A) = 0 for all q > n and every discrete G-module A which is a p-primary torsion group.

(iii) Hn+1(G,A) = 0 when A is a simple discrete G-module killed by p.

Proof. Let A be a torsion G-module. Write A =
⊕
A(p). It is known that

Hq
(
G, A (p)

)
= Hq (G, A) (p) .

The equivalence of the �rst two statements follows from the above equality. Statement (ii) implies (iii).

Recall the following well-known fact. For a discrete G-module A,

Hq(G,A) = lim−→Hq(G,B) for all q ≥ 0

where B runs over the set of �nitely generated sub-G-modules of A.

Suppose (iii) holds. By a dévissage argument, Hn+1(G,A) = 0 if A is �nite and annihilated by a

power of p. The same result is now extended to every discrete G-module A which is a p-primary torsion

group, by taking the inductive limit. To obtain (ii), use induction on q: imbed A in the induced module

MG(A); apply induction hypothesis to the p-primary torsion module MG(A)
/
A. K
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Corollary A.3.3. Let G be a pro-p group and n be any integer. For cdp(G) ≤ n it is necessary and

su�cient that Hn+1(G,Z/pZ) = 0.

Proof. This follows from the above proposition upon observing that every simple discrete G-module

killed by p is isomorphic to Z/pZ. K

Proposition A.3.4. [94, Section 3.3, Proposition 14] Let H be a closed subgroup of the pro�nite group

G. Then

cdp(H) ≤ cdp(G) = n.

Equality holds in each of the following cases,

(i) [G : H] is of index prime to p.

(ii) H is open in G and cdp(G) is �nite.

Notation: Let G be a pro�nite group with a closed subgroup H. Let A be an Abelian group on which

H acts continuously. The induced module A∗ = MH
G (A) is the group of continuous maps a∗ from G

to A such that

a∗(hx) = h · a∗(x) for h ∈ H, x ∈ G.

Sketch of Proof. Suppose A is a discrete torsion H-module, then the induced module is a discrete torsion

G-module. By Shapiro's Lemma

Hq
(
G, MH

G (A)
)
' Hq (H, A) .

The �rst inequality follows. For the reverse inequalities we use,

(i) the restriction map

Hq (G, A) (p)
res−−→ Hq (H, A) (p)

is injective on p-primary components.

(ii) the corestriction map

Hn (H, A) (p)
cor−−→ Hn (G, A) (p)

is surjective on the p-primary components.

K

Proposition A.3.5. Let H be a closed normal subgroup of the pro�nite group G. Then

cdp(G) ≤ cdp(H) + cdp(G/H).

Proof. Suppose cdp(G/H) = m and cdp(H) = n. Let M be a p-primary torsion G-module. Consider

the Hochschild-Serre spectral sequence

Ei,j2 +Hi
(
G/H, Hj (H, M)

)
⇒ Hi+j (G, M) .

If i + j = q > m + n, then either i > m or j > n. Thus Ei,j2 = 0. Hq(G,M) has a �ltration whose

quotients are subquotients of Ei,j2 . So Hq(G,M) = 0. This �nishes the proof. K
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