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Abstract

The thesis encapsulates the central project of my PhD studies. In this work, we
present the multi-point probability distribution of the totally asymmetric exclusion
process (TASEP) in a half-space, starting from a general deterministic initial condi-
tion. More precisely, let h(t,x) denote the height function of TASEP at position x

and time t; we provide an explicit formula for

P(h(tayl) S S1y-- 4, h(taym) S 8m)7 t Z 0.

The formula presented is well-suited for scaling limit analysis. By applying a 1:2:3
scaling, we derive the probability distribution for the half-space KPZ fixed point,
which is conjectured to represent the universal process for the limit of the KPZ
universality models restricted to a half-space.

Additionally, we introduce a new formula for the full-space TASEP, starting from

a general initial condition, as originally derived in [MQR21].
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Chapter 1

Introduction

1.1 Lateral growth process and the KPZ univer-

sality class

Many problems in physics involve modeling surface growth, such as modeling the
growth of bacterial surfaces, the accumulation of crystals, and the spread of fire. All
these surface growths share some common features. First, the dynamics are local,
i.e., object at one point only feels the interaction from its neighbors; the high points
propagate to further places; the surface is rough (experimentally).

A famous discrete model for modeling such lateral growth is called ballistic aggre-
gation model. This is a continuous-time surface growth model on an integer lattice
with the following rules. Let h(z,t) € Z be the height function of the process at
position z € Z and at time ¢t € R. Above every position z, there is an indepen-
dent Poisson process N(t),. When the Poisson clock rings, there is a box drop-
ping from the air, and one of the following cases happens: 1. It stacks on top of
the box at =, so h(t,z) = h(t_,z) + 1, or 2. It sticks to one of the neighboring
boxes, so h(t,z) = max{h(t_,z — 1),h(t_,z + 1)}. So the total rule is just that
h(t,x) = max{h(t_,z — 1), h(t_,z) + 1,h(t_,x 4+ 1)}, where h(t_, ) is the left limit
at t. Although the model description is easy, it is a model that is hard to study, and
only very few results are known about it.

Kardar, Parisi, and Zhang [KPZ86] introduced the following nonlinear stochastic
PDE for modeling a growth height field h(z,t):

dh = N(0yh)? + vd?*h + VD,

where \, v, D are parameters of the model, and £(t,z),t > 0 is the space-time white
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noise, i.e., it is the distribution-valued Gaussian process with mean zero and covari-

alnce:

E[§(t1, 21)E(t2, 72)] = 8(t1 — t2)d(1 — 72).

More precisely,

Bl dtontodds [ el = [ Ao,
R++><R R+ xR R+ xR
where f1, fo are smooth functions with compact support.
Making sense of this SPDE is a difficult task, see [HQ18]. However, taking a formal
Cole-Hopf transformation, which is h = vA~'log(z), z(t,z) satisfies the stochastic

heat equation with multiplicative chaos.
Oz = v02z + Atz

KPZ equation can be approximated by the following discrete particle system called
the asymmetric exclusion process. This is a continuous time Markov process on
{0,1}%, with parameter 0 < p < 1. One should think of it as an interacting particle
system on Z such that 1 represents a particle occupying the sites. The dynamics are
the following: there is an exponential clock with rate 1 associated with each particle;
when the clock rings, the particle jumps to the right with probability p and jumps
to the left with probability (1 — p). When the direction is determined, the particle
checks whether its target site is empty. If the site is not empty, then the jump is
blocked and the clock starts to count again; if the site is empty, then the particle
performs the jump. This model is easier in the sense that some observables of the
model can be directly computed. It turns out such an interacting particle system has
a natural view as surface growth models. Let n(z),z € Z be the occupation variable,
i.e. n(x) = 11if there is a particle at site z, and n(z) = 0 if there is no particle at site
x. Let h(0,0) =0, and h(z,0) — h(z —1,0) = 1 if there is a particle at x and is —1 if
there is no particle at x. Thus, there is a simple random walk-type path associated
with each particle configuration (given h(0,0) = 0). The dynamics reflected on the
height function are local maxima flipped to local minima and local minima flipped to
local maxima.

In [TWOS8],[TWI0], a certain type of probability distribution can even be com-
puted: Let Y = {y1,-,yn} with y; < --- < yx be the initial configuration of the
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ASEP Dynamics and Height Function
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particles, let X = {xq,--- ,xy} be a possible configuration of the system at time ¢.

Tracy and Widom give the probability distribution for
Py (X;1),

which is the probability that the system starting with NV particles at Y and being at
position X at time ¢. The formula is only suitable for asymptotic analysis for certain
types of initial configurations.

Now we yield one more step and consider a particular case of ASEP, that is, the
case p = 0. In this case, particles can only jump to the right, which is called the
totally asymmetric exclusion process (TASEP), which was first introduced by Spitzer
[Spi70]. For a precise definition and properties, see [Lig85, [Lig99]. In [Sch97], Schutz
gave an explicit formula for TASEP that is of the same type as above Py (X;t), using
the coordinate Bethe ansatz method. The date comes earlier since we are going to a
simpler model. The formula that Schutz derived at the time is also not quite for the
scaling limit.

Near 2000, Johansson solved the TASEP starting from the narrow wedge condi-
tion, i.e. initially, all the particles are at negative integer sites and the positive integer
sites are empty. Johansson relates the model to the probability of last passage per-

colation and further to random matrix probabilities. The result is



CHAPTER 1. INTRODUCTION 4

Theorem 1.1.1. [JohO(] We start TASEP with all negative integer sites being occu-
pied by particles. Let Y (k,t) be the number of particles to the right of k at time t.
For each u € [0,1),

Qa2+ U9 un ) pg),

lim P(Y ([ut], 1)) < (1+ )3

t—00

PSR

where F(x) is the Tracy-Widom GUE distribution.

The model is solved by relating it to exponential last passage percolation (LPP),
which is the limit of geometric LPP, whose value can be derived algebraically through
the RSK mapping. We will introduce some of the models later; for now, we continue
with the development of TASEP. After [Joh00], people managed to solve TASEP with

other initial conditions.

Theorem 1.1.2. [Sas0f, [BFPSOT] We start TASEP with the initial condition that
all the even sites are occupied and all the odd sites are empty. Let z;(t) be the position
of i-th particle at time t. i-th particle is placed at —2i initially. Then

lim P(x[tm(t)g,stl/g) == F1(28)

t—o00

where Fi is the Tracy-Widom GOFE distribution.

The method is by rewriting Schutz’s formula as a non-intersecting line ensemble
[Sas05] [BEPS07]. The probability is given as the Fredholm determinant implicitly,
in the sense that the kernel is the solution of a bi-orthogonalization, from which
the transition probability can be derived. Under some special initial conditions, the
biorthogonalization problem is solved [BFPQO7][BESOS][BEPSOT].

Another type of initial condition is also solved with a method similar to [Joh00],

which is the stationary initial condition.

Theorem 1.1.3. [BFP1(] We start TASEP with the following random initial condi-
tion. Independently, each site is occupied by a particle with probability 1/2 and empty
with probability 1/2, then

thm ]P)(x[t/4} (t) Z t/4 - t1/33/21/3) - FBaik—Rains(S)
—00

where Fpaik_Rains(S) is the Baik-Rains distribution.

It is worth mentioning that both theorems above are proved with general density

cases. Also, both theorems proved that the TASEP height function converges as
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a random process in the large-time limit, i.e. they proved the convergence of the

multi-point height probability distribution:
P(h(t,zy) <1, h(t,z,) <71y)

after proper rescaling.
Eventually, TASEP is solved with general deterministic initial conditions in [MQR21].

Theorem 1.1.4. Assume that the TASEP initial condition Xy satisfies Xo(j) = 00

for all 5 < 0. Then for any distinct positive integers nq, -+ , Ny, and t > 0,

]P)(Xt(ng) > aj,i — 17 e 7m) = det([ — KEASEP)p({nl’.,.7nm}xz),

TASEP
Kt

where 15 some explicit kernel.

The importance of the theorem is that solving the model with enough initial
conditions allows us to access the limiting universal process. It is believed that for
surface growth models with similar types of mechanisms (smoothing, sticking effect,
local dynamics), they will all converge to the same random process in the large time
limit, independent of the exact local randomness and dynamics. In order to access
this limiting process, the most straightforward method is to solve the discrete model
and take the scaling limit, just like De Moivre and Laplace solved the sum of i.i.d.
Bernoulli trials and derived the central limit theorem. In the same paper [MQR21],
the existence of the KPZ fixed point h(t, z), the conjecturally universal process, is

established, and its one-time distribution

P(b@?ml) S T1, - 7h(taxn) S rn)

is derived. As a space-time random process, it is natural to ask what the multi-time,

multi-point distribution

P(h(thxl) S T1ye - ,h(tn,ﬂfn) S Tn)

is, which is given in Liu [Liu22], and Johansson and Rahman [JR21].

Furthermore, TASEP can be thought of as evolving according to some random
exponential field. Here we introduce the exponential last passage value problem. We
first establish the following relation between TASEP and last passage percolation. We
stack the space of the TASEP height function with boxes; see figure . Each box
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is identified by its center coordinates and is associated with an exponential random

variable with mean 1. Now we can define the last passage value between two points:

L(z,ry,s) = mﬁmx Z WrI(4)

where II(7) is a Southwest-Southeast path with step size 1, connecting (x,r — 1) and
(y,s+1). Now we can state the connection between the TASEP and LPP problems:

Lemma 1.1.5. Assume we start TASEP from the initial configuration hy with a local

mazximum at (x1,71), - (Tp,T0), then

P<h<t7y1) S ry, - 7h(t7 ym) S Tm) = P(ma’X{L(xlv i3 Yy, S]) S t)}
l’]

(z1,71)

(2, 52)

Figure 1.1: TASEP and LPP

With this point of view of TASEP, we can think of TASEP as evolving in these
random exponential fields. Then one could ask what the probability is of different
TASEP height functions running through the same random fields. Although there
is no explicit formula for these objects, Dauvergne, Ortmann, and Virag [DOV22]

constructed the directed landscape which characterize the limit of last passage values
of the random field.

Theorem 1.1.6. The directed landscape is a random continuous function L from
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{(x,s;9,t) € RY: s <t} — R satisfying the metric composition law

L(z,r;y,t) = max L(x,r;2,8) + L(z,8,y,t) for s € (r,t)
S
with the property that L(-,t;; -, t; + ) are independent Airy sheets of scale s; for any

set of disjoint time intervals (t;,t; + s3).

For now, the directed landscape contains most information about the limiting
process. Now we want to bring the same story to the half-space domain. Before we
continue, we introduce another solvable model that also plays an important role in
accessing the limiting process.

Polynuclear growth model (PNG) is a continuous-time Markov process whose
state space is the set of upper semi-continuous functions h : R — Z U {—oc}. The
dynamics have two parts. First, the height function spreads in two directions, i.e.,
h(x) = supy,_, <, h(y). Second, we think that there is a space-time Poisson point
process with rate 2. If (¢9,x0) is a point in the process, then the height function h
increases by one at time t. If we start the PNG model with the initial condition that
h(0,z) = 0 if z = 0 and —oo if 2 # 0, then the problem is equivalent to the famous
Ulam problems [Ula61]. The problem is: given a permutation of 7wy of 1,2,--- N,
let [(mx) be the length of the longest increasing subsequence in my(1),-, 7 (V). The
question is what is the behavior of [(my) as N — oo for a uniformly chosen mn? In

[BD.J99], they gave a firm answer that

Theorem 1.1.7.

Jim PO ) )

where F(z) is the Tracy-Widom distribution.

Later, [PS02] we show the convergence of the height function to the Airy process
and Airy line ensemble, which are the central objects in the theory, see [CH14l, [AH23].

1.2 Half-space models

We first describe the three models: TASEP, Exponential LPP, and the PNG model
in the half-space. The half-space TASEP with rate a is a continuous-time Markov
process on Z*. Particles jump to the right in continuous time at rate 1 with exclusion.
There is a reservoir of an infinite number of particles at the origin, and the particles

jump to site 1 at rate « if the site 1 is empty. Let n: N — {0, 1} be the occupation
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variables. 7;(z) is 1 if there is a particle at position z at time ¢ and 0 otherwise. For

finite range f : {0, 1} — R, the generator is given by:

L) = alf(Lmms, ) = Fmz )+ D 0e(1= 0ap1) (f (ewin) — F(0)

zeZt

where 7, ,+1 is obtained by switching the occupation variables 7 at sites z and x + 1.

There is also the height representation h(t, x),z > 0, where

—2Jot — Zfﬂ(l - 277t(i>>, r=>1
——2Jb¢, z=0

h(t,z) =

where Jy, is the number of new particles that have entered the positive real line up
to time t. Similarly, the half-space PNG model is also restricted to the positive real
line, and then along the timeline at x = 0, there is a one-dimensional Poisson point
process with rate o which represents the nucleation happening at the origin. For the
exponential LPP problem, let (wy, m)n>m>0 be a sequence of independent exponential
random variables with rate 1 when n > m + 1 and with rate o« when n = m. The

exponential last passage percolation time on the half-quadrant, denoted by H(n,m),
is defined by

max{H(n—1,m),Hn,m—1)} ifn>m+1

H(n,m) = wym +
H(n,m—1) ifn=m

with H(n,0) = 0. The correspondence between the half-space TASEP and expo-
nential LPP also exists in the half-space: We stack the space of the TASEP height
function with boxes; see figure ([1.2]). Each box is identified with its center coordinates

and is associated with some exponential random variables. We define

Exp(1), ifi# 0, hana(?) < J < hinit(2)
wij ~ § Exp(a), ifi=0,hta(i) <Jj < hinit(7)

0, otherwise .

Now we can define the last passage value between two points:

L(z,7y,s) = ml_?XZWH(i)
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where I1(7) is a Southwest-Southeast path with step size 1, connecting (z,7 — 1) and

(y,s+1). Now we can state the connection between the TASEP and LPP problem:

Lemma 1.2.1.

P((z1,715 3 Ty )t < {Y1,815 3 Umy Sm}) = P(%%X{L(xi,n;yj,sj)} <t).

(z1,71)

(yz, 82)

Figure 1.2: Half-space TASEP and LPP

The earliest studied half-space models in the KPZ universality class are sym-
metrized LPP with geometric weights, in [BROId, BRO1b, BR01a], where the phase
transition of the one-point distribution at the diagonal has been established. The
large time behavior of the model depends on the size of the parameter. There is
a critical value of the parameter in different models. In the Poisson LPP problem
which Baik and Rains consider, it is 1. If we properly scale the height function, in
the case that 0 < o < 1 (sub-critical case), the fluctuation is of order N'/3 and has
Tracy-Widom GSE distribution; if = 1, the fluctuation is of order N%/? and has
Tracy-Widom GOE distribution; if o« > 1 (super-critical case), the fluctuation is of
order N'/? and has Gaussian distribution. The N'/? is non-KPZ fluctuations. This
is purely due to the effect of the central limit theorem: the effect of the diagonal is
too large that the last passage value behaves like the sum of i.i.d. random variables

on the diagonal. Furthermore, depending on whether the position is away from the
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origin or not, one can see all different types of limiting distributions. It is interesting
that the Tracy-Widom GSE distribution is not present in the full space models.

Further, [SI04] study the PNG model in half-space, in which they studied the
multipoint distribution of the model, with or without nucleation at 0. The fluctuation
of the process near the origin gives the symplectic-unitary transition in random matrix
theory in the subcritical case and gives the orthogonal-unitary transition in the critical
case [FNHO99].

Later, the exponential last passage percolation in the first quadrant is studied
in [BBCS18b, BBCS18al]. They start from the geometric LPP problem, scale it to
the exponential LPP, then adopt asymptotic analysis. They derive the multi-point
distribution of a process that interpolates between the symplectic-unitary regime and
orthogonal-unitary regime. That requires a weak scaling of the parameter o around
its critical value, so that in the limit, one still sees the effect of boundary injection.

It is worth mentioning that, from the point of view of lateral growth, all three
models are equivalent to solving the model from the narrow wedge initial condition.
In terms of half-space TASEP, that is to say, the model starts with all sites being
empty initially.

For TASEP starting from the product Bernoulli initial condition, which is equiva-
lent to the half-space stationary LPP model, which is studied in [BFO20, BFO22]. In
these two cases, the formula is derived using that the half-space LPP with geometric
weights is a marginal of the Pfaffian Schur process; for more about the Pfaffian Schur
process, see [BR05, BBNVIS| [SI04].

There are a lot of other models in the KPZ universality class that are studied in the
half-space. For example, polymer model with wall [BLD21, [Sep12, BBC16l, BCD23,
DZ24], stochastic six-vertex model in the half quadrant [BBCWIS| [GAGMW24],
the half-space ASEP [BC24, He24, [Par19], the half-space KPZ equation [BKLD20),
DNKLDT20, BKLD22l [KT.20], the half-space MacDonald process [BBC20], and many
algebraic structures related to half-space models [IMS22l, TMS23, [Ass23]. For more
studies related to the properties of models in the half-space, see [He22l [FO24] [Che24].

The invariant measure of the half-space TASEP is an interesting problem. The
product of Bernoulli(ar) measure is invariant for the half-space TASEP with origin
rate «, the proof is essentially in [Lig77][Lig75]. Invariant measures are not unique;
see [Gro04]. Other invariant measures can be derived using the invariant measure
for open ASEP models, which is studied in [BCY24][WWoY24]. For more studies on
invariant measures for half-space models, see [BD22][BC23][CK24][Cor22].

TASEP under other geometries is also studied; for example, TASEP in the periodic
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domain is studied in [BL21) BLS22] Lia22].

From the point of view of the full space development, one wants to investigate the
conjectural limiting process in half-space, which should be the scaling of all the KPZ
universality class models in half-space. In order to define the process using explicit
transition probability, one wants to solve the model with more initial conditions,
which is the main problem that is going to be addressed in this thesis. We solve
the half-space TASEP starting from a general deterministic initial condition. Thus,
one can take the scaling limit of the model and access the transition probability
of the limit process, which is the half-space KPZ fixed point. Various aspects
of the half-space KPZ fixed point are already known from the previous work. The
probability distribution of the half-space fixed point starting from a narrow wedge
initial condition is in [BBCS18b, BBCS18a], which is a Fredholm Pfaffian with kernel
Keoss " which should be thought of as the half-space Airy, process, and the kernel in
[BEO22] is the half-space Airy stat process.

1.3 Method and organization of the thesis

We will solve the half-space TASEP with a general deterministic initial condition.
Consider a continuous-time Markov process X; in measurable state space (.5, S) with
the generator L. For any A € S,z € S, the Markov transition function P;(z, A)

satisfies the Kolmogorov backward equation:

(875 — E)Pt(x, A) = O,
limy o Py(2, A) = 1ea.

(1.1)

If we can find a function P,(z, A) that satisfies and show that the solution
is unique, then the function P,(x, A) must be the transition density of the Markov
process. This enables a guess-and-check approach to find the transition probability.

We will use this general scheme to prove a new formula for full space TASEP and
solve the one-time, multi-point Half-space TASEP with a general deterministic initial
condition. The formula is largely inspired by [MQR21]|[NQR20][BBCS18b][BBCS18al.
In the first paper, it reveals the key philosophy that ”initial conditions should come in
as hitting probability.” From the second paper, the Kolmogorov equation is verified
for full space TASEP. In the last two papers, many important ingredients of the half-
space formula are present. The formula we give can be characterized loosely by ”path
integral formula from [BBCSI8b] with hitting probability.”
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In Chapter 2, we present a new formula for the full-space TASEP. In Chapter
3, we solve the half-space TASEP. In both cases, we present a one-point formula
first; this is mainly because going from a general one-point to a multi-point formula
is normally not difficult for KPZ universality models, but the notations and indices
become more complicated. We present the full-space formula first because almost
all the mechanisms in full space are used in half-space, and the full-space formula is
simpler and easier to understand. Thus, one does not waste much time even if they
are only interested in half-space formulas.

In Chapter 4, we take the scaling limit of the half-space TASEP and derive the

formula and existence of the half-space KPZ fixed point.

1.4 List of symbols

There are many small variables and notations in this thesis. We summarize them in

this section for quick reference.

e Peaks positions :

(@, ﬁ) = (21, h; 29, hoy - Tpy By, @ < -0 < .
e Trough positions :

19,5 = {v1, s15 92, 825 Yy S}y Y1 <+ < Yo

e Primordial peak ([2.5):

hy, — hi + 2 + 24 hi+ hy + 2, — 21
Lprim = 92 ) hprim = 9 .

e u; (number of up wedges from peak z; to x;11); d; (number of down wedges
from peak z; to x;41); u is the distance from the primordial peak to the first
peak; d is the distance from the primordial peak to the last peak (12.6):

Ui = (Ii+1 — i + hip1 — hy /27 d; = ($i+1 — @ — hip1 + hi)/27

-1 -1
u:Zui, d:Zd“ Uij:]z:lbk, d”:JZ:dk
i— k=i k=1
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e Given a trough configuration {#,5}, u,d; are u,d parameterized by (i, —s)

1)

(2.63). More precisely,

wy = (Yig1 — Yi — Sip1 + 5:)/2, di = (Vi1 — Yi + Siv1 — 5i)/2,

n—1 n—1 j—1 j—1
r / ; / ;o / ’_ /
u = E u;, d = E d;, Uy = E U dij = E dy.
i=1 i=1 k=i k=i

e Cone C,,,C*¥ (34),[33):

Coy ={(a,b) €27 :b > |a— x| +y},
C™ = {(a,b) € Z* : b < —|a — x| + y}.

(a) Cone Cyy (b) Cone C*Y

Figure 1.3: Cone graph

o l,,(7, ﬁ),rp,q(f, h) are the distances from the primordial peak of (Z,h) to the

left and right sides of the cone C, ,, respectively (3.5):

o, h) = (hn — g+ 20 — ) /2, 1p4(Z,h) = (hy — ¢ — 21 4 p)/2.

e Full space one-point. | = [y ,(Z, fz),r = hoo(Z, ﬁ) (12.7)):

l= (gjprim + hprim)/Q, r= (h'prim - :Eprim)/Q-
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e Full space multi-point. [, =1, ,(, h),r; = Ty (T h) (2.60):

li = (xprim + hprim — Y — Si)/27 ri = (hprim — S; — Tprim + %)/2

-

e Half space one-point. | = ly,_,(Z, h),r = 19 s_,(Z, E),l’ = lo.—zp—n, (Y, —S5),

" =10 —z,—n, (Y, —s) in half-space (3.10):

l=(hn+a,—5+y)/2, 7= —21—5+Yy)/2,
U= (=s+y+anthy), 1'=(=s—y+z+h)/2

Notice [ = I’, thus we actually never use [’.

Abuse of notation: We use both [,[;,r,r; in full-space and half-space, but
they have different definitions. However, there should be no confusion since
one is only used in the full-space chapter, and the other is only used in the

half-space chapter.

Half space multi-point. [, = Iy, (7, h),r; = 70,5;—y: (T, h),l =

It (Ui —51), 74 = T (31, =) in halE-space (B10):

li=hy+x,—5+y)/2, r=Mh —x1—5+7Y)/2,
L=(—s4+y+z,+h,), ri=(—s—y+z.+h,)/2

‘Hitting operator’ (12.8)):

W = (I — WOTtWI’QTtW2’3 .- 'Tth_LnTtWTH_l), n > 17
W=1 n=1;

—u; . —d; u d
VVZ‘,H—I =a “‘a, °, W() =a, Wn+1 = a,.

Some auxiliary ‘W’ type operator (2.17)):

=t —t . .
Wi =Wl Wigripo- - Wio,; 1 W15, 14+1<].

‘Differential operator’ a, a, (2.9):

a=1-2D, a,=1+4+2D.
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e ‘Integral operator’ a=!,a; ! (2.10):

)y Tk

1 1
a (Zl'f y) 2 (x y)/21 z<y> a*_l(:v,y) = §e(y_x)/21y§x-

e Indicator function 1§ (2.11):
]-l?(x) = lp<z<a-

If a is 0o or b is —oo, it will be omitted; if the endpoint is included, it will be
1,1o0r 1.

e Differential and integral operators appear in half-space :
b=2a—-1-2D, b,=2a—-1+2D.
For av # %,
bl (z,y) = %6(204—1)(33—2;)/216% Na,y) = % (201—1)(y—ﬂc)/21yS

For o =

l\DIH

b;l(l‘a y) = _1ac<y + 1:523/7 b_1<5(},y) = 1ac<y - 1x2y-

e Composition of b=t and b 1. (3.13):

For0<oc<%,

76 (2,2) = Lzaggaepy eV Lecoqampe T

For a =

MIH

b b (2, 2) = H((z — 2) ez + (2 — 2)1ucs).

e b 1Db; ! (3.10):

b 'Db ! := Db b ! =b b lD.
e Modification of W used in half-space (3.11):

V= ai_lbIIWai_Tb*,
_ !/ !
V' =b'a” 1pal b,
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Some combination of V and W ([3.23)):

Vo=al "Wy, Vi = Vol Wy, for1<i<n,

_ =t .
Vn+1 = Wn-{-lai Tb*7 ‘/z‘,n—i-l = Wz,nl Vn-{—lu for 1 S < n.

¢ A notation for parametrization of matrix (|3.22):
-S DS\ [ =Sy DSy
DS —s) T A\DSTIYM sy )

S DS\ Soi DSy
DS S ys'— DSt sy )

e 5% kernel in full space (2.13)):
S (@,y) = Loryzo - 8™ (2, ),
ij w1 F 20) dw
s (x,y) /Fe (1 —2w)i 2mi’
o S;Jb kernel in half space (3.9):
b (v,y) = /e(z+y)w (1+2w) (20 =1 4 2w)" dw
abA . (1 —2w) (20 — 1 — 2w)e 2mi’
SZL’,‘;J('Z‘7 y) = ngé(l" y)lx-i-yZO'
e S kernel with Dirac delta function (2.2.13):

B™"™(z,y) = 25" (z,y) - do(z + y).

S space ([2.44)):

S={SYf | f e L*[0,00))}.



Chapter 2

Full-space TASEP with a general

initial condition

2.1 Models and notation

TASEP is a continuous-time Markov process on state space € = {0, 1}%2. One notation
for the configuration is the occupation variable n = {n;,j € Z|n; € {0,1}}. The
dynamics of TASEP is that each particle jumps to the right site after an exponential
1 amount of waiting time, provided that the right site is empty. More precisely, let
f Q2 — R be a function that only depends on a finite number of coordinates, the

backward generator of the TASEP is given by

L) =Y (L =n)(f7H) = f(m), (2.1)

JET

where 77971 is the configuration that 7; and n;,1 values are switched.
We will use another set of observables to record TASEP configurations. We are

interested in the following probability distribution:
P(h((t, %3 hinit) < Pgnar(2)).

There are slightly different assumptions on the types of functions hi,;; and hgna that
are allowed. We will always assume that the configuration hi,(t, z) that is evolving
has a finite number of peaks (local maxima) and hin(t, ) — —o0 as © — 00. hgpa ()
has a finite number of troughs (local minima) and hgpa(z) — oo as @ — oo. Under

these assumptions, hi,it(¢, z) is uniquely determined by the positions of the peaks z;

17
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and the heights of the peaks h; at time ¢. We use notation
(fa ﬁ) = (x17h1;$27r2;"'xn7hn)t7 T <<y (22)

to denote it. If a tuple (&, i_i) represents a configuration of TASEP, it satisfies the
following parity constraints: x; + h; all have the same parity; |h; 1 — hi| < 41 — ;.
Similarly, hgnai(x) is uniquely determined by the position of the troughs y; and the
heights of the troughs s;. We use notation

{7.5} ={v1, 51592, 525 Ums S}y Y1 <+ < Ynm. (2.3)

Here y; + s; all have the same parity and |s;+1 — s;| < ¥;+1 — ¥;. The final condition
does not have an index ¢ as it does not depend on time. Given this notation, we can

write the generator £ as the sum of n pieces:
LI@h) =) Lo f(T,h) (24)

with the obvious meaning that £,, f is the f evaluated at the configuration obtained
from a flip at x;, subtracting the f evaluated at the original configuration.

We now develop some notations for further discussion. Each such initial config-
uration can be thought of as having been obtained through a sequence of downward
flips from the primordial peak configuration, which we denote as (Zpyim, fprim )¢, Where

hn—h1+l’n+x1 h1+hn+l‘n—l’1
Lprim = 2 ) hprim - 9 . (25)

We will refer to this configuration as the primordial peak that corresponds to (xy, hy; - - -
T, hy )t See Figure (2.1), the point (3, 11) is the primordial peak for the configuration
(0,8;2,8;5,9). Now we want to introduce another set of variables that record the rel-
ative position of peaks with respect to the primordial peak. Let u;, d; be the number
of wedges that go upward and downward from the peak x; to x;,1, respectively. More

precisely,
U; = (xi—i-l — I + hi+1 — hl)/2, dl = (mi—i-l — T; — hi+1 + hl)/Q (26)

Now, the configuration (x1, hq;- -+ ;x,, h,) is equivalently parameterized by the pri-
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Y (2,9

/o 7)\\‘5,
2 Al=3 d=2

#

~

Figure 2.1: Configuration (—1,6;4,7;1,96) with the primordial peak (2,9)

mordial peak and all u;, d;. We define
U=uy+ Uy, d=dy+--dy 1.

It is easy to see that u is the distance from the primordial peak to the first peak, and
d is the distance from the primordial peak to the last peak; see Figure (2.1).

We also want to define
L= (xprim + hprim)/za r= (hprim - xprim)/Q- (27)

[ is the signed distance from the primordial peak to the line y = —x, and r, which is
the signed distance from the primordial peak to the line y = x.

We want to define the following ”operator product ansatz” kernel associated with
configuration (x1,hy;--+ ;xp, hy). When n > 1, we define operator W : S(R) —
S'(R),

W=(- WOTtWI,QTtWQ,Zi o 'Tth—l,nTth-l—l)u n>1

—u; . —d; u d
Wiipn =a "a, ", Wy=a" Wy =aj,

where
a=1-2D, a,=1+2D. (2.9)

D is the differential operator, in the distributional sense. a=!,a_! are integral oper-

ators with the kernels

1 1
a l(x,y) = 5e<ﬂf—y>/21:,;§y, a l(z,y) = 5e<y—9”>/21y§gc. (2.10)
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Notice that aa™'(z,y) = a,a;(z,y) = d(z — y), in the distribution sense.

T is the projection operator with the following multiplication kernel,

We use 1, 1, and 1 whenever the endpoints are included, and a or b are omitted if
they are oo or —oo, respectively. The index in Wy, W, 11 does not have meaning; it
is simply for notational convenience.

Let us also introduce our notation for the Dirac delta function and Bra-Ket nota-
tion. &;(z) is the Dirac delta function at t. We will often omit the subscript when it
is 0. |0;) (d¢| is the operator with integral kernel §g(x — t)do(y — ). (0] f just means
f(t). For an integral operator K with kernel K(x,y), (0| K |6;) = K(t,t). We also
use the notation (f| to denote an operator that acts by taking the inner product with
f.

We will be more precise about what is W, i.e. on which space the operator acts.

We will discuss it in detail in later sections.

2.2 One-point distribution

Theorem 2.2.1. Assume that we start the full-space TASEP with the initial config-
uration having peaks at (x1,hq;..., Ty, hy). The probability that at time t it is below
the configuration {0,0} is given by:

P((z1, b3 .. 5 20, By )y < {0,0}) = det(I — SYWS™) 120,00 (2.12)

where W is defined in (2.8)) . S“ is an integral operator from L*([0,00)) — L*(R)
with the following kernel:

SH(x,y) = luyyso - 57 (2, y),

j 2.13
s"(z,y) = / e_(”y)w—(l + 2wy’ dw (2.13)
r

(1 —2w)i 2mi’
where ' is a simple, positively oriented loop that includes w = 1/2.

Remark 2.2.2. For complete mathematical rigor, the 1,,>0 in the S%/(z,y) is inter-
preted as the limit of a sequence of smooth approximations of the indicator function
¢n(z 4+ y) such that for any ¢ > 0, for large enough n, ¢,(z) = 1 for x > ¢ and
¢(x) =0 for z < —¢, and ¢'(x) — §(x) in the distributional sense.
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We will prove in the next section that:

Proposition 2.2.3. The kernel in (2.12)) is well-defined and is a trace-class operator
on L*([0,00)).

We will prove the theorem after we study some properties of the kernel in the next
section.

Given Theorem , it is easy to state and prove the general one-point proba-
bility distribution, due to the fact that TASEP is translation invariant.

Corollary 2.2.4. If we start the TASEP from the initial configuration (z1, hy -+ - Ty, hy),
the probability that at time t it is below the configuration {y, s} is given by:

P((z1, b+ - 2y b )e) <y, s}) =

det(I — S (I — Wol' Wyl Wag---1' Tt Pyl (2.14)
et(1 — S (I = Wol Wi T Wag -+ T Wiy nl Wii1)S™) 120,00,

where ly, = (Tprim + Pprim — Y — 9)/2,7y = (Pprim — S — Tprim + Y)/2, and W is defined
in (2.8), parameterized by (x1, hy;- - ;T hy).

Proof. Since
P(($17 hl © T, hn)t) < (ya S)) = P((xl - Y, hl — STy — Y, hn - S)t) < (07 0)),

we plug the new parameter into Theorem (2.2.1); notice that W, ; only records the

relative position and relative height between peaks, so they remain unchanged. [J

2.2.1 Properties of the kernel

As discussed in Remark ([2.2.2)), the kernel in (2.12) actually given by

. L,r Tl
nhj& So WSy, (2.15)
where S;Z is the operator with kernel s"(z,y) - ¢,(z + y). The main point of this
section is to show two transformations on the kernel, which are useful to deduce that
the kernel (2.15)) is well-defined and trace-class from L?([0, 00)) — L*([0, c0)).

Before we begin to prove the theorem, we establish certain properties about the
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kernel. There are a few simple facts about the kernel. Recall

W =T — Wyl WyioT Was- T Wy 101 Wit

Wiign = a “ia, %, Wy = a", Wi = al
j 2.1
s (x,y) = / oy (LT 207 (216)
’ r (1 —2w)’

S (-fUa y) = 5" (x,y) Loyy>o0-

1. There are the same numbers of a, and a;'; a and a=! in W, and they all

* )

commute. Thus, if all indicator functions T are not present, W = 0.

2. All differential operators (a,a, with positive powers) are present in W, and

Wi41. All integral operators (a, a, with negative powers) are in W ;1.

3. S% =0 if i <0, because the integrand is analytic in w and contains no poles

inside the contour.

4. S%(x,y) is an operator that depends only on x + y. Thus, we have
DS" = —S“D.

where the equality is taken in the distributional sense. We define some notions for

sequences of W operators for the convenience of the discussion.

Wi; = Wz’,i+1TtWi+1,i+2 e Wj—Q,j—IItVVj—l,j’ O0<it+1l<ji<n+l
Wo, = WOTtWI,Q Wit 1< (2.17)
Winy1 = VVj,j—HTt E Wn—l,nTth-i-la 0<y.

For a=!, a!, we have the following simple but useful lemma:

) Tk )

Lemma 2.2.5. As an operator from L*(R) — L*(R), for n € Z™,

—t et Cpt Tt gt =t
lT'a™1l =a™1, 1la/"1l =1a.",

=t _n _n et n (218)
l'a |6t> =a |5t>7 <5t‘ a, I = <(5t’ a -

Proof. From the integral kernel representation for a=' in (2.10), a='(z,y) =
%e(‘”*y)ﬂlxgy. Thus for each n € Z*, a™" is also an integral operators, and its
kernel a="(z, y) is supported on z < y, i.e. a "(x,y) = f(z,y) - lu<,, where f(z,y) is
a smooth function. Similarly, a;"(x,y) is supported on x > y. Thus, followed
by the support of the operators. O
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For differential operators a, a,, they are local operators in the sense that their
support is at single point as a distribution. Formally, that is equivalent of saying
d(z —y) is supported on |x —y| < e for arbitrary small . Thus, we have the following

relations.

Lemma 2.2.6. For any t; # to, let ¢,(x) be the smooth approximation to the
indicator function defined in (2.2.2). The following objects:

(04| aly,, (O] @ily, (2.19)
make sense as an functional on differentiable functions, defined by:
(04, | aly, == nh_}n(glo (61,1202, (6| aly, == nh_}n(glo (64, | angl?. (2.20)
For t; < ty, we have
(0, |aly, =0, (04 |asly, = 0.
Proof. Let f be a smooth function.

(af)(tl) if to < 11,

<5t1| a1t2f = hm <5t1| a(@ﬁff) =
oo 0 if ty > t;.

If t5 < t1, the Dirac delta function d;, does not see the jump in (¢22f). If t5 > ty,
(¢!2 f) will be 0 for large enough n. 0

Remark 2.2.7. By our definition of ¢,(x), ¢, (x) has compact support. Thus, the
limit in (2.20) is eventually constant. Thus, it is a formalism to define ‘how to
differentiate the indicator function when essentially you do not care about the jump’,

rather than an approximation.

Throughout the paper, when there is a distribution acting on a cut-off of a smooth
function, it is interpreted as the limit of the approximated sequence. Notice that for
differential operators, we only use the property when the two endpoints ¢; and
ty are separated; thus, the fact is independent of how the smooth functions ¢, are
chosen. We never encounter 1;a, |0;), 1;a]d;). Lemma and Lemma are
the two key facts that we will use frequently. Using these two facts, we also have

numerous facts of the same type:
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Lemma 2.2.8. (Support of the operator) Assume t; < to, k,u,d > 0, we have

U N CkouTt _
i 1'az*au1? =1"a %a%, (§;,]a *a"1” = (§,|a *a"

*
o=t =t =t =t

i 171" =adl”, T17ad|d,) = ad|dy,)
R s _

i, 1 a %auly, =0, (§,|a;*aly, =0

0. 1t2athl = 07 ]-tzaz |5t1> =0

*

There are numerous properties for the operators involving a=!(z,y), which is

supported on x < y. Lemma (2.2.8)) is used either for
e Drop an indicator on one side when it is inherited from the operator itself; or

e Reduce the operator to zero when the restriction contradicts the operator’s

support.

Whenever we use such a fact, we say it is ‘because of the support of the operator’

rather than referring to this lemma.

Proof. The proof is the same for all of them, which is about the domain of the
operators. If you have an operator A(z,y) that is supported on = > y, if x < ¢,
then the variable y is also supported on y < t. Notice that a;!(x,y) is supported
on z > y; a(x,y),a.(x,y) is supported on |xr — y| < e for some arbitrarily small ¢,
because differential operators are local operators. All the above statements follow by

observing the domain of the operator. O]

2.2.2 Switching differential operators with indicator func-

tions

The manipulation of the kernel involves switching the order of the differential opera-
tors in Wy and W,,,; and the indicator functions, which brings commutators. There
are two types of movement. The operators in Wy, W, .1 can switch with T and can-
cel with the terms in TtWLQTt i -Tth,l,nTt; the operators in Wy, W, can act on
the operator S. In this subsection, we discuss the first type. The commutators for

switching a and T  are

[aait] =2 |5t> <6t| g [Tta a*] =2 |5t> <5t| )
2! T =2a16,) (6|2, [T,a ] =2a"|6,) (6a ™.
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We start with two concrete examples to illustrate what will be proven in this

section. The idea is really simple; however, the notation is complex.

Example 2.2.9. We take the kernel in (2.12)) with | = 3,7 = 3,u = 2,d = 2,u; =
Uy = 1,d1 :d2 = 1.

S S = §33([ — aQTta_la*_tha_la;thai)Sg’?’ (2.21)

We start by switching a, a, with the indicator function T', which will generate |0¢) (04]

terms.

R21) = $*3(I — al'aa'a;'T'a ta; 'T'a? — 2a|d,) (6] a 'a, ' T'a'a 'T'a?) 93
= $3(I —al'a;'Ta'a;'Ta® — 2ald,) (5|a'a ' T'a 'a; ' T'a2) 5"
= S33(I — aTta*_la_la;thai — 2ad;) (o] a_laleta_laﬂfthai)Sw.

(2.22)

The third equality is by the support of a;!. Now move the first a again, we have

[.22) = 53 (I —T'a?T'a2 -2 10¢) (0] ala?T'a?
(2.23)
— 2ad;) (0] a_la*_tha_la*_litaf> 5338,

The term I —T'a2T'a? = ] — T'a7%a? = 1,. Now we examine the last two terms with

10,) (3], we move a* across 1 :
s( —26) (0] a~'a,"T'a2 — 2a6) (8i]a e, T'a e qtaf) o
= 53’3( — 20¢) (0] afla*fl?a* — 4(0,) (8¢ 2~ a? [dy) (6] @ (2.24)

—2al6) (0] ata Ta ' T'a, — 4ald,) (6] a e, Tata "t |6,) (6 a*> 533

The third term can be simplified to —2a |;) (6,] a=2a-'T'a, due to the support of a~!,
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And we move the a, in the first and third term across T again,

= 5% (2150 (32T — 416) (5] a*a* 5)
—48,) (5|2 a2 |6,) (6] an — 2a8,) (5| a 2T
— dalb,) (0, a~2a 1 |6,) (6] — 4a|d,) (6] ata Ta a8, (4 a*> 5338,

(2.25)

Now notice the fact that the terms with only one |d;) (§;| term, i.e. the first and
fourth terms are 0, because of the support of a= (Lemma (2.2.8))). All the terms left
are rank one operators. This example illustrates that all W can be written as 1; plus

finite rank terms.

Now we make it rigorous in the following proposition. We define the object
Wffl,z < u,j < d to simplify the notation. In words, this is the notation when
all 7 numbers of a and j numbers of a, on two sides of W;, go through all the
indicator functions. To define it rigorously, let p be the smallest natural number
such that ¢ < u; + ug + -+ -up, and let ¢ be the largest natural number such that
J <dg+dg1+---dy, then

fp+1l<qg—1,

i — i — =t =t i
Wil = a=(wtm)tig it Ty T Gatderitodn)g Hldatdgratdn) i - (2,.96)

Ifp=q—1,

ngl — a—(m+~~~up)+ia*—(u1+~~~up)fa—(dq+dq+1+~-dn)a*—(dq+dq+1+-~dn)+j‘

Ifp>qg—1,

Wli:j — g utig—d+s
7n :

*

ot o ot o
Here are some examples to help understand. Let W, 3 = a2a; %1 a 2a_?1 a 2a_ 2.
3 * * %

1,2 o=t 9 _o=t _ : :
W5 =a 'a;*Ta2a;?T a ?( one a in the front cancels, two a, in the end cancels)
2,3 ot 4 . _
W3 =a,?Ta *a;'( two a in the front cancels, three a, in the end cancels)
3,3 3_— . '
W5 = aa;3( three a in the front cancels, three a, in the end cancels)

The only important fact about Wf; is that they are all integral operators from
L*(R) — L3(R).
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Proposition 2.2.10. For n > 1,

u d
Wo=1,+ ) > 42" [5,) (6 Wi, 7" [6) (6]l (2.27)

i=1 j=1
they are equal as an operator from S(R) — S'(R).

Proof. We want to bring all the differential operators across the indicator functions.

Using the relation that
[aait] =2 |5t> <6t| ) [Ttv a*] =2 ‘5t> <5t| :

We have

W=1I- QZa“ 1100y (8| Wi 0T el — TTW0T ad (2.28)

=1

The third term is what one gets after switching W, and Tt, and the second term is
where all the commutators appear during the switching.
Now we switch all the a? to the left of the Tt,

U d
) = 1= 303 4 6 (5 W9 6 (6]l —2 3 6) (6 W

i=1 j=1 i=1

—221W“J Ho) Bl ad? —TWET = O+ @+ @+ @+ @

(2.29)

Notice that @ is the second term we want in ([2.27). @ + @ is 1;, since W' ;f is
the term that all the a=!,a;! in Wy, are canceled; what is left is T. Lastly, we want
to show @,@ are 0. Notice d is the total number of a;! in Wy, thus by
Wi, = a"~"*1 thus each term in the summation (3)is 2% |8,) (5] 2"~ 17" which
is 0 due to the support of a (Lemma (2.2.8)). Similarly, in (4), Tthf;ffl |6,) (6] ad~7 =
T'ad=+115,) (6,] a=7 = 0. Thus, the statement is proved.

O
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Corollary 2.2.11. Let S = {S% f|f € L?0,00)} , the equality

u d
Wo=1,+ ) > 42" [6,) (8, Wi, 71 [6) (6] al™ (2.30)

i=1 j=1

is true in the sense of an operator from S — §'. Here S’ means a linear functional on
the space S. In particular, this shows that the kernel we have in (2.2.1)) is well-defined.

Proof. Look at the summation term on the right-hand side. (4] Wf;l’j o) is a
scalar value; thus, the terms in the summation are in the form of ¢;;a"~ |d;) (6] a?7,
which are rank-one operators.

Let f € L?[0,00), S f = lim,, o S;i , where ¢, is the smooth approximation we
define in ([2.2.2]).

(82l S f = lim (& al 7Sy f (2.31)

Recall SZZ = J5* dyS™(z,y)¢n(x +y) f(y), which is the smooth approximation to

[e.e]

Lz / S99 (2, 9) f (y)dy + Laco / S%9 (2, ) f () dy

—x

Same as the discussion in Lemma ([2.18]), since t > 0

Tim (8] 22785 f (asf-j / swas,y)f(y)dy) (2.32)

0

r=t

Notice that the limit is eventually constant due to the compact support of ¢/ (z).
Similarly, 1,5 f = lim,_« 1tS;’Z f, thus the equality in (2.27) makes sense as an

operator on S. ]
Proposition 2.2.12. The kernel SY"W S™ in (2.12) is a trace-class operator.
Proof. When n > 1, by Prop (2.2.10)), we have

u d
W=1,4+> > 42" [5,) (6| W, [6) (6] al = W (2.33)

i=1 j=1



CHAPTER 2. FULL-SPACE TASEP WITH A GENERAL INITIAL CONDITION 29

Now we calculate what is s™™

(1+2w)™

s (x,y) = Res(e” @ty T2y

.1/2)
(2.34)

me’n

n i n—1 m! n—1—i_—i(z+y
=(—1)m > < ; >m(—$—y) e 2,

=0

which has exponential decay at +oo, thus ||S’”’l(x,y)lzzt1y20||2 < oo and
|5"" (2, y) Lazoly=¢||, < oo, thus both 15571, and 1,57*'7¥1y are Hilbert-Schmidt

operators. Thus, 105%"1,5™!1, is a trace-class operator. For all i, j,
1S™ 42" [8,) (6] Wi,/ 1 16, (6] 2977 871,

are all rank-one operators. Thus, S""W.S™! is a finite rank perturbation of a trace-
class operator on L*([0,00)), which is trace-class.

]

2.2.3 Differential operators acting on S operator

The differential operators in Wy, W, .1 can also act on the operator S™". Due to the
indicator function in S™™, it will also generate delta functions when acted upon by

a differential operator.

Lemma 2.2.13. Let B""(x,y) = 2s™"(x,y) - do(z +y). For n,m >0

a, 5" = Sy = §nTlm . prm, (2.35)
Proof. Recall

S (2, ) = /6—(r+y)wwd_w
’ T (1 —2w)™ 2mi’

Smm(x? y) = Sn,m(x’ y)1x+y20-

B™™ comes when the operator hits the indicator function. When the differential
operator hits the contour integral part, we can bring the operator into the integral,
and the relation follows.

m

Lemma 2.2.14. For 0 < k < n,

a_k(afS"’m) = gmm (S”’mak)a_k = gmm (2.36)

*
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Proof. We will prove the first relation, and it suffices to prove the formula when k& = 1.

From the previous lemma, we have a,S™™ = Sn~Lm 4 pmm_ So

a; ! (a,5m™") = / e, / o (1L 20)" dw
_ r (

. 2¢ 1 — 2w)"1 27
ol 1+2w)™d
oo 2 r (1 — 2w)" 2mi (2.37)
— /e(erz)de_w -1 S ex/2z/2/e((z)+z)w (1 + 2w)md_w .
. (1—2w)m2mi =0 . (1 —2w)" 2mi

1+ 2w)™ dw

1, ,5pe~%/22/2 / —((—2+2w dw

T lataz06 e (1= 2w)" 2

The second term cancels exactly the third term, what is left is S™™.

O

Now we want to show another manipulation on the kernel. The differential oper-
ators in Wy, W, 41 can hit S, which will generate a delta function. Once there is a
delta function on S, the rest of the differential operators can get through the indicator

functions. In precise language, let f be a differentiable function,

fTau(S™ (@, y) - 0(z +y)lo = lim fT'a,(S™(x,y) - ¢, (z + )l

n—oo

= lim fa,(8%(z,y) - ¢,(z + y))lo (2.38)

= (fa)(=y)S" (~y,y), y>0.

The second equality is due to the fact that y > 0 and ¢/, have compact support. The
limit is also eventually constant.

We will also give an explicit example.

Example 2.2.15. We take the kernel in (2.12) [ = 3,7 =3,u =2,d = 2,u; = uy =
1, dl == d2 - 1

1oS*3W S331y = 158*3(1 — a®T'a 'a; ' T'a 'a; 'T'a%)5%%1,
=109%3(a; ! — a2Tta*1a;1Tta*1a;lita*)a*SB”?’lo
We add the indicator 1y at the beginning and end to emphasize that the kernel is
from L*([0,00)) — L?([0,00)). By Lemma (2.2.14]), we have

_ —t 1 17t 117t
105%3(a;! —a’Tata;'Tata T a,)a. 5?1

_ _ B (2.39)
= 1,5%3(a ! — a®T'a e 'Ta o ' T'a,) (523 + B*3)1,
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Now a,B>? can act nicely on the left-hand side, since a,s™™(x,y)d(z + y) is a dis-
tribution supported at —y, and since y > 0, thus the indicator Tt,t > 0 won’t affect.
So the term in (2.39) with B is

10S3’3(a*_1 — aQTta_la*_tha_la*_la*)Bg’?’lo = 106{)”3(a*_1 - a2Tta_1a*_1Tta_1)B3’310
= 1053’3(a*_1 - atha_za*_l)B&?’lo.
(2.40)

The third equality is due to the support of a=*. Now we let a act on the left S33,

R40) = 1o(5>® + B>*)(a 'a' — al'a %a; ') B**1,
=1p5%%(a'a;! — al'a 2a; ) B*31y + 1,B*3(a” —ata ;) B**1,.

>k *

(2.41)

The second equality is due to the support of a=!. Continuing to do this,

4 =t
a,! —Ta?a)B**1

241 — 1051,3(a—2a;1 o Tta_2a;1)B3’310 + 10B2,3(a—2
= 145" 1,a % ' B*%1,.

There is one term remaining in ([2.39) with S>3 we need to consider,

_ =t _ 1=t _— _1=t
109%3(a;! —a’Ta'a,'Ta 'a,'Ta,)5*1,

_ 33/,—2 o7t _—1_—17t_—1_-17¢ 1,3 2.3 (242)
= 1p57"(a, a’la 'a, la'a, 1)(S"+ B*’)1,

Then move a,

a,? — al'a™! a, —17' a’la’ll S131,

)
+1oB**(a a2 —al'a 'a;'T'a 'a 'T) 5?1,

BT = 1,5*(a"
+1p5*3(a ta, —al'a'a;'Ta'a;'T' YB**1,
(

1
a2a?—Tala 'Ta'a]'T 1S3 1,
2

(
+10B%*3(a;? —al'ala]'Ta 'a]'T YB**1,
_1 5«13
+1oB*(a %22 — Ta la 'Ta ' 'T) 51,
+1oB*(a'a 2 —al'a ta 'Ta a1 T)5 %1,
+ 168" (a%a 2 — Ta'a; 'Ta ', 'T) B>,
_,_1 323(a 2a—2 =t —1 —11 a—l —11 )B2,31
+10B%*3(a;? —al'a'a]'Ta 'a]'T YB**1,

The main point of this example is that the differential operator Wy, W, 1 can be
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moved to act on S and the structure of W is maintained. The term without any

Dirac delta function, which is
1oS'*(a %a,? — Tta_la*_tha_la*_th)Sl’glo (2.43)

is important and has good probabilistic meaning. We will illustrate that further later.

Now we state the previous example as a proposition:

Proposition 2.2.16. Let
S={S"f | feL*[0,00))}. (2.44)
Operator W is well-defined as an operator from S — 5. For any f,g € L?([0, 00)),
gSz,rWSr,zf _ gsl—u,r<a—ua*—d B TtWLnTt)ST_d’lf

d
+ Z gslfu,r<afua;j _ Ttwﬁﬁ*j)BT*j+l,lf)
7=1

2.45
_|_2ng1 z+1r —i fd Wu 101>Sr dlf ( )
=1 j=1
u d
+ Z Z gBlfiJrl,r(afia;j i Wﬁ;z,dfj>Br7j+1,lf'
i=1 j=1

where Wy, is defined in (2.17)), VVZa]b is defined in ([2.26]).

Remark 2.2.17. The point is that all the terms in (2.45)) are well-defined. The actual

representation will not be used later.
Proof. By the integral operator definition,

S910) = Lo [ S @dr+ Lo [ S f 0 (26)

—x
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We start from the left-hand side,
gSWSTf = g8 (@™ — T Wi, T Wit )S™ f
+ Z gBlfiJrl,r(afi o aufiTtWLnTthJrl)Sr,lf
‘ l —t:5 =t l (247)
= gS _“’T(a_“ -1 Wl,nl W,—H_l)ST’ f
+ZgBl z+1r Wu 101W+)Sr,lf.

The second equality is because ¢gB"~"*1" is a distribution supported at 0. Now we

move a¢ in W, on the right-hand side,
" — gslfu,r(afua;d o TtWI’nTt)Srfd,lf
d
—I—ngl_"’r (aa,? -1 Wlnl ad HpBroithly

+ZZgBl z—l—lr —z —d Wu 20 )Sr dlf

i=1 j=1

U d
—i+1lr/ —i,—J u—i,07t r—j
+3 N BT (@ — Wy, Tl ) Bt

i=1 j=1

The second term can be simplified to
d .
Z gslfu,r(afua;j _ Ttwl(]’,rcbl*])BrfjJrl,lf.
The fourth term can be simplified to

u d
Z Z gBl—H—Lr(a—za*j Wu i,d— ])BT—]-HJ](“
i=1 j=1

Thus, we derive the desired result. O

Now we are going to prove Theorem ([2.2.1)).

2.2.4 Kolmogorov equation

Lemma 2.2.18. Let Wi be the kernel parameterized by the configuration that is ob-
tained by flipping at x; from (x1, hi;...;Tn, hy), then W —W = W ; |6;) (0¢| Wit
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Proof. Depending on the type of peak, the kernel changes in four ways. Notice that
the type of change in peaks depends on whether there is more than 1 down step on
the right-hand side of the peak and whether there is more than 1 up step on the
left-hand side of the peak. Let us see what that means.

Type-1:(more than one down step on the right and more than one up step on the
left)

Y Y
(xh hl)
(i, hi) " N(@ig1, higa)
> T g : > X
— 1
Before flip After flip

Assume that the configuration before the flip has a kernel: WO,JtW/i,nH. Then the
configuration after the type-1 flip at x; has a kernel:

Wo’iaTtaflangta*Wi’nH.
Taking the difference, we have
=t 1 13t =t
Woi(al'a™a, ' Ta,— 1)W1
= WO,Z' (QTta*_l ’5t> <5t‘ + 2 |6t> <5t’ a_th + 4 |5t> <6t‘ a_la*_l ‘(5,5) <5t| )Wi,n—i-l-

The three terms in the bracket are the commutator terms from switching a, a,

with the indicators. Notice that a_! and a=! both have integral kernels.

1 1
3-71(1',?/) = 56%@7”1?}217 a:l(x>y) = §eé(yfx)1$2y7
and |
(a2 (@ y) = Je 27 (2.48)

Due to the support of the operator a,,a (Lemma (2.2.8))), we see Tta*_l |0;) =
0, (& a~'T = 0.. Then what is left is

Who.i (4 |0¢) (0] afla*fl |0¢) (04 )VVz',nH = Wo.i|6) (6] Wi i1
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The equality is due to the fact that the middle part of the kernel is a real number:
(6| a=ta;!|6;) means evaluating the integral kernel at ¥ = t,y = t, which is
1/4.

Type-2:(One down step on the right and more than one up step on the left)

) Y

A A

(i, hi)

This corresponds to
=t Tt _1q
Woil W1 — Wozala™ Wiy

We take the difference and get
Woi(al'a™ = T)Wypnsr = Woa(2100) (6] 2™ ) Wi i1 (2.49)

216;) (9| is the commutators from switching a with T'. We show the following special
fact

210,) (0e] @™ Wi T = [04) (0] Wi T (2.50)

Note that in the graph on the left, there is only one down step from peak x; to x;,1,

. =t .
which means d; = 1, so W, ;111 can be written as

WLHJt = a;la_“qt = a*_qta_“qt.
The second equality is true since a=“i(x,y) is supported on x < y, so y < ¢ implies

that the support of x must be in x < ¢. Then take the difference of the terms in
(2.50), we have

216,) (5, a'ar Ta T — [6) (& a; ' Ta T

2.51
= |6,) (6 (227" — 1)a ' T'a T (250)

1

Using the definition of a=! and a, !, we have

-1 -1 2 1 1
(28. - l)a* = (1—2D - 1) 112D — 1-2D°
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So
R51) = |6,) (6;|a ' T'a T =0
The second equality is due to the support of a=!. Thus, (2.49) is Wy [0;) (6] Wins1,

which is what we want.

Type-3:(More than one down step on the right and one up step on the left.)

Y Y

A A

('CEZ" hi)

This corresponds to
W(),JtWZ-’nH — Woyia;qta*m/mﬂ.
The difference is
Wo,z'(a;qta* - Tt) Wine1 = W07i(2a;1 16¢) (04 )VVi,nH- (2.52)

Similarly, we will show that it is equal to Wy ; |0;) (0| W n+1 when it acts on W;_y ;.
Note that in the graph on the left, there is only one up step from peak x;_; to x;,

. =t .
which means u;_y = 1, so 1 W;_;; can be written as
=t =t _4. _ -t _4. .t _
1 Wi_i1; =1a, dicig=l = Taj41Ta™ L.

The second equality is true since a;di’l(:c, y) is supported on x >y, so x < t implies
that the support of y must be in y < t. Then taking the difference of the term in
(2.52) with Wy |0¢) (0] Win+1, we have

Wos s (Tta;dilita-l@a;l 1)1 (3] )w (2.53)

Using the definition of a~! and a; !, we have
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So
" = Wo’i_lita;d"*qta;l |5t> <(5t| TtWi’THJ = O

The second equality is due to the fact that T'a;!|d;) in the middle of the equation is
0.
Type-4:(Single up step on the left and single down step on the right.)

Y Y

A A

(in, hl)

In this case,
—t
Woil Wint1 — WoiWinia.

The difference is Wy ;1;W; ,+1. We will show that it is equal to Wy, |d:) (0¢| Wi 1.

Due to the special structure that there is only one up step on the left and one down

1.—d 1.—u

step on the right, we have W;_1; =a 'a,"~" and W, ;11 = a, 'a™". We can write

Ttm,Li = Tta;diftha*I’ Wi7i+1Tt _ a;thafuiTt.
Then TWi_y;1L,Wiinl = T'a.% ' Ta'l,a;T'a 1. Using the integral kernel defi-

nition of a=' a7, we have

At S

_ _ & 1 1
(Ta L2, ' T)(2, 2) = Locr< / dytl,<y ez, e
t (2.54)

1 1
_ 1 _—t+5z+52
- 1x§t,z§t16 2 27,

The indicator function 1,<, and 1,<, in the integration can be dropped since we
know y > ¢t and x < t,z < t. Now notice that is the integral kernel of
the rank one operator a~'|d;) (0;/a, !, because (a™'|d;))(z) = l,<3e /*t*/2 and
({0 2 ") (2) = Logpge /222,

The last thing we need to check is the flip at xy and x,,. For a flip at the last peak
Zn, it can only be Type-1 and Type-3. In Type-1, the kernel change is:

W — Wo,n_thWn_ljnaTta_la*_tha*WnH (2.55)

It is worth explaining the presence of the a, term. Recall W,,;; = a. d is the distance
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from the primordial peak to the last peak. When there is a flip in the last peak, the
distance will increase by one, which is why we have a,W,,+; in the end. Then the
proof that the difference of the two terms in is WO,nfthanl,n 10¢) (04| Wiy1 is
the same as in the previous paragraph.

In Type-3, the kernel change is:
W — Wo,n_Jth_l,na*_tha*Wnﬂ

The proof is exactly the same as before.
For a flip at the first peak x;. It can only be Type-1 or Type-2. In Type-1, the
kernel change is
W — WOaTta_la;tha*WLthWQ,nH.

In Type-2, the kernel change is
W — WoaTtaAWLthWZnH.

The reason we have Wya in the front is that the distance from the primordial peak
to the first peak increases by one. Then the proof of showing the differences is
Wo |6:) (04 W1,2TtW2,n+1 is the same.

[

Lemma 2.2.19. Let K = SY"WS™ defined in ([2.12), then (0; — L)K = 0, where L
is the generator for the full-space TASEP.

Proof. Recall
W=1- a“TtWLQ ce Wn_LnTtaf.

Oy = > | Opi, where Oy ; is when 0 hits the i-th 1" and becomes |0) (6¢]. Recall the
generator L is also written as Y i, L., (2.4), where £,, corresponds to the kernel
change when the i-th peak flips. The previous proof shows that £, also changes T
to |0;) (6¢|. Thus, we have (0; — L)W = 0, which implies that (9, — L)K = 0. O

Lastly, we check how 9, — £ acts on the determinant.

Proposition 2.2.20. Let K = SY"WS™ then
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Proof. Using the known equality,
Oydet(I — K) = det(I — K) tr (([ — K)*latK).

For the generator £, notice that each £, acts on the kernel, giving a rank-one oper-

ator, which we denote as |h;) (g;|. Then
L, det(I — K) =det({ — K — |h;) (g;]) — det( — K).
Using the known equality for the Fredholm determinant of a rank-one perturbation,

det(I — K — |h;) {g;]) — det(] — K) = det(I — K)tr (I — K)~"|hs) (9:])
=det(I — K)tr (I — K)"'L;K).

Thus, we have that

(& — L) det(I — K) = det(] — K) tr ((1 — KN, — /:)K) ~0.

2.2.5 Initial condition

To prove the initial condition, we first need to develop some properties regarding the
operator S™" and the kernel.
The following absorbing lemma states that in operator a;*Wa* (W is surrounded

by a, and a;!), they can be absorbed into S.

Lemma 2.2.21 (Absorbing Lemma I). For k <1, 0 <t,
1655 (I — a*Wak)S™ 1y = 1,54 7F(I — a"Wa?)S™ 1.

Proof. Use equation (2.27)), we have

u d
(I —a *a"T' W, T'ala") = a M al = Y daFat o) (0 WL T (6 (6] ald U al
i=1 j=1

(2.57)
Using Lemma ([2.2.25)),

(0] ad=iaksml1, = (0] ad=igr=ki1y,  aF1,ak8m ) = a k1,87 R 1,
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Using Lemma ([2.2.26)) , we have
108l,ra;kau7i ‘6t> — 1051,r7kaufi |6t> ’ 103l,ra;k1t5r7k,l10 — 1osl,r7k1t51r*k,l10.

Plugging this into (2.57)), we get the desired relation. O

Lemma 2.2.22 (Absorbing Lemma II). Let 0 < t. Ifl < u, recall that Wy, =

d

a "a_ " we have

108" (I — a"T Wy, T'a) 5™ = 1oS" (1 — a* T Wy, T'a® %) s %11,

Ifr < d, we have the similar formula on the other side. Recall W,_;,, = a—un-1g; 1

We have
1051’T(I — auTtWLnTtail)ST’llo = 10517’%“7"(] — auiunTtwl’nfthailidn)Sr’liu" 10.

Remark 2.2.23 (Graphical View). | < u means that the leftmost peak is outside of
the cone Cy, then the kernel should be equivalent to the kernel with the leftmost peak

not present, since it does not affect the probability.

Y

Proof. We will only prove the first equality; the second is the same. Note

*

1()SZ’T(I — a“TtWLnTtaf)Sr’llo = 105“(] — a“([ — 1t)W1’nTtad)Sr’llo.

Notice the term involved 1; vanishes since

-1
1OSl’Ta“1tW1,2 = Z 1[)Blii’rau*i1tW172 + Sliu’rltWLQ =0.
i=0
The summation is 0 due to the support of a*~* (Lemma (2.2.8))). The second term
is 0 since S is 0 when [ < w. This means that when | < wu, the first indicator

function before W)  disappears and a* can cancel the terms in W o, which is a"W; o =
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a“ a4 5o the formula is
18" (I — a"T' Wy, T'ad)S™ g = 168 (I — 2"~ a; M T Wa, 1 a?)S™ 1.

Then apply Lemma, ([2.2.21]) to bring a;® to the first S and a® to the second S, we
get the desired result. O]

Lemma 2.2.24. S™"(z, —z) = 0 ifn—2 > m > 0; S""(z, —z) = "X ifm =n—1;

Proof. Let g(z,y) = e*(’”y)w%. We have

S™™(x,y) = Res(g,1/2)

n "I n -1 m)! n1oi Loty
g 2 (0 et

i=0 ’

(2.58)

When z = —y and n > m — 2, the degree of (—z — y) is always positive; thus, it is 0.
For S™"~!(z, —x), in equation (2.58), i = m in the summation is not 0 and is

easily seen to be % when x = —y.
O

Lemma 2.2.25. For any —t; < to,
1;,8™™a|0y,) = 1,,8" 5™ 16,,) ,  (64,] @cS™ 1y, = (0| S™1™1,,.
For any —t1 # to,
(0] S™™aldr,) = (01, | S [81,) s (G1y] @nS™™ [81y) = (81 S™TH [0, ) -

Proof. The proof is to note that when there is a Dirac delta function present on the
other side, the commutator term B%” in (2.35)) will be 0 due to support. O

Lemma 2.2.26. 1. (S™™a ') (z,2)1,5>_, = S™™ !z, 2) for all n,m € Z.
2. Smma=l = Gntlm for n > m+1> 1.
3. (@ 19" (z, 2)1gs_r = Sy H(x, 2) for all n,m € Z.

4. alSmwm = §ntlm for p > m 4+ 1> 1.
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Proof. 1. By definition,

> 1+2w)™1
(S™Ma ) (x,2) 1,5 :/Z aly/dwe(”y)“’%ée(zy)/2

(2.59)
B 14 2w)™ !
— d (x-l—z)w( — gnm 1
/ we 1= 2u) (z,2)
2. Forn>m+1,
Srm g -1 / dy/dwe x—i—y)w 1 + 2,w)m1 (y—=2)/2
(1 —2w)" 2° (2.60)
/dwe “Z)“’—(l 2w e (=+2)/2 / dw—(1 + 2™
(1 _ 2w>n+1 (1 _ 2w)n+1
When n > m + 1, the second term is 0 by Lemma ([2.2.24)).
The proof of (3), (4) is completely the same. O

Lemma 2.2.27. Fort >0, ifa > c+2,¢ > 0,

(6] S“*1_,8%|5,) =0
Also, ifa >b>corc>d>a,

(6] S¥*1_,8%¢|6,) = 0

Proof. Looking at the variable range, we can drop the indicator function in S, thus

o0

(0 S4P1_y5™ |0¢) = / dysa’b(tay)sb’c(%t)-
—t
Recall s™™ defined in ([2.58). Continue to integrate by parts to take (1 + 2w) from

left s to right s we have

/ dys™®(t,y)s"(y, 1)

t
b—1 o

-9 Z sa,b—l—i<t7 —t) b— zc( ¢ t) +/ dysa,O(t7y)SO,c(y’ t).

i=0 —t

The last integral is zero. All boundary terms are also 0 since s*~%¢(0,0) = 0 when
b—i>c+2and s*1740,0) =0 when b —i < c+2 < a.
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For a > b > c,

(5,] S*P1_,554 [5,) = / dys*2(t, )5y, 1
—t
c—1

-9 Z Sa’b_l_i<t, —t)Sc_i’d(—t, t) + / dysa’b_c(t, y)507d(y, t),

i=0 —t

which is 0 for the same reason above. The proof for the case ¢ > d > a is the

same. 0

Lemma 2.2.28. (Eigenfunction lemma for S) When n,m > 0, the function S™° |5o)

1s an eigenfunction of the operator S™™1,S™" with eigenvalue 1, i.e.,
1oS™™1S™™S™Y |54) = S™0|g) . (2.61)

Proof.
S5, 8™ S™0 | 5g) —/ dy/ dzs™"(x,y)s™"(y, 2)s"°(z,0)
0 0
= 22/ dzs™" 17 (x,0)s™""(0, 2)s™0(2,0)
. 0

[y [ e ) 25,00,
0

0

From Lemma (2.2.27)), all of the terms are zero except when i = m — 1. Thus, we

have

2/ dzs™"(z,0)s""(0, 2)s™°(z,0). (2.62)
0

Following the proof of the last lemma, it is easy to see that

/ dz2s5""(0, 2)s™%(z,0) = 45°(0,0)s°(0,0) = 1
0

Thus, equation (2.62)) is s™%|dy). Since z > 0 from the first indicator function in
(2.61)), it is equal to S™°|dy). O

Proposition 2.2.29. Given the initial condition (Z,h). Let H(x) be the height func-
tion of TASEP associated with (Z,h). Let F(t, H) = P((Z,h); < {0,0}). Then

lim F(t, H) = 1H(0)§0

t—0
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Proof. Now we check the initial condition. The kernel is

1054,7'([ — a“TtWLg . anlvnTtad)Sr’llo

%

If either [ < u or r < d, we can use Lemma to reduce the term. There are
two cases: either we reduce to the case that (I > u and r > d) or there is only a peak
left. First, we discuss the case that [ > u and r > d. That means there are some
peaks in the cone Cj, and the kernel after reduction represents the configuration in
the cone Cj, so we want to show that the initial probability is 0. Using , the

kernel is
) a d o ) )
105" (Lo + ) > 42" |6) (60| W1, |60) (ol 22 7)S™ 1
i=1 j=1

Here, all variables [, 7, @, d are parametrized by the black configuration in the right

graph.

X

Figure 2.2: Figure: peak reduction

We will show that S“0|dy) is an eigenfunction of the kernel with eigenvalue 1.
Using Lemma ([2.2.27)), we can see that all the terms in the summation that act on
SH050) will be 0 since

(50] a7 5710 S0 [8) = (5o| STHH11,,8M0 |5y

Since [ > 1,7 > d, so 7 —d + j > 2, the condition of Lemma (2.2.27)) is satisfied.

Then using Lemma ([2.2.28), we have
105Z’F105F’l~105l~’0 ‘(5()) = S[’O |60> .

Thus, we get the desired result.

Now we consider the case that there is only one peak left after reduction. In this
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case, W in the kernel reduces to 1y and the kernel reduces to
S[’flosf’i.

If the peak is not in the cone Cj, that means the whole configuration is completely
below the (0,0), thus we want to show that the probability is 1. In the formula,
that means either 7 < 0 or [ < 0, which means either ShF = or S = 0, thus the
determinant is 1. If the peak is in the cone Cj, that means both [>0and7 > 0.
Using the Lemma (2.2.28)), we can show that there is an eigenfunction with eigenvalue
1, thus the probability is 0, as desired.

[

In principle, one needs to prove the uniqueness of the Kolmogorov equation. Since
the model is already solved and the method is exactly the same as the half-space case,

we thus omit it here.

2.3 Multi-point distribution

Now we give the multi-point distribution formula for the full-space TASEP starting
from a general deterministic initial condition.
Recall some notations from previous sections. Kernel W is defined in (2.8)),

W= (I —Wol WyoT Was - T Wy 101 Wip),

U —d; o u _.d
I/Vi,i+1 =a ‘'a, ", W(_) =a, Wn+1 = a,.

Recall W is parameterized by (Z, E) = (x1,hy;- -+ ;xn, hy), and all the variables

u;i, d;, u, d are recording the relative positions between different peaks.

If we have a trough configuration {41, $1;* - ; Ym, Sm }, we can flip the configuration
with respect to the z-axis so that (y1, —S1;** ; Ym, —Sm) is a peak configuration. We
define ), d;, v, d’ to be the variable parameterized by (y1, —s1;* ; Ym, —Sm), i.€.

w; = (Yisr — Vi — Sip1 +8)/2,  di = (Yir1 — Yi + Siv1 — 51) /2. (2.63)

and v =) ui,d =) d.

Theorem 2.3.1. Assume that we start the full-space TASEP with the initial config-
uration having peaks at (z1,hi; ..., Ty, hy). The probability that at time t it is below
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the configuration {y1,$1;* " ; Ym, Sm} 1S given by:

P((z1,ha; 5@, ha)e < {1,815 5 Yms Sm}) = det(X — K) 22(0,00))m (2.64)

where K is a matriz-valued kernel on m copies of L*(]0,00)).

K(i,+,-) = 1iej(a) " (a,) "% + Sbriy §rits (2.65)
where
j—1 j—1
up; = uy, di= d,
T ’ ,; ' (2.66)

Li = (Tprim + Pprim — Yi — $i)/2, 75 = (Rprim — Si — Tprim + ¥i) /2

where Tpyim, Rprim  are defined in (2.5). W is defined in (2.8)), parameterized by
(1, hy;- - 52, hy), which is the same object defined in the one-point formula.

Remark 2.3.2. We want to emphasize how you should think of this formula as bualt
from the one-point kernel. This point of view will also be applied to the half-space
case. In the operator SWS, W purely depends on (Z, ﬁ), thus it is unchanged in the
multi-point case. Both S,S depend on the relative position between (Zpyim, Pprim) and
{y,5}. In the multi-point case, in the K(i,-;j,-), the left piece S is parametrized by
{yi, s:}, and the right piece S is parametrized by {y;,s;}.

We will prove that the formula satisfies the Kolmogorov equation with the proper

initial condition.

2.3.1 Kolmogorov equation

Proposition 2.3.3. Let K be the kernel defined in Theorem (2.3.1). We have (0, —
L)det(I — K)=0

Proof. Let us first check (0, — £)K = 0. Since K is a matrix kernel, the operator
acts entry-wise; thus, we need to check (9, — £)K(i,-;j,-) = 0. This is the same as
Lemma , since all the variables z;, h;,t are in the operator W.

Next, we check that both operators can go through the determinant. For the

derivative in ¢, we have

9, det(I — K) = det(I — K) tr (I — K)'9,K).
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which is the same as the one-point case.
For the generator £, notice that each L acts on the kernel K(i,-;j,-), giving a
rank-one operator, which we denote as |h%) (gl|. Define the following row vector and

column vector:

) = (g 1) b)) el = |
(97|
Then L,, K is also a rank-one operator on (L?([0,00)))™, which is |hy) (gx|-

Then
L., det(l — K) =det(I — K — |hg) (gx]) — det(I — K).

Using the known equality for the Fredholm determinant of a rank-one perturbation,

det(I — K — [hy) (ge) — det(I = K) = det(I — K)tr (I = K)~" |h) (gi])
=det(I — K)tr (I — K)"'LyK).

Thus, we have that

(0 — L)det(I — K) = det(I — K) tr ((I — K)7 40, — £)K) =0.

2.3.2 Initial condition
Proposition 2.3.4. Given the initial condition (Z,h). Let H(x) be the height function
of the TASEP associated with (Z,h). Let F(t, H) = P((Z, h), < {i],5}). Then

lim (¢, H) = Lai<ws = I Lar oy <

t—0

Proof. Notice that if there is a trough (y, sx) outside the cone C%prim:erim then there

are two cases.
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,y\ (Iprim: h’prim)

Figure 2.3: Tough outside the cone from the left

Casel: y, < Zprim and g > hprim — ZTprim + Y- In this case, it is clear that all the
troughs (y;, s;) for j < k are also outside the cone C¥primhprim,

In this case, 7j = (Aprim — Sj — Tprim + ¥j)/2 < 0 for all j < k. By definition of S,
S7iti =0, thus in every j-th column (5 < k), K (4, ,-) = 1,c;(a) " (a,) " %.

Thus, the first k£ x k diagonal block of I — K is an upper triangular matrix with

the identity operator along the first k£ diagonal position, so the determinant reduces:
det(( — K)?iu:l) = det((I — K)?;kﬂ,j:kﬂ)-

Case2:

Y

A

(wprim ) hprim)

(Yk» sk)

v

Figure 2.4: Tough outside the cone from the right

This is the case that y; > Zprim and si > Apyim + Tprim — Y- In this case, it is clear
that all the troughs (y;, s;) for i > k are also outside the cone C%prim/tprim

In this case, [; = (Rprim + Sj — Tprim — ¥;)/2 < 0 for all ¢ > k. By the definition of
S, Stiri = 0, thus in every i-th row, K (i, j,-) = 1i<]~(a)_uéj(a*)_d;i for i > k.
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Thus, the last k x k diagonal block of I — K is an upper triangular matrix with

the identity operator along the first k£ diagonal position, so the determinant reduces:
det((1 — K);il,jzl) = det(({ — K)f:l,j:l)-

Now we are ready to discuss the proof.

If all the troughs are outside the cone C%primherim then the configuration is already
less than or equal to {y, 5}; we want to show F(0,H) = 1. In this case, the whole
kernel I — K reduces to an upper triangular matrix with the identity operator along
the diagonal; thus, its determinant is 1.

Now assume there exist some troughs in the cone. Since what is outside the cone
does not affect the determinant, WLOG, we can assume that all the troughs are in
the cone. If there exists I[; > w or r; > d, we apply the absorbing lemma (2.2.22)) to

reduce the kernel. The following figure illustrates when that is needed:

(fl:primv h rim)

~

Figure 2.5: Tough inside cone but reduction needed

As we have shown in the one-point case, if the trough is completely above the
initial configuration, the kernel S'"iW S"!i reduces to 0. Thus, if all the troughs
inside the cone C@primterim are of this type, the kernel again reduces to an upper
triangular matrix with an identity along the diagonal. Thus, we have F'(0,H) = 1,
which is what we want.

Now assume that there exists a trough (ys, s¢) that is below the initial configura-
tion. Now we want to show the F'(0, H) = 0. To do that, we present an eigenfunction

for the kernel K with eigenvalue 1. Recall
K (i) = =Licj(a) "% (a,) ™" + SHTW STt

WLOG we can assume yy, S, is the last trough in the configuration. From Lemma
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[2.2.28)), we know that S'(z,0) is an eigenfunction of Stm™m W} Srmm with eigenvalue

1. Now we show that

Slm’o |50>

is the eigenfunction we want.

() i () S0 3) 4 ST Sl 510 )

—(a)""2m (a,) %m S0 |§y) 4 S22 STmodm Glm 0 | 50

KS = (2.67)

Slm,rm Wsrm,lm Slm,O |50>

The last entry is S0 |dy), using the proof from the one-point case. Now we need to
show that

—(a)Yim (a,) " hm S0 |gg) + STV §mobm G0 16y = 0 (2.68)
First, notice that l; = l,,, + ul,,, i = r, — d},,, by definition. From the proof of the
one-point case, we know that all the finite rank parts act S will be 0, thus all we

need to show is that
_(a)_u;m (a*)_d;msl'rmo |50> + Sliv""ilosrmvlmslmp |50> — O (269)

The second term is

o0

Sl nl Sr‘mlmslm ‘5 dy/ dzs lrl l’ y rmlm(y’ ) ,0(2,0)
0

§o\

-1

2/ dzs TR (g, 0)s™ R (0, 2) s 0 (2, 0)

-0 0

/ / dzs'o"i T (1, y) 8% (y, 2)s' ™0 (2, 0).

From Lemma (2.2.27)), all of the terms are zero except when k = r,, — 1. Thus, we

have

ol

2/ dzs't"i T (2,0)s(0, 2)s™%(2, 0) (2.70)
0

Following the proof of Lemma (2.2.27)), it is easy to see that

/ dz2s55"(0, 2)s™%(z,0) = 45'°(0,0)s™°(0,0) = 1.
0
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Thus, equation (2.62) is S%~%m |§y). On the other hand, using Lemma (2.2.26)), we

have

U

(a) i (a,) "o S0 [55) = St |8y) (2.71)

Thus, we get the desired result. O]



Chapter 3

Half-space TASEP with a general

initial condition

3.1 Omne-point distribution

3.1.1 Notation for half-space

The half-space TASEP with rate « is a continuous-time Markov process on Z* U {0}.
Particles jump to the right in continuous time at rate 1 with exclusion. There is a
reservoir of an infinite number of particles at the origin, and the particles jump to
site 1 at rate « if the site 1 is empty. Let n : N — {0, 1} be the occupation variables.
ne(x) is 1 if there is a particle at position x at time ¢ and 0 otherwise. For finite range

f:{0,1} — R, the generator is given by:

L) = alf(Lmms ) = Fmz )+ > 0e(l = nap) (f (ewin) — F()

[l<y/an

where 7, 41 is obtained by switching the occupation variables 7 at sites x and = + 1.
Similar to the full space case, we are interested in the following probability distri-

bution:
]P)<h((t7 X, hinit) é hﬁnal)-

Now both Ay, and hgpa are functions on non-negative integer points, representing the
height function of TASEP. We have similar assumptions on the types of functions Ay
and hgna that are allowed. We will always assume that the configuration hi,(t, )
that is evolving has a finite number of peaks (local maxima) and hy(t, ) — —o0 as

& — 00. hfnar(x) has a finite number of troughs (local minima) and hgpa () — oo as

52
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x — 00. Under these assumptions, we can also use
(fah):(xlahl;x%r%”'xnahn)ta OS:CI <<y (31)
to denote the initial configurations and use

{g; g} = {y1781;y2782; o .ym75m}7 0 S U1 << Ym - (32)

To denote the final configuration, the only extra requirements compared to the
full space case are that all x;,y; are non-negative. The notion of the primordial peak
can be defined the same way in . All the variables u;, d;, u, d are defined the same
as in (2.6). The kernel W, which records the configuration of (&, 1), is defined the
same way in ([2.8]).

Now we are going to define a generalization of the variable [, r that is defined in
the full space case. Recall that C,, is the cone starting at (x,y), open to the top;
that is,

Cry=1{(a,b) €Z*:b>|a—x|+y} (3.3)

and C™Y is the cone starting at (z,y) and open to the bottom; that is,
C™ = {(a,b) € Z*: b < —|a — x| +y}. (3.4)

Now we define

byo(T.0) = (hn — g4 20 — ) /2, 1p4(Z,h) = (hy — ¢ — 21 + p)/2. (3.5)

lpq:Tpq are the distances from the primordial peak of (Z, h) to the left and right
sides of the cone C, 4, respectively. [, 4,7, is basically a change in the coordinate
system for (Zpsim, Aprim). Whenever there is no confusion on p, g, the subscript will
be dropped. See F igure for all the geometric meanings of variables. Notice that
the [, defined in is lo,0,70,0- The reason for this generalization is that in the
full space TASEP, all that matters is the relative position between (Zprim, Pprim) and
{Yprims Sprim }, since the model is translation invariant. However, in the half-space
TASEP, the model would be different if there is a horizontal shift.
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> T

Figure 3.1: Configuration (0, 8;2,8;5,9) with the primordial peak (3,11)

We also need to define an operator similarly to a, a,. For a > 0,
b=2a—1-2D, b,=2a—-1+2D (3.6)

Now we are ready to state the main theorem.

Theorem 3.1.1. Assume that we start the half-space TASEP with rate 0 < o < 1
with the initial configuration having peaks at (x1,hy;...,x,, hy), 21 > 0. The proba-
bility that at time t, it being below the configuration {y, s},y > 0 is given by:

P((l‘l, hl T Ty, hn)t < {y> S}) = Pf(‘] + JKforml)LQ(]R)

(3.7)
= \/det(f + Kforml)L2(R)xL2(R)

—-S DS\ [(a7pWra bt —al"pWra b Db taltWal b,
Kforml =

D-1s -8§ 0 al "o 'Wal"b,
S DS\ [ablpa” b al"blpa” b Db tal '1al b,
D's S 0 b ta” tpal""b, '
(3.8)

0 1
and J(z,y) = <

. 0) Ozy- In Kiorm1, every S is Si”ll which s defined below:

suh(T,y) = /e—(w+y)w (1+20)(2a -1+ 2w) dw
ap\ T . (1 —2w)i(2a — 1 — 2w)* 27i (3.9)

S‘ilijl;(x’ y) = 52,];(13, y>1z+y20-
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' is a simple, positively oriented loop that includes w = 1/2 and w = +(2a—1)/2. W
is the kernel defined in (2.8) parameterized by the configuration (x1,hy;. .., x,, hy).

Furthermore,

L= looy(Z,h) = (hn + 20 — 5 +1)/2,
T =1T0,5—y(Z ,E) (h1 —21 —s+vy)/2, (3.10)
(¥

' =10 (U, —8) 1= (=8 — Yy + T + hy) /2.

The operator b= Db 1 will be defined precisely in the remark (3.1.3)).
Remark 3.1.2. We will name

V =b, la’'Wal b,

, , (3.11)
V' =b'a” 15al ",

then the kernel is Kiopm1 18

=S DS\ (V* =V*DV S DS\ (Vv V*DV'
Kforml = _1 : 1 , . (312)
DS -5 0 Vv D—Ss S 0 Vv

We write the kernel out in order to emphasize that there is a potential problem in

V*DV when 0 < a < —, which will be illustrated in the following remark.

Remark 3.1.3. We state precisely what we mean by D=, b= bt in the kernel.
= [ _f(t)dt. Fora>0,c0 #1/2, 07, b " are the notation for the following

two integral kernels:
(:c y) = 1 o(20-1)(z— y)/21x<y, b;l(x,y) _ %6(20171)(74*:13)/211/S
When a =1/2,
b (2,y) = 2D 7N (2, y) = —locy + Loxy, b H(2,y) = —2D71(2,y) = Locy — Ly,

When o« > 1/2, the kernels have an exponential decay at infinity. When o < 1/2, the

kernels go to infinity at infinity, which is the non-physical Green’s function. They can

only act on functions with faster decay. a;',a™' decay fast enough since % > %

when 0 < o < 1. Thus, there is no problem when b=t b1 is followed by a=*, a;?.
When bt is followed by b;

thought of as the notation for one integral kernel, which we denote b 1b L defined as

we explain what does it mean. “b~ b, " should be

* 7
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the following. When 0 < a < 1/2,

b_lb (33‘ Z) — 133)2;4(2 1) (1 20&)(33 Z)/Z + 1x<zme(1i2a)(27x)/2. (313)

and when a = 1/2,

((LE - Z)lxzz + (Z - x)1x<z>'

P

b~ to(x,2) =

The reader might ask: What about the D operator between them? One can think that

D commutes with b1, 571, Precisely, we define:

b !Db 1 := Db ol =bv~1p1D. (3.14)

When 0 < o < 1/2, using definition , the two delta functions from taking
derivatives on the indicator function in (3.13)) cancels, and we get

b_lDbgl(l’, Z) — _1$2Z%6(1 20) (z— z)/2+1 (1 2a)(z— ac)/2

When o = 1/2,
b 'Db Nz, 2) = 1(Lyss — Lucs).

Similarly for Sl bt b 15’ | (they are not well-defined in the normal operator com-

position since one of r’eszdue from 51,1 does not decay at 00), they are defined in the

following way: when 0 < a < 1/2,
SPibt = SEb T, blSY = b b TSy (3.15)

Notice that b='b; ! still behaves like the composition of b=! and b !, since it

satisfies the relations

Lemma 3.1.4.
b,(b,b) 1 =b"'  (b.b)Tb=0b,". (3.16)
(Sl’ b, ) * 1= Sl 1) b(bilsi’,ll) = Si’,ll

1,1

Lemma 3.1.5. (b.b)~! commutes with a and a.,.

Both lemmas are straightforward calculus calculations.

Now we are going to prove Theorem (3.1.1)).
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3.1.2 Properties of operators

We will discuss the properties of objects in half-space kernels. Notice that b, b, is
qualitatively the same as a, a,. All the properties are similar to the full space, except

that the notation becomes more complicated.

Lemma 3.1.6. (Support of the operator) Let x be a orb. Assumet; < to, k,u,d > 0;

we have
i T x ke = T x kg, <(5t1]X*_kX“T = (0, | x; Fx®
i TP = x0T, T%x208,) = x4 |0,,)

iii. T % Fxv1, =0, (6, % *x"1, =0
/[;/l). 1t2 *]_ O7 ]_t2Xil |6t1> = 0

The proof is omitted since it is the same as the full space case.
We now state the absorbing lemma for half-space. Recall the Lemma ([2.2.21)),

Lemma 3.1.7 (Absorbing Lemma I). For k <[, 0 <t,
1088 (I — a7 *a T Wy, T'a%?) 5" g = 1055 F (I — a"T Wi, 1 ah)s"*H1,.  (3.17)

Although we in the Lemma ([2.2.21]), there are only a,a, operators. It is easy
to see that statements with one of the a, a, replaced by b, b, will still be true. The

following version is what we will actually apply on Si’ﬁWSi’,ll

Corollary 3.1.8. Fork <I[,0<t
105il1(f — a " e T Wil "adakp, )51110 = 105” B — a1 Wln T d)Sl ki

For the kernel Si’vl o~ wr 051 1, we have the similar equation:

Corollary 3.1.9. For k <1, 0 <,

D'SYN (I - akbathWinTtafa’kb’1)DSZ’I 1o
= 1,D7L S5 (T — aT' Wy, T'a") DS 1. (3.18)

Proof The proof of Lemma ([2.2.21)) consists of two steps: move a=*b~! to the second

Sh! 1’1 and move a*b into the first S1 1. Since D™, D commutes with a=! and b~!, and
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D is a local operator, the first step of the proof is the same. For the second step, we
want to conclude
(6_o| D *a" 4, =0 for —2 <0<t

which is true by Lemma (3.1.6) if D~! is not present. However, it is easy to check
that since D~!(z,y) is supported on z > v, it is still correct. O]

Lastly, for the kernel D~1S{V*DV'S{, we have

Corollary 3.1.10. For k <[, 0 < t,

1oSy, D akb(1 — athWl*,nTtaZ)a’kb_lDbgla;k(I —a" T W, ,,T'a)a’b St Lo

Vit e (3.19)
= 10S0,"' DI - adltWinltaif)a’kb_lDb*_la;k(I a" T Wy, T a?) S,

The proof is just that we apply step two twice on both sides of the equation. The

middle of the operator remains unchanged.

Remark 3.1.11. With the absorbing lemmas in hand, we present another form of
the kernel in (3.8)). Recall from (3.11)) that V = a’ "' 1Wal"bv,, what surrounded W

are inverses of each other, thus by applying Corollary (3.1.8),(3.1.9) and (3.1.10)), all

the operators a, a,,b, b, surrounding W*, W, 1y can be brought into Si’fl. Meanwhile,
V/ * V/ *DV/
the last matriz in (3.8)) <( O> (V)

V/
callY =b'al !, then it is

al="'vl, 0 lo loa”" o 'Dblal 1o\ [1ob ta” 0
0 b a1,/ \ 0 1o 0 loal v,
. (Y*)_llo 0 I 1,Y*DY1, ING 0
B 0 Y1/ \0O I 0 1oY~!

The first matriz can be brought into S using the absorbing lemma, and the last
matriz can be brought into the first S using det(I — AB) = det(I — BA). Thus, the

kernel also has the following form

v lr+r —1 * % -1 —1.r—
o =S s (W —wrar e Db Tar
form2 — Sr+r =, _Sr',r 0 W
0,0

. gér DS%,T_T/_Z 1o loa” 'b~'Db;tal 1,
LT e 0 1o

) can be split into three matrices. If we

(3.20)

(3.21)
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We want to emphasize one important feature of this form. Here the second ma-
triz only depends on the initial configuration (Z, i_i) All the parameters in the first
and third matriz depend on both (Zpyim, Pprim) and {y,s}. We will use the following

notation for the first and third matrix:

-S DS\ ~Syh DSy
DTS —§) \DTSOTTM Sy
S DS\ Soi DSy
DS S ys' DSt sy

This will be useful when discussing the initial condition and the multi-point dis-

(3.22)

tribution.

3.1.3 Kolmogorov equation

We first study how the kernel changes if there is a flip from the initial configuration.

For checking the Kolmogorov equation, we will use the kernel in the form 1:

% (=S DS\ (V* =V*DV S DS\ (V™ V*DV'
e T A\ pts —s)\o v pts s)\o v
Notice that the variable [ does not change during the dynamics of the TASEP; thus,

all the variables ¢ and initial configuration information are in the second kernel in
(3.8]), which is

Ve —V*DV\  [abWra ! —a bWra b Db tal W
0 1% B 0 a" b 'Wal b,

In order for notation convenience, we define Vy = a’ ‘bW, Vi1 = Wyipial"b,.

Similar to (2.17), we define

Vo, = VOTtWM for 1 <1 <n,

— . (3.23)
Viner = Winl' Vo, forl <i<n.

Proposition 3.1.12. Recall the definition of Kiopm1 i (3.8)),

(at - ‘C)Kforml =0
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We need the following two lemmas to prove the proposition.

Lemma 3.1.13. Let 0,;V be the result that the partial operator hits i-th indicator
function 1. Recall L,V =V -V ifx, 40 and L,V = (V¥ = V) ifz; =0 ,
where VY% is the kernel V' parametrized by the configuration obtained from a flip at

x; from (x1,hy;. .. @0, hy).

0, Z; 7é 0
(O — Ls,)V = (3.24)
—ba; Vo |6:) (6] Vi1, @ =0.

Lemma 3.1.14. For z; > 0,
L, (V*DV) = (L,V*)DV +V*DL,, V. (3.25)
Lemma 3.1.15. For any a > 0, when 1 =0,
(041 — Lo)V)DV +V*D(0p1 — L))V = (041 — L))V )D+D(0 1 — L)V (3.26)

We first comment on these lemmas. V, V* is essentially the same as the full-space
kernel. Lemma says that all are the same except for a flip at 0, which is
expected. One then expects that the term V*DV will cancel the non-zero term from
. Lemma says the operator L, is actually Leibniz, which is due to
the special structure of this operator. Lastly, Lemma (3.1.15)) says that the operator
almost becomes “V*D + DV after calculating 0,7 — £,,. This is the lemma that
illustrates what the half-space mechanism is. Lastly, we need to show that 0, — L

acting on the determinant is 0, which is the following proposition.

Proposition 3.1.16. Let

then
(8, — LYF(t; (Z, 1)) =0 (3.27)

This is the general structure for the Kolmogorov equation in the half-space. Now

we will prove all the lemmas and propositions. We will first prove the Proposition

(3.1.12)) with the help of the two lemmas.
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Proof. (Proof of Proposition (3.1.12))) We will show

<—S DS) ((at—c)v* (@—ﬁ)(—V*DV))( S DS

—0. (3.8
DS —S 0 0, — L)V DS S

By Lemma (3.1.14]), the middle matrix is

(8, — L)V* —(8, — LYV*DV —V*D(d, — L)V
0 (0, — L)V '

By Lemma ((3.1.13)), we only need to consider the case that xy = 0. Using Lemma
—MuD — DMy,

M
(3.1.15)), we can represent the matrix as H
0 Moo

) where My, =
(at,l - Eml)V*a M22 = (8t,1 - £1‘1>V

e -S DS\ (M, —M; D — DMs, S DS
— \Dls -8 0 Moy D1S S

—S My, SMD + SDMayy + DS Mo, S DS
D™1SMy, —D 'SMy;D — D 'SDMyy — SMoy, ) \D71S S
_ —SMyyS + SMyyS + SDMy,D™'S + DSMy, D715 —SMy DS + SMyy DS + SD M + DS My,
D SMy,S — DLSMyyS — D™ SDMyyD-'S — SMy,D™'S D-'SMyy DS — D= SMy DS — D~ SD My — M, S

(3.29)

Using the relation that DS = —SD, we can see that the result is 0, which is what we

want to prove.

]

Proof. (Proof of Lemma ((3.1.13]))) If the flip is at a place that is not 0, the proof is
completely the same as the full-space case. Thus, we focus on flips that happen at 0.
For a flip at 0, there are two types.
Type-1: This corresponds to the kernel change:

Y )

A A~

(x1,h1)

J (z1,h1)
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‘/()TtWLQ .. 'Tt‘/;H_l — a;IVOTta*WLg s Vn+1‘

By switching a, with T and commuting with Vj, it cancels a;! in the front, so their

difference is the commutator term
2a;1Vo 10¢) (0| Wi+ Vi,

which is what we want.

Type-2: In this case, we have the following kernel change:

Yy Yy
A A (:L'la hl)

(1, 1)

‘/E)TtWLQTt‘/Q,nJ,—l — ‘/OWI,QTt‘/Q,n-i-l-

This kernel transformation is not that straightforward. Recall W, = a, la—w V) =
a’'b,a%. After the flip at the origin, note that the distance from the primordial
peak to the first peak decreases by w;. For any cone C,, the distance from the
primordial peak to the left side of the cone C), , remains unchanged; the distance from
the primordial peak to the right side of the cone C), , decreases by 1. By removing the
indicator function 1° between Vo and W 5, we have VoW, o = ar~!~lau=uip,. This is
exactly the new “V4” term that corresponds to the configuration on the right graph.

Now we compute
=t =t =t =t
VoW 21 Vair = Vol Wipl Vo g = VoliWial Va i

Notice that there is only one a;! in W 5. By switching the order of a;* in W 5 with

1;, we have
Vol WioT Vaner = 2a; Vo [6,) (8| WinT Vanis + Voal 'lia T Va s

The second term is 0 since 1ta_“1Tt = 0, thus we have the desired result. O
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Proof. (Proof of Lemma (3.1.14])) By definition,

L, (V*DV) =(V*DV)*i — (V*DV)
= (V) DVye — (VH)kipy (3.30)
+ (V¥ DV — V*DV.

The third line is (£,,V*)DV. The second line is (V*)**D(L,,V). So the difference
between equation (3.25)) and equation (3.30)) is

Recall from Lemma (2.2.18)), (3.1.13) that £,,V = V*+* —V is a rank-one operator for
all z;, so we write it as |h) (g| for some h and ¢g. Then we have (£, V*) = (L, V)" =
|g) (h]. So we conclude that

(3.31) = [g) (n| D |h) {g| = 0.
since D is an antisymmetric operator, which shows that £,, is also Leibniz. O

Proof. (Proof of Lemma (3.1.15))) We first discuss the case a > 1/2. Look at the
term V7', ., |0;) (6| Vib,a "DV, write out what is V, we have

Vi1 100) (e Vio.a™ DV = Vi, 61) (6] Vioua™ D(T = VoI Vi ny) (3.32)
Notice one key fact: when the first peak is at 0, that means | — r = u. So we have

%* — afuaubfl’ ‘/0 — a;uaub;l.

Plug into equation ((3.32), we claim that the part containing VOTtVLnH is 0, because

Vi 100) (0, Vibua ' DVRT Vi
=V, 16)) (6] a "alb 'b,a ™ Da " T Vi
=V |00) (3|~ 'a ' DT Vi 1.

The second equality is true because all operators in the middle commute. By
Lemma (3.1.6)), the integral operator (b~'a='D)(x,y) is supported on y > x, thus
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(0] b~la~!DT' = 0. So equation (3.32) equals
Vorn [0) (0| Voo™ D.

which is exactly the same as (0,1 — L;,)V*D when z; = 0. Similarly, the term
V*Dba*_l‘/o ’6t> <(St‘ ‘/1,TL+1 is

V*Dba; Vi [6:) (0] Virr = (I — Vi TV ) Dbar Vo |6,) (04| Vi

i (3.33)
= —Dba, Vp |0:) (0] Vins1

because the part containing V;, LTV s

Va1 Vg Dba, 'V |6y)
= fonHTta_“af:b_lDba;la*_“a“b:l |0¢) (3.34)
= Vi1 Da;'b ! [3,) = 0.

The last term is 0 for the same reason that (Da;'b,!)(x,y) is supported on z > y.
For 1/2 > a > 0, we need to check the term b='Db,! carefully.

(Oh1 — L)) (V*OV) =
—b(Vyi1)° [6e) (8] (V) bea™ p ™ Db (V) D (3.35)
—b(V*)°b Db ba; ! (Vo) |6,) (6] (Vini1) ba.

Ve (V)2 Ve, (Vo) (Vimg1)®, (Vi%,41)° all means that operator b,,b and their in-

verses are pulled out. In particular,
(V) =aal, Vg =ara,

Now we write V° and (V*)° as in the case a > 1/2. V° = (I — %OTt%7n+1), (V*)e =
(I = Vi 1'(Vg)°). Look at the first term in (3.35),

=b(Vi%1)° [62) (8] (V5)bra o DB (I = Vo T Vi) (336)
We first show the term has VOOTtVLnH is 0, that is to show
—b(Vi'1)° 160) (0] (V5) a0 T Db VT Vi = 0,

Notice that (V;)° cancels the term V{ since they all commute with b~XDb !, what
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is left is

—b(V7'41)° [00) (6] bea DT DB T Vi .

Looking at b,a 'b~'Db, ",
b,a” b~ Db, = b,a 'D(b,b)~! = a ' Db,(b,b)"! =a 'Db! (3.37)

The first equality is according to our definition, the second equality is according to
commutativity, and the third equality is according to the lemma (3.1.4). Then the
term is 0 because of the support of the operator. Notice that this is the reason we
want to define b, !,b~! as the non-physical Green’s function. It maintains the same
domain as in a > 1/2.

Thus,

(B-36) = —b(Vi',11)° [0:) (0] (V) bsa™ b~ Db
= —b(Vi)* [0e) (0] (V5)a D™D (3.38)
== (67571 — Exl)V*D, I = 0

For the second line in ([3.35)), using the same proof, we can see that it is —D(0;; —
L.,)V. This finishes the proof of the lemma in the case that 0 < aw < 1/2.

Lastly, we check the case a = 1/2. All the properties used in are still
valid for o = 1/2. Notice that the definition of b~ is that it is the integral operator
with kernel b™!(x,2) = 1,o, — 14>,, so Db™' = —2I. Thus, a 'Db~! = —2a™!, so
(6,/a='Db~'T" = 0. This shows that the proof in the case 0 < a < 1/2 will all go
through; thus, the lemma also works in the case o = 1/2.

]

Proof. (Proof of Proposition (3.1.16)) It is a well-known identity that if the kernel
depends smoothly on a parameter ¢, then the partial derivative of the Fredholm

determinant is

/det(I — K) = % det(I = K) tr(I — K)'0,K

Now we check how £, acts on the square root of the determinant. By Lemma ([2.2.18])
and Lemma (3.1.13)), £,,V is a rank-1 operator for all z; > 0. Let us denote

Lo,V =1[h){gl, L.V*=lg)(h|



CHAPTER 3. HALF-SPACE TASEP WITH A GENERAL INITIAL CONDITION 66

for some function h, g. Recall our kernel in (3.8)) is defined by

o < -S DS> (v* —V*DV)( S DS) ((v')* —(Vf)*DV/)_ (3.3
ps -s)\o v D'S S 0 v

In order to write things in matrix form, we name the first matrix in (3.39) by S, the
second matrix by V, the third matrix by S, and the last matrix V',
So

1@%:K+&<mﬁﬂ—WMMDV—Vﬁww@>&V
0 7 (gl

Define the rank one operator

l9) (h| —1g) (h| DV = V*D|h) (9]
( 0 1) (g )‘g%

Thus, generator L, gives a rank two perturbation. Thus, by Proposition ([5.1.3)),
det(I — K**) = det(I — K)det(I — (I — K)"'SiGHS,V) (3.40)
Using Proposition (5.1.2)),
(3.40) = det(I — K) det(I — HS,V'(I — K)'8,G). (3.41)
The second determinant on the right-hand side is a 2 x 2 determinant. We denote

1 _Mll M12

this matrix as
My, 1 — Moy

) and write out each component.

Myy = HSV' (I — K)'8,Gs.



CHAPTER 3. HALF-SPACE TASEP WITH A GENERAL INITIAL CONDITION 67

We will show that M, is anti-symmetric, i.e. My = M7,. Since M, is a scalar, thus

it can only be 0.
My = G3S{((I — K)71)* (V)" S; Hy.

Notice the relation that
G, =H,J, Hi=JGs,
S =JSJ, S =JS7J, (3.42)
Vi=—-JvJ, (V) =-JVJ

0 I
J is the matrix ( 0), thus J? = —1.

Miy = HiJJS,J (I — K)~')* (V)" IS JJ Gy
= 018y J((I = K)71) (V)" JS;Gh.

For ((I — K)™')*, we have

(1= E)) = (SV&V)) =) —J(VSVS)"]
n=0 n=0
Thus,
J(I=K)") V)T =) —(VSVS)V =) —V(SV&V)" = -V - K)™!
n=0 n=0

This finishes the proof that M, is antisymmetric, thus My = 0. My = HsSV' (I —

K)7'8,G, since we also have the relation that
H =—-JG,,G] = —HyJ, (3.43)

Thus My, is also antisymmetric. With the same proof, thus My, = 0.
Now we want to prove M7, = Mays, from which we can derive M;; = My, since

they are scalars.

My = HSV' (I - K)'8.G,
Moy = HyS;V'(I — K) 7' 81Gy.

Using the relations in (3.42)) and (3.43)), it is easy to see that M}, = Msy. Thus we
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have

1—Mn M, 1 9
det = (1 — My1)(1 — Msy) = (1 — 5(Myy + M)~
( My, 1- M22> 2

Now we have

det(I — K¥#i) — y/det(I — K)

= \Jdet(I — K)(1 = L(Myy + My))? — v/det(I - K)
= 1y/det(I — K) (M1 + M) = L\/det(I — K) tr(I — K) 'L, K.

The last equality is true because for the rank one operators |h) (g|, we have
tr(Z — K)~ h) (gl = {g| (T — K) 7" |h)

By summing all x;, the proposition is proved. ]

3.1.4 Initial condition

To check the initial condition, similar to the full space case, we need an absorbing
lemma to reduce unuseful peaks and require some properties about S(TI;”.

We want to emphasize that the lemma in the half-space version is not that differ-
ent; the reason is that b, b, are exactly the same type of operator as a, a,.

Now we introduce the absorbing lemma for half-space.

Lemma 3.1.17. Let Ko be defined as the kernel defined in Theorem (3.1.1)).

K (=S DS\ [(V* =V'DV S DS\ (V™ V*DV'
T Apts —s)\o v pts s )\o v
Recall that the first three matrices are parameterized by Cos_y(1,h1;. . 5Ty, hy). If

r <d, then
Kforml = K\xn (344)

form1

The notation Kf\of:;ﬂ means that it is the kernel parameterized by the configuration

with the peak x,, removed:
C’O,Smfym (xly hlu R hn71>‘

Proof. (Proof of Lemma (3.1.17)). Let us multiply out the first three matrices to make
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it clearer.
—SV*S+ SV*DVD-'S+ DSVD™1S —SV*DS + SV*DVS + DSVS
D71Sv*S — D'SV*DVD-'S — SVD~'S D~ 'SV*DS — D 'SV*DVS — SV S

(3.45)
There are three types of operators: SV.S, SV*S, SV*DV S if we ignore the D, D~!
between them. It turns out that D, D~! will not affect the arguments in this proof.

We look at SV S first. Applying Corollary (3.1.8) on 105 VS1 110, it equals
1oSVh (I — a T Wy, 1'ad) St

Since r < d, we can apply Lemma ([2.2.22)) on the right-hand side of the equation, it
becomes
1051 (I — au_u"TtWLn—Jtaf_d")ngll_u" Io.

Since | — u,, > r, we apply Corollary (3.1.8]) again, it becomes
OSl Un,,l—Un, (I . a;l—i—un—l—rb;lau—unTtWLn_ITtail l un—rb )Sl Up L —Un 10'

This is exactly the kernel SV'S parameterized by Cos,,—y,. (€1, P15 ... Tn1, n_1)-
For 105’1’}1\/*5’%,[110, it is similar. Applying Corollary (3.1.9), we have it equal to

10%211( a’T’ Wi, la T U)Sl olo-
Now we can apply Lemma on the left side of the equation; it becomes
Srl un (] — ad dnT! Wi, 1— )Sl un.rq
Applying Corollary again, it becomes
OSl Un,l— un(I_ alfun7rbadfdnTtW1*’n71Tta7:funa;lJrunJrrb )Sl Un,l— un10’

which is the kernel SV'S parameterized by Cy s, —y,.. (21, h1; ... ; Zp—1, hp—1). For kernel
S V*DVS1 1, it is slightly different. After we apply Corollary (3.1.10)), we get

Seh(I —a'Twy, T'a%)a b Db, Tal (I — a"T'Wy,,1'ad) S5

*
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On both sides of the equation, the same manipulation is still true; we have
Srl Un(gln — g@ T’ Wi, T'a%)a "b~1Db lal H(ak a“TtWLn,thaff’d”)Sg:lf“".

Pull out a¥" in the first bracket and a“" in the second bracket, using the fact that
they both commute with b=1Db_ ",

a’b Db la" = a"b Db lal",

we can see that a%, a% adds to a’~!,a" ! on the other side of b=' Db, !. The formula

becomes

Srl un( d d"l Wl* t u un> un+rflb—1Db;1

o (T = 2T Tad s,
Last step, apply Corollary (13.1.10)), we have it equal to

—d, 3t =t u— +r—Il1. — —
Sl un,l—tin l un= Tb(l —ad dnl ”/l*n 1]_ a:f ’u.n) Unr lb 1Db 1
_ =t
Oafz:n—l—r l([ a4~ unl IVln Ta d dn ) l—up— rbsrl Un

which is the kernel Si’yllV*DVSi’fl parameterized by Co, —y,. (T1,h1;- 5 Tp_1,

hn_1). After the simplification, the kernel can be again factored into

=S DS\ (V* =V*DV S DS
DS -8 0 V D-'s S

with the new parameters. O

Recall Lemma ([2.2.25)) illustrates when there is a correct Dirac delta function on

one side, a,,a can act on S nicely. We have the same lemma for b, by,

Lemma 3.1.18. For any —t; < to,
1t1 S:,an |5t2> = 1t15m7711b ’5t2> ) <5t2| b*SZ,gnltl = <5t2’ SZL?,bltl' (346)
For any —t; # to,

<5t1‘ S:,gnb ’5t2> = <5t1‘ S;lj—nll,b ‘5t2> ) <5t2‘ b*ScTLL;bm |5t1> = <5t2‘ S;lj—nll,b ‘5t1> : (347)
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Lemma 3.1.19. Recall the definition of 5" in (3.7).

sop'(w,—x) =0 ifn—2>m >0, spy '(z,—x)=—1/2

sio (x,—2) =0ifn—1>m>0

Proof. Evaluating the residue of the integrand,

soo (,y) = (= 1)“% _Z (n i 1>L!.(—:c —y)" e @) (3.48)

— i ) (m—1)!

When z = —y and n — 2 > m, the degree of (—z — y) is always positive; thus, it is 0.
When m = n — 1, it can easily be seen that the value is —1/2.

Now we prove for s; o, which has residue at both w =1/2 and w = (2ac — 1) /2.

2a—1 a™

S?:én(l', y) — 2mn1(_1)n+1{€2(m+y)m+

e 2(:v+y)nzln—1i/\ n—1 n—1—1 (—x—y)im!(—(n—l—j_j))!
TL — 1 ' =0 7=0 j (m — j)'(l — Oé)'fl—l—i—j
Plug in y = —x, it equals

_gmen gyt 0" LR (n= 1\ mi(=(n—1—)))!
= {(a—m*m—m . (j ><m—j>!<1—a>n—j}

(3.49)

7=0
n—1Am
m 1 m! -1 .
— 2m—n—1 -1 n+1 O'/— . - : n—j
(=1) {(oz—l)" jZO j!(m—j)!(l—oz)
(3.50)
When n > m, the last term is
1 m! -1 , o™
= ~ ( ) =1-(1-a)"(a=1)" = ——,
;Ojl(m—J)! l-a (a—=1)"
which cancels the first term in the parenthesis. O

The next lemma prepares the eigenfunction for the kernel.
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Lemma 3.1.20. Recall the V' defined to be V'’ = b 'a” ~‘1yal~""b, in ([3.11]), then

V/Si’,% 60) = Si% |d0)
(V')*DV'SYg [60) = (V!)*DSTY |00) -

Proof. The first equation is obtained by switching a,, b, with the indicator function
107

—1_r"—1 -7’ 1,0
b, a] 'loa, " b.ST [do)

= 10570 [60) + by al 7 [d0) (dol aL"ST |00)
l—r'
2l S ar "L ) (0] &S [)

i=1
By Lemma (3.1.18]) and Lemma (3.1.19)), we have
(8] @k 7181 [60) = Sy for all i =0, -1 — 1

(Here Lemma (3.1.18)) is used in the sense that we take Si’% |00) = lim._,o Si’y% |0c)).
What is left is 15579 [60) = S1% [do)-
For the second statement, it is obvious in the case o > 1/2, via the first equality.
When 0 < o < 1/2, it is not obvious since there is b= Dbt in (V')*DV’. Recall
I—r'

When 0 < o < 1/2, using the same argument above, by switching b,,a'~" across

1o, we get

! U ey = —r 1,0
a ™" blpa” o tDbtal 1pal " b,S7 ) |do)

[ — Ty e 1,0 (3.51)
=a "blpa" b ' Db b.1057 [do)
Since all the commutator terms are still 0. Then using 7
B51) = 2" "plea b D1,STY [d0) (3.52)
which is what we want. O

Similar to Lemma (2.2.27)), we have

Lemma 3.1.21. Fort >0, ifa > c+2,¢ > 0,

(6] S&’fl,tSfjg 6:) =0, (0] Dflsg,’flftDSfig 6:) = 0.
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Proof. For the first equality,

(6] 550187 16,) = / dys(t, )5 (4, 1)

t
= 25"(t, —t)s5(—t,t) + (0e| S01,5%¢|6y)

In the first term, either s**(¢, —t) is 0 or s?’f)(—t, t) is 0 due to Lemma (3.1.19)); the
second term is 0 by Lemma ([2.2.27]). For the second equality,

(6] DTSG1_ DSV |60y = D7 st (¢, —)sy(—t,t) + (8] Sg1-eST 6:)

The first boundary term is 0 due to Lemma (3.1.19)); the second term reduces to the

first case. O

Lemma 3.1.22. (FEigenfunction lemma for Sp1,S1,0)

105%111058?1”15%) o) = Sﬁ’oo |60)

n,m —1 gm,n n,0 n,0 (353>
10DSL’0 10D SO,i 10DSl,b |(50> = —DSLb |50>

when n > 0.

Proof.
SﬁgnloSg?{nSﬁ’g |60) = / dy/ dzs?”g@(x,y)sgfi"(y,z)si’g(A0)
0 0
m—1 ) . '
= Z 2/ dzsi’gl_l_z(x, 0)sg1 " (0, z)si’g(z, 0) (3.54)
i=0 70
> > n,0 0,n n,0
+ / dy/ dzsyy (7, )07 (Y, 2)s1(2,0).
0 0
From Lemma (3.1.21)), all terms are zero except when ¢ = m — 1. Thus, we have
SO SIS0 5 = 2 / A28z, 0)557(0, )70z, 0). (3.55)
0
Following the proof of Lemma (3.1.21)), it is easy to see that

/ dz2s571(0, 2)s15 (2,0) = 45°(0,0)s'0(0,0) = 1
0

Thus, equation (3.55) is 3?7’8 |00)

To prove the second statement, first, one needs to carefully check that when D
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and D~! hit the indicator function in S, it generates nothing due to the indicator

functions 1y and 15. Then we have
1oDST D185 1o DSTY 160)
_ / dy / d=Ds\ (x,y) D STy (y, 2) DS} (2, 0)
0 0
. / dyDsiy (e, y) D s (. 0)s15(0,0)

- [ [T @D e 580
The first term is 0 due to sf’g (0,0). Continuing with the second term, we have
— /OOO dy /000 dzDsyy" (x,y)s01" (¥, 2)3?:8(27 0)
__ / " dyDsy )5 (1, 0)510(0,0)
- [y [T D s s e
0 0
__ / " dyDsy . )5 (y, 0)510(0,0)

n—1 00
=32 [ DS ) (005 ,0),
i=0 70

Similarly, the first term is 0, and in the summation, the only term that is not 0 is

1 =n—1, we have

- / D25 (1, 7)s™ (. 0)5°(0, 0) = / DS (2, )5y, 0).
0 0

Now, keep doing integration by parts again, we have

/ DS10 (.’E y mO y’ Z2D8nm i— 1 w O)Sm—i,O(O’O)

Recall there is 1j at the beginning, thus it is —DS?”(? |00). O
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Lemma 3.1.23. For n > 0,
Sy"Wa b Db, Tal "W SgL" ST |00)
= Sg"W*a "o DSTY [60)

Proof. From explicit expressions for S7'y", Sg7" in Lemma (3.1.19), we see that when
l>r,

(3.56)

. (-2 . (42D)
00 = & oy TP T (T opy?

Using the same proof as in Lemma (3.1.22)),

S&gnWS(TinS |0) = 0 0

Then using definition (3.15)) and (3.1.4)), we have

Soi"Wra” "~1Db ! 1S

) = Sy Wra ' DSTY [ 60)

which is what we want to prove. O

Proposition 3.1.24. Given the initial condition (Z,h). Let H(x) be the height func-
tion of the TASEP associated with (Z,h). Let F(t, H) = P((Z,h), < {y,s}) be defined
in (3.1.1). Then

i Pt H) =1z fy< gy = Lrw<s:

Proof. If the trough {y, s} is outside the cone C%rrimhworim  we have either » < 0 or
r" <0 in the kernel (3.21). Recall the kernel is

p —< B 5’6/ DS%’T_—T/J) (W* _W*arlb_lDb*_lailW>
form2 — ’

11 ,
g —Spi 0 W

_ Sér DS%LT/_Z Iy lea" Db tar 1,
Iy - -
ST " 00 0 1o

If r <0, then r + 7" — 1 < 0 since ' < [ is always true by definition. In that case,

both S ,SHT “Hare 0, so the whole kernel is 0. If 7 < 0, then r + ' — [ < 0 since
Sr—f—r =1l

(3.57)

r < [ is always true by definition. In that case, both 5’00 , are 0. Thus we
have that the probability is 1, which is what we want to show.

Now assume the trough {y, s} is inside the cone. If r < d, then we can apply the
absorbing Lemma to reduce the kernel. We keep applying the kernel until

either there is only one peak or r > d after some steps. In the case that r > d, we
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want to show that the probability is 0, by giving an explicit eigenfunction. We show
DSy |6

that 10 o)
—S570100)

we use the kernel in the form in (3.8)), which is

is an eigenfunction with eigenvalue —1. To check the eigenvalue,

" (—S DS) (al_TbI/V*aT_lb_1 —al_er*aT_lb_lDbglal_lW>
forml —

D-'s -8 0 am o 1Wal b,
/ ’ ’ ) T T T / (358)
S DS\ (a""blga” b7t al""blga” "' Db ta” ~1al b,
D's S 0 b tal ~al b, '

Using Lemma ({3.1.20)),

a’"bloa” b7 a'""blea” b Db, tal o2l b, | DSy [d) (3.59)
0 b, lal ~1pal~"'b, — 570 [d0) .

0
which is 10 .
—5S70 190)

Now write out the result of the multiplication of the first three matrices, set

B Py o ] ! .
H:=a""'"o'Db tal™!, S, = 57,51 = Sy to save some space; it is

—SiW*Sy + DS;WDLS, — SSW*HW DS, —S1W*DSy + DS, WS, — SiW*HW Sy
D_151W*SZ — SQWD_ISI + D‘151W*HW/D‘151 D‘lSlVV*DSg — SQWSl + D_151W*HVV31

By Lemma (3.1.22)),(3.1.23)),

(=SiW*DSy + DS, WSy — SiW*HW S, )(—S10 |00)) = —DSLY [60)

(3.60)
(D7'S,W*DSy — SsWSy + DS\ W*HW S;)(—Stg [d0)) = St [60)

which finishes the proof that the eigenvalue is —1.

3.1.5 Uniqueness

In the previous sections, we showed that the equation we proposed in satis-
fies the Kolmogorov equation, with the correct initial condition. Now we want to
show that this solution is unique, which ensures that the equation in (3.1.1f) is the
probability distribution for the half-space TASEP.

Up to now, we have been using the TASEP peak function representations. We

want to switch to the particle occupation variable notation. Notice that there is a
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one-to-one correspondence between the peak functions and the occupation variable
plus the initial height h(0).
(&, h) «— (h(0), n).

Assume u is a solution to the following equation

(0 — L)u(t,h(0),n) =0,
u(0,1(0),m) = 0.
Notice that £ acts on (h(0),n). We want to show that w(T, h(0),n) = 0 for all
T > 0, which implies the uniqueness of the solution. Assume g is the product of

product Bernoulli(«r) measures on 7, and the counting measure on 2Z , which is

invariant for £. Let T' > 0, for any v(¢,7), we have

/OT/(@ — L)u(t,n)v(t,n)dtdu = 0. (3.61)

By integration by parts,

/u(T, n)v(T,n) — u(0,n)v(0,n)du — /0 /u(t, x)(0 + L*)v(t,n)dtdp =0 (3.62)

If we have a set of v(t, h(0),n) which satisfies the following condition:

(0 + L7)v(t, h(0),n) = 0

(3.63)
v(T,h(0),n) = 1h)=km=ar, yn=an, Where a; € {0,1}, k € 27.

then we have [w(T,h(0),n)1y =0, mu=adp = 0, for all finite particle configura-
tions with a prefixed height at 0, which implies that u(T, h(0),n) = 0.

Now we only need to solve equation . It turns out that £* is the generator
of TASEP with particles jumping to the left with rate 1, and with rate (1 — «), the
particle at site 1 will be annihilated. See Proposition . This is also the model
that the half-space TASEP is running backward; thus, we solved it while solving the
half-space TASEP. It is just the equation in with t replaced by —t. This finishes
the proof that the solution is unique for 0 < o < 1.

Proposition 3.1.25. The adjoint of the half-space TASEP generator L, under the
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stationary measure [, 1S

=D 0l (eam) = F(m) + (L= @) (f(R(0) +2,m = 0) — f(h(0), 7).

r>2

(3.64)

Proof.

/Ef(n) dua—/<z77x (Mze1) — f(0))

= (3.65)
(L= @) (J(h(0) — 2y = 1) — F((0); n)))g(n)dua.

By renaming 7, ;41 to be n, we have it equal to

— [ S ) gaam) = g+ [ st o) ~ [ msa)ga)ane

=2 (3.66)
+ / (1= a)(F((0) — 21 = 1) — F(h(0):m))g(n)dpe

1y, are independent, have a probability a of being 1, and a probability 1 — a of
being 0, thus it equals

/dﬂa D e f ) (9(ea1) = 9(n)) + / dpd o f(m = 1)g(m = 1)

r>2

- / a1 — o) f(m = 0)g(m = 0) — / dulaf(m =1)gm =1)  (3:67)
+ [ duzalt = a)(F(8(0) = 2 = 1) = FHO)sm = 0))glom =0).

dp™ means the product measure excluding 7;. Observe that f(n = 0)g(m = 0)

cancels. It equals

/an nx,xfl) - 9(77>)d,ua

o>2 (3.68)
+ [ dualt = ) f(1(0) = 2m = gl = 0) = £ = Vgl = 1)

For the second line, since we have the counting measure on h(0), by a change of
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variable, it equals

/du’Zva(l —a) f(h(0),m = 1)g(h(0) +-2,m = 0) — f(m = 1)g(m = 1))
— [ dhsalt = @) (g0(0) + 2 = 0) = g = 1)) Fl = 1)

which is what we want. ]

3.2 Multi-point distribution

In this section, we will present the multi-point distribution formula for the half-space
TASEP. We will show it satisfies the Kolmogorov equation and has the correct initial
condition. The uniqueness argument is the same as in the previous section. Before
we state the theorem, recall the kernel in the one-point case in ,

v (-8 ps\(v —vov s DS\ (V) —(V') DV
ot = A\ p1g —s )\ o v DS S 0 %

(3.70)

, where V' is parametrized by {Z, fz}, V' is parametrized by {y,s}. We need to
transform the kernel into another form. Recall V' = b 'a” ~'1yat"'b,. Let’s denote
Y =b_tal "l thus, V' = Y1,Y~!. Apply Proposition (5.1.2)),

det(l - Kforml)

o (1 L(Y*) 0 ~Ss DS\ (v: —veDV
= e —_
0 1Y ') \D's -§ 0 1% (3.71)
S DS (Y*)illo 0 I 1,Y*DY1, )
D~'Ss S 0 Y1 0 I

Call K to be the composition of the first 5 matrices in the kernel; then it becomes

I 1,Y*DY1
det(] — Korm1) = det(I — K(O 0 | 0))

I 1,Y*DY1 0 1,Y*DY1
= det(I — ( 0 O))det([— (0 0 0)) (3.72)

K
0
1oyY*DY'1, ~
= det(/ ( to ) — K)
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The second equality is true since the second determinant is 1; the third equality

I Y*DY I -Y*DY I -
= 0 . Notice that both K and
I 0 1 0 7

10Y*DY 1y are on L?([0, 00), thus the Fredholm Pfaffian can be thought of as defined
on L*([0,00)) x L?([0,00)). We will use this new kernel in defining the multipoint

1s true since

formula. To prepare for the multipoint formula, we need to slightly modify Y*DY".
Let Y* = ba'a’,Y = b,a 'a”. In the one-point case, Y*DY = Y*DY since all
these operators commute; however, in the multi-point case, they will be indexed by
different variables.

The next thing is that we want to use the kernel in the form in , thus

(W) 0 -S DS\ (v —-v*DV

Lo 1y t)\bpts —s)\o 1%
<S DS) ((Y*)—110 0) (379
D7lS S 0 Yo

Now invoke the general philosophy from the full-space case, see remark (2.3.2)): In
the ij entry, the left piece is parametrized by {y;, s;}; the right piece is parametrized

by {y;,s;}. Now we can state the theorem.

Theorem 3.2.1. Assume that we start the half-space TASEP with the initial config-
uration having peaks at (x1,hy;. .., Ty, hy). The probability that at time t it is below

the configuration {y1, $1;* " ; Ym, Sm} 1S given by:

]P)((xh h17 e T, hn)t < {yh 157 5 Ym, Sm}) = Pf<J + JK)LQ([U,OO))"U (374)

where K is a matriz-valued kernel on m copies of L*([0,00)) x L?*([0,00)). That

means the kernel K maps {1,--- ,m} X R to a 2 x 2 antisymmetric matriz.
K(i,j,") = <@ ™) d s | T K
0 Licj(a,) %i(a) ™"
(3.75)

(0 1o as " Da""iY;1,
0 0
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where

F _ (W 0\ (-S Ds W* —W*a" Db, lal W
Yo \o 1) \D1s -8 L\ 0 W
S DS 1y 0
p's s ) \0 L

The second and fourth matrices are defined in (4.11)), with parameters being

(3.76)

li = los, s (T, 1) = (B + T — 83 + 1) /2

Ty = r075i_yi(f7 h) : (hl — T — s+ yi)/2 (377>
T =710 —an—nn({Yi, $i}) == (=8 — yi + T + hy) /2

The third matriz is the same object as in the one-point case, which only depends on
(Z,h) (Notice that | — 1 is Tprim)). Yi = b;la:fli, and

Jj—1 Jj—1
_ / ! /
= § :uka dij_ E :dk

k=1 k=1

U = (Yir1 — Yi — sim1 +80)/2, di = (Yir1 — Y + 5001 — 1) /2.

(3.78)

L d, records information from {y;, s;} to

Recall from the full space case that u
{Wir1, sit1 )

3.2.1 Kolmogorov equation

Proposition 3.2.2. (9, — £)/det(I + K) =0

Proof. For each K (i,-;7,-), we have (0; — L)K (i,-;j,) = 0, using the same proof as
in the one-point case.
Now we need to show that (0; — £) can go through the determinant. For the

derivative in ¢, we have

Oi\/det(I — K) det(l — K)tr(l — K)™'0,K.

From the proof of the one-point case, we know each L., K(i,-;j,-) gives a rank two

perturbation of a 2 x 2 matrix kernel, thus we denote it as G/H/. Define the following
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row vector and column vector:

Then

Lo, /det(I — K) = \/det(I — K — G Hy) — y/det(I — K)
= /det(I — K)(y/det(I — H,(I — K)~1G;,) — 1)

Again det(I — Hp(I — K)71Gy) is a 2 x 2 matrix, with the same structure as in the

one-point case, thus

(VAT —He(I —K)1Gy) — 1) = %u([ _K) 9K, (3.80)

]

3.2.2 Initial condition

Proposition 3.2.3. Given the initial condition (Z,h). Let h(x) be the height function
of the half-space TASEP associated with (Z,h). Let F(t,h) = P((Z,h), < {i,5}). Then

lim F(t, h) = 1(5,5)S{Z7,§} = Hﬁﬂh(yz)ﬁa

t—0

Proof. We analyze similarly to the full-space case. Notice that if there is a trough

h

(Yk, sk) outside the cone C#primterim - there are two cases.

Y

A

(fL'prim ’ hprim)
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Casel: y, < Zprim and g > hprim — Zprim + Y- In this case, it is clear that all the

troughs (y;, s;) for j < k are also outside the cone C¥primhprim,
In this case, r; = (r; — s; — x1 +;)/2 < 0 for all j < k. By definition, S5 =

— 7'"+T‘l-—l‘7l' . . .
0,D715” ;7 777 = 0 for the same reason as in the one-point case. Thus, in every

j-th column (j < k), K (i, ,-) = 1ie;(a) i (a,) "%,
Thus, the first k£ x k diagonal block of I — K is an upper triangular matrix of 2 x 2
0

1
matrices with matrix ( ) operators along the first k£ diagonal position, so the

determinant reduces:

det((1 — K);ll,jzl) = det((I — K);r;k—&-l,j:k—s-l) (3.81)
Case2:
,y\ (fl;prirn-, hprim)
(Y Sk

v

Yk = Tprim aNd Si > Nprim + Tprim — Y- In this case, it is clear that all the troughs
(i, 8;) for i > k are also outside the cone C%primhprim

In this case, 1 = (r, — s; + 2, — y;)/2 < 0 for all ¢ > k. By definition, ng{[’)” =
0, Dilsﬁf’rﬁ*li’li = 0, thus in every i-th row, K (i,-;7,-) = li;(a) % (a,) "% for i > k.

Thus, the last k£ x k diagonal block of [ — K is an upper triangular matrix of 2 x 2

matrices with matrix . O) operator along the last m — k diagonal position, so

the determinant reduces:
det((I — K)?ll,jzl) = det(( — K)f:l,j:l) (3.82)

Now we are ready to discuss the proof.
If all the troughs are outside the cone C#prim-prim then the configuration is already
less than or equal to {7, s}. We want to show F(0,h) = 1. In this case, the whole
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kernel I — K reduces to an upper triangular matrix with the identity operator along
the diagonal; thus, its determinant is 1.

Now assume there exist some troughs in the cone. Since what is outside the cone
does not affect the determinant, WLOG, we can assume that all the troughs are in
the cone. If there exists r; > w or r; > d, we apply the absorbing lemma (2.2.22)) to

reduce the kernel. The following figure illustrates when that is needed:

(mprim: h rim)

As we have shown in the one-point case, if the trough is completely above the
initial configuration, the kernel S%"J¥/ S7!i reduces to 0. Thus, if all the troughs
inside the cone C%vrimierim are of this type, the kernel again reduces to an upper
triangular matrix with an identity along the diagonal. Thus, we have F'(0,h) = 1,
which is what we want.

Now assume that there exists a trough (yy, ;) that is below the initial configura-
tion. Now we want to show the F'(0,h) = 0. To do that, we present an eigenfunction

for the kernel K with eigenvalue 1. Recall

Lici(a) % (a,) % 0 ~
K(i, 5 j,") = ( @)™ (a) / d;j> + Kij

0 Licj(a) i (ay)
0 1,Y*a7 “Dari—riy:1
+<0 s 0) o)

where

F _ (W 0\ (-s Ds W* —W*a 1 Db, lal W
Yo \o 1) \Dls -8 L\ 0 W

S DS ly 0
ps s ) \o 1
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Recall that in the one-point case we find the eigenfunction for the kernel in the form

v =S s\ (v —vov)( s DS\ (W) ~(v)yDV
mApts —s) o v DS S 0 1%

(3.84)

We write the last matrix as the product of three matrices.

((Y*)—110 0 ) (1 10Y*DY10) (10(}/*) 0_) (3.85)
0 Y/ \o I 0 Ly-!

and move the last matrix to the front using det(I — AB) = det(I — BA). Thus,
the eigenfunction of K (k,-;k,-) would be

ol = I 1,YyDYilo\ [1o(Y*)r 0 DS o)
S o I 0 1Y) \ =9 (6)

0
B (—1011:18%0 |50>> '

WLOG we can assume yg, s is the last trough in the configuration. From () we

(3.86)

know that is an eigenfunction of K (k,-;k,-) with eigenvalue 1. Now we show that

r=1 (3.87)
i 100)

is the eigenfunction we want. 0 in f is a 2 x 1 column vector with 0 entries.

Kf: K<277k>>fk‘60>

(3.88)

Thus, we just need to show that for 1 <i < k, K(i,;k)f =0
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Rk L(Y*); 0 -S DS\ (V* —V*DV S DS
1, R =
‘ 0 LYy ') \D'S -5/ \0 |4 D's S ],

(Y*) 0\ (I 1Y7DYil\ (1o(Y*), 0 St 80)
0 1Y%/ \0 I 0 Ly ! lk’ |60)

(3.89)

From calculations in the one-point case, the result of the last four matrices becomes

0 -
( ) Let H := a" b~ ' Db 'a’ % multiply out

S5 10)
-S DS V* —V*DV S DS
Dls -8 0 174 D7ls S8 l '
i k

— S WS + DSy W DT Sg — Seib W HW DSk —Sp W EDSIE + DS W SgE — Spi W HW Sgi
DTISPW S — Sy tW DTS + DTLSG W HW DTS DTISE W DS — S{TW S + DS W HW Sg

we have

Now compute

(=S5 W DSY™ + DST W Sgh™ — Spi W HW S54™ ) (— ST 160))

il e,k ll,n Thslk 1 ariliprr* Tk,lk 1,0 (390)
(D~ S WEDS " — S1o" WS + D™ Sg "W HW Sy )(S

do))

First compute
DSy W SgE™ (=St |80)) (3.91)

From the proof of the one-point case, we know that all the finite rank parts act S'm°
will be 0, thus we just need to consider DS%; rlloSg’“ll’“Sl’“ 160)

Sl““l T’“’l’“Slk’ |00) = / dy/ dzDs“ “(x y)sokl’l’“(y, )Sll’“’o (2,0)
"’k 1 (3.92)
/ 4=Ds (2, 0)s 1 (0, 2)550 (2, 0)

From Lemma ([2.2.27)), all of the terms are zero except when k = r, — 1. Thus we

have it equal to

2/ dzDslf”gi_Tm(x, 0)8(1):711(0, z)sﬁ’g(z, 0) (3.93)
0
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Since

| a5t 0,250 = 15350,0)s150,0) = 1
0

So DSiib”l()SSf“l’lkSif(’]o |60) = DSﬁgi_r’“ |00). On the other hand,
(—Soi W*DSy5* — Sy W HW S ) (=513 [do))

is still 0 since S5 W* HW Sgi™) (=S¥ [60)) = (=S5 W* DSty ) (— 51k |8)) for the
same reason as the one-point case. For a similar calculation, the second line in (3.2.2))

li,ri

gives Sy'5" " |do). Lastly, appending the first matrix, we have

. L(Y*);, 0 —DSYTITTE |5
K(Za ) kv ).fk |50> = ( ’ 0 ) ].OY_1> < Slia:;g”c |(50>0
i 1,0

T (3.94)
_ (DS )
Sio ey )
Now we compute
0 —10Y*alk_liDa”_’"kYk10
i “x 5

(0 0 Ji160)
(0 —1oY*ak =i Dami=" Yy 1, 0 (3.95)
~ o 0 —16Y, " S1 160) |
B <1OY;*aikliDaTirkSilj(’]0 |§0>> _ (10)/;*Dsigi_rk |50>>
B 0 B 0 ’

which cancels the first entry in (3.94)). Lastly, check

(a) i (a,) ¥ 0 I 10Y¥ DYl
0 (a)~%x(a,) "% | \0 I
1o(Y* DS™16
MRS 1 S |6) (3.96)
0 LYy =51 10o)
B (a) %k (a,) " 0 0
N 0 (2) 7 (a,) % ) \ =1oY, Sy [60)

Recall that
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/
im)

Tm — T = U,

lm—lZ:U im

(3.97)

U

/ /
Ty = T = Qs

0
—S55 T |3
(3.94). Thus, the proof is finished. O]

Thus, the last expression is ( ), which cancels the second entry in

3.3 Path integral version of the kernel

Here we want to give another version of the kernel, which is called the path integral

formula:

Theorem 3.3.1. Assume that we start the half-space TASEP with rate 1 > o > 0
with the initial configuration having peaks at (x1,hy;. .., Tn, hy),x1 > 0. The prob-
ability that at time t, it being below the configuration {y1,51;. .. Ym, Sm},y1 > 0 is
given by:

P(([El, hl s Ty, hn)t S {y17 S15-+ 3 Ym, Sm}) - \/det(I - KPI—S)LZ(R) (398)

where
Kpr_s = S Kiwit St Keinal, (3.99)
where | = (hy, + Tp — S + Ym) /2, and

Ko = Vi + D™V D = D™V DV,

(3.100)
Kool = Ve + D 'ViED — D7'VEDVy,

[ is a simple, positively oriented loop that includes w = 1/2 and w = (2a — 1)/2.
Vi is the kernel V' that we introduced before the theorem (see , parameterized
by the configuration Co s, —y, (T1,h1;- -+ 2, hy); Vi is the kernel V' parameterized by

Co—an—hy (Y1, =515 - - 3 Yms —Sm), with all indicator functions T replaced by I

This is called the path integral kernel since the final configuration information is
also represented in a symmetric way as the information for the initial configuration.
Also, the space of the kernel is on R. The following is another form of the path

integral version, where the kernel is a 2 x 2 matrix kernel.
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Corollary 3.3.2. Under the same notation and assumptions as Theorem (3.3.1)),

P((l’b by xy, hn)t) < {y1> S15- -3 Ym, Sm}) = Pf(J + JKPI—m)L?(R)

(3.101)
= \/det(l + Kp1-m) 12(R)x L2 (R)
where
=S DS\ [V} =ViDV, S DS\ (Vg VEDV,
Kprm = oo FOEEEEY(3.102)
D~'s -8 0 Vi D-'s S 0 Vi
0 1 : 1l
and J(z,y) = 10 Ozy- All S in the kernel are Sy,

There is a method in [BCR15] which is about transforming the kernel on m copies
of L? space to a kernel on L? space. However, the method can only be applied
formally in our scenario. Surprisingly, the kernel we derived in the end makes sense
and can be proven using the Kolmogorov equation checking method. Since the proof
is very similar, we will not redo it here. Rather, we show the kernel Kp;_, can be

transformed to Kpi_s. We write

L )00 ) e 905
s )00 s 9 (%)

and applying the identity det(/ — AB) = det(I — BA), we get the scalar version of
the kernel.

To see the kernel JK is an antisymmetric kernel, we write

Vi VEDVEY (Vi 0\ (I Dj2\ (I D/2\ (I 0
o Vv ) \o 1)J\o 1 0 I J\o Vg
I D/2

and brin
& (O I

I 0
) (0 v ) to the front using det(I — AB) = det(l — BA), we
F
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have
I DJ/2 I 0 -S DS Vi VDV,
0 I 0 Vp D 'S —-8§ 0 Vi
D x I DJ/2
( 51 S) (VF 0)( />, (3.103)
DS S 0 1 0o I

then it is easy to check that multiplying this kernel by the matrix J is antisymmetric.



Chapter 4

Scaling limit and the half-space
KPZ fixed point

4.1 Transformation of the kernel

In the kernel (3.74]), all the S operators are explicit, and a standard steepest descent
method can be applied. The W operator, which records the initial condition, is harder
to compute a limit. However, it has a nice probabilistic interpretation as a Brownian
bridge hitting some curves. We will first do some transformations on the kernel. Let
i y=mriify=u . . : .
0(y) = The strict epigraph of a function f is defined to
—oo if y # x; for all i.
be

epi(f) = {(m,y) :m € R,y > f(m)} (4.1)

Recall W is defined by

W= (I —-WTW T Was- - TWy_101 Wp),

4.2
Wi =a “a % Wy=a" W, =al 42
ii+l — & a, 1=4a, n+l = Ay,

. Let ExpWalk(W) be a random walk such that it has u; steps with Exp(1/2) —
2 jumps, then followed by d; steps with 2 — Exp(1/2), then followed by uy steps
with Exp(1/2) — 2 jumps, etc., and it ends with d,,_; steps with 2 — Exp(1/2). Let
ExpWalk(W), ;(z,y) be the transition density of the walk restricted to i-th to j-th
steps, starting from z, ending at y. Let 7 = min{i : ExmWalk(W), > —2r;}. Define

91
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the following hit operator:

o0

ExpWalk(W)"" (2, 2) = / dyP, (T = i, ExpWalk(W),; = y)ExpWalk(W), . 4(v, 2))
o (4.3)

Proposition 4.1.1.

W = ate” (TP FxpWalk (W)t e (2 Pad (4.4)

*
i=1

Proof. Pull out a%, a? outside the bracket and we focus on
a_"a*_d — TtWLQTt tee Tth_LnTt.

1

Notice that this operator is a combination of a;',a™! and the projection operator.

We write out their integral form:
a7 (@.y) = L eV 2 a™M(ay) = 1,5, 5002 (45)

Notice a;!(z,y) is the transition density of a random walk with Exp(1/2) jump to
the left, with mean —2; a=!(z,y) is the transition density of a random walk with
Exp(1/2) jump to the right, with mean 2. By composing them, we see that W, ;4 is
also a transition density function for a random walk, with a drift 2r; 1 —2r;. Since all
Wi i1(x,y) only depend on the difference of x,y, we can do a shift of ¢ of the whole

operator, and get:
e_tD(a_“a:d — TOWLQTO . -TOWn_LnTO)etD.
Then we want to shift the starting and endpoint of W; ; to make it mean 0, i.e., write

(a_“a;d — TOWLQTOW - 'TOWn—l,nlo)

—u — _ ——2r _ ——2rg
— (a ua*d —e 2T1D1 627’1DWL26 27‘2D1 .

27— _ ——2h
T e P,y e 2P e ) (4.6)

_ —2r D (627‘1D

_ —d — ——27r _ ——2r9
e a ua* de 2rnD 1 €2T1DW172€ 2’/‘2D1

2rp—1 _ ——2h
1 n €2rn_1DWn,17n€ 2rnD1 n)€2rnD
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Denote

Phit(y,y) = (e Pava de 2D — i eZ”DWLQeQ”DT_ZTz . -T_%"*l627"*1DWn,1Tne_27"DT_2h")(x, )

(4.7)
All the translation operators will make all W;, a mean 0 walk; we denote it as
Wi The is the probability density that a random walk W7o, W35, -+, W2

A n—1,n’

starting from z, ends at y, being greater than —27r; at x; for some i; we denote it as
P (z,y).
We want to further rewrite the probability.

P =1 5. a"a %+ 21727‘1 Wiiloor WiiaiWisiivo - Wi (4.8)
i=2

This formula means that the probability is summing over the probability that the
walk first hits the curve at the i-th wedge. Each term in the summation reads: the
walk does not hit in the first : — 1 wedges, then hits at the i-th wedge, then the walk
can go to the endpoint freely. Using the notation we defined before the proposition,

we have .

Pt ="y " ExpWalk(W)"".
i=1

Thus the statement is proved. O

Lastly, we want to write out the kernel coefficient explicitly in (3.74)). Recall

o — -S DS W+ —Wra b~ !Dbtal W
To\pts —s) o\ o W

S DS
DS 8§
Yj»Sj

The second and fourth matrices are defined in (4.11]), with parameters being

(4.9)

-

li=1los;—y: (T, h) == (hyy + Ty — 8 + 1i)/2
Fi = Toay (T, 0) 1 (hy — 21— 51+ 43) /2 (4.10)
T = 10,z —ha ({Yir 8i}) = (=i = yi + 20 + hy) /2
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-S DS\ [ =Sy DSy
D7's =S) Sl spy

r'r Lr+r'—1 (411>
S DS o 50,0 DSy
- T r 7“ "1l ror!
D-'s S s D-15™ 0.0
~ My, M
Multiply the matrices out, we have K;; = " 2 , where
My Mo
My = =Sy WS S“’T’W*HWD LET T L pgrri iy prtg Y,
M12 = Tz,TZW*DS ]7T]+T _'_ Sn,rlw HWST,77T] + DS L,?"H-?“ zWST],r 7
My, = D™ W s — DT EW D 15’”” b
],7"] rj-l—r Ll

lj,rj—i-r lj

ST“ “W*HWS””" WS
(4.12)

My, = D*lsﬁf{ DSy

We analyze My, term and the rest are the same. Using Proposition (4.1.1f), we plug
in

W = a“e_(t“”)D(Z EXpWalk(W)hitk)e(t+2h”)Daf

k=1
ExpWalk(W)"* (2, 2) =
/ dyP, (1 = k, ExpWalk(W), = y)ExpWalk(W)k’qud(y, z))
—2ry

into the formula. The ExpWalk(W), . (v, 2)et+2m)Pad can be absorbed into S since

y > —r;, i.e. we have

ritri—1;l;
1o, ExpWalk(W), . 4(v, -)e(t+2h")Da‘iD_1S_]f1] Y
TE— Ik S5 =Y Tk+zkfsj+y]~ (413)
-1 oy € (t+2r2)DD 1S 1 ’ 3

The reason for the change of shift operator from e(*+2/)0 to e(t+276)D is that in order
to absorb random walk transition density into S, you need to change it back to the

original walk that is not mean 0.
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To use a simpler notation for the indices, define

TE—Tp—Sj =Y rk+:ck—3j+yj

=8, = = (4.14)

'rj +r iilj

SC(bezm Yk) '—S

We would like to mention this is a ”posteriori” notation. All the terms that come
into the coeflicient in S will be in the form (r; — zx — s; — y;)/2 with the restriction
that r, x comes in as a pair, s,j comes in as a pair; the sign for r is always positive;
the sign for s is negative; the sign for x and y in the first and second superscripts are
different; i.e. as long as we record the x and y in the first superscript, we know the
whole S.

Further, to use a similar notation as in [MQR21], we define

1Sepl Nz, 2)

=> / P,(r = k, ExpWalk(W), = y)e(! 2P D=1 G =8t ity

k=1" 2"k

(4.15)

li,ri+ _
Now the last term in M;; reduces to DS'T’ ril ate~ (tth)D = lSepl y’, we want

to brlng all the a* into S. When a hits S, it will generate boundary terms

li,ri+ri— ll,errr —1; .
By " which is equivalent to having Sy "(z,—x). Since l; —r; > u and

ri <;, thus by Lemma (3.1.19)), all the boundary terms are 0, and we have
z1thy—sity; hi— 11 Si—Yi

L ridri—l; _ , _ epi,—
Dsll,,ll iTligUe (t+2'r’1)DSepll,{ — DSl ) 2 (t+h1 DD IS p

4.16
_ DS $17y1) o~ (t+2r1)D )~ 1Sepl —Yj ( )

Now we look at the first term in M4,

W* = ade—(t-‘rth)D (Z EXpWalk(W)hitk ) *€(t+2r1)Da§:.

k=1

Al (3, EXpWalk(W)hit’“) can be brought into Sg'y", and it becomes (S PV To

bring a¥ into , there will also be boundary terms, 0,0 "(x,—x) where i < u.
Notice
/
i =T —u

=2ry — 2y,
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which is not necessarily positive. However, in the scaling limit we are going to con-

—3/2

sider, y; ~ e~ and hy ~ ¢ , thus we can assume that h; —y; > 0. So, we can bring

u T
ay into Syl © and

’o —sj—yj+zl+h1 hl—zl—s]-+y]
atS§ril — g 2 , ) S(Ih Yj)
*~0,0 — *~0,0

7‘]+T‘ lj,lj

Lastly, the second term in M;j;, which is SO "WEHW D 187 . Using the
same arguments above,
WD~ 1STJ+T g — g 7(t+h1 DD 1Sepl —Yj
(4.18)
ST‘z,T‘,LW* — (SS%I,—yi)*e(t-l—QTl) aY
Recall H = a"'b~1Db_ ! Db 'a’!, so putting them together, it is
(Sg%i,*yi)*e(t+2r1)D ugr— l-b 1Db 1yr— lauef(t+h1)DD 1Sep1 —Yj
— (S(e)i))iﬁyi)*e(t+2r1)Darfl+ub—1Db*—1a:Jruflef(tJrhl)DDfl Sipll:l—yj (419)

- epi,—y;\* (t+2r1)D _—z1}—1 1. —x1 ,—(t+h1)D y—1 Q€PL—Y;
= (Soh ")"e a b~ 'Db la, e D= 57

The second equality is due to the a, a, commuting with b= Db !. The third equality
is by definition that r +u —1 = —z;. Up to now, we have transformed the kernel M,
into the form in which we will apply the asymptotic analysis. For M1y, My, Msys, the

analysis is the same; we will just write them out in the form we want.
My, = _(S(e)%i,yi)*€(t+2r1)DS((f:01ﬁyj) + Dsﬁci,lyi)6—(t+2r1)DD—1sip1i:;yj
—+ (88%7%)*€(t+2r1)Da_x1W%*_1a:$16_(t+h1)DD_ISip11:;yj

My = _(Sg%i,yi)*€(t+2r1)DDS§f_hyj) + Dsf_liyi)6—(t+2r1)DSS%7yj

iy, 11171 —1. — — epi,y;
+(Seplyyz)*e(t+2T1)D CC1b 1Db 1a 9316 (t—i—hl)DSO% Yj

—1 qepi, (t+2r1)D (z1,~y;) (z1,—y:) t+2r1)D 1 epi,—y; (420)
My = (D™ 5% Trelitery S0’ 1) Gl g (2 DS, 7

)

+2r _ _ —(t+ _ epi,—y;

( ISepl Z)*e t 2 1 xlb lDb* 13.4< Il@ (t hl)DD 1S le Yi
p +2r1)D T, T1,—Yi) —(t+ D ~epi,y;

M22 - D ( e 1 yz)*e t 2T1 _DS ! yj — SO( 01’ 1)6 (t 2T1) Si,(i Y

T epi,y;
_( ISepl Vit t+2r1)D $1b 1Db 1y :c16 (t+h1)DSO% yy.

4.2 Point-wise limit of the kernel

Now we are ready to consider the scaling limit of the TASEP height function.
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For £ > 0, the 1: 2 : 3 rescaled TASEP height function is
he(t,x) == e'/2[h(2et 732, 267 1x) + e 3/%t). (4.21)
This corresponds to scaling the initial condition diffusively,
he (0, %) := /210, 2¢ 7 x). (4.22)

This scaling corresponds to studying the scaling limit to perturbations of density 1/2.
General density p could also be analyzed with the same method.

We have the following scaling on all the variables:

£ =232, S = V2, 7%, 75 = 27 'x;,

: (4.23)

_ —1/2 £ __ —1
s;=e s, yf =2y

For the injection parameter «, we can either fix a @ > 1/2, in which case one can
derive the formula in the symplectic-unitary transition scheme, or one can weakly

scale the parameter around 1/2, which is the case we will consider in the following.

We scale 12
1
o= P (4.24)
2
The state space we will work with is
UC := { upper semicontinuous functions § : [0, 00) with (4.25)
f(x) < C(1+ [x|) for some C' < 0o and h(x) > —oo for some x.} '

For any function f : [0,00) — [—00,00), we define the hypograph of f as

hypo(f) = {(z,y) : y < f(2)} (4.26)

A function f € UC if and only if hypo(f) is closed. We define the metric on [—o00, 00)
to be |x — y| = |e* — €¥|. Let dy be the Hausdorff metric: for X, Y be non-empty

subsets in a metric space (M, d)

dy(X,Y) =max{supd(z,Y),supd(X,y)}.

reX yey

h, — h in local Hausdorff topology if for any M > 1,

dp (hypo(hn)ljo,a11, ypo(R)[jo,n1]) — 0O
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. UC is a Polish space under this topology. The Borel sigma algebra can be generated

by the finite-dimensional set:
{fe UC:f(x;) <rji=1,--,n}.

We use LC to denote the set of functions f such that —f € UC.
Before we state the convergence results, we need to develop some notation for the

limiting objects. Let us recall some operators from [MQR21]. For t > 0,

2mi

St,x(zl, ZQ) - = 1 /W/g dwetw3/3+xw2+(z1_z2)w
- (4.27)

2x3  (z1—2z2)Xx

=t V332 Ai(—t73(zy — zp) + t73%2).

where C7/% = {a + re™3 : 1 € [0,00)} U {a + re"™/3 : 1 € [0,00)}. This is the
integral kernel for the operator eX?*+t*/3 For t = 0, the operator is still well defined
for x > 0. For t1,ty > 0, it behaves like a group, i.e. S¢, x,;S¢,x0 = Sty+t0.x14x2-
One useful property of the operator is: S_tx = (S¢x)*. We are going to use some

variation of this operator.

b
St”b‘(z17 22) = / Metw3/3+xw2+(@*§2)wdw‘ (4.28)
v cxr (—w+ p)°

aw

where a,, < —|p|. Define p = p — D,p, = p+ D For h € UC, define
S (21, 25) = Ep(0)—n[SEy T (B(T,22)) Lrcoo). (4.29)

where B(z) is a Brownian motion with diffusion coefficient 2 and 7 is the hitting time
of the hypograph of h. When b is clear from the context, we will omit it from the
superscript.

Now we are ready to state our main convergence theorem.

Theorem 4.2.1. Let hy € UC. Let h°(t,x) be the rescaled TASEP height function
defined in (4.21). Assume h®(0,x) — bo in UC in distribution. Then for any y; <
< VYm € [0,00),Sl,“' »Sm €R7

li_l’)l(l)P(h%t,Yl) < S1,° ,hs<t,ym) < Sm) = Pf(J + JKfp)(LQ[O,oo)xLQ[O,oo))m (430)
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where K™ is a matriz-valued kernel on m copies of L*[0,00) x L%[0,00), given by

siD o (y;—yi)D? ,—s;D 0 .
fp".',_',e € € fpr: ..
K (Za 7]7 >— 1'L<_7 ( O e_siDe(yj_Yi)D2€SjD> +K (Za 7.77 )
N 0 esiD+YiD2p—le;le_SjD+ij2
0 0

(4.31)

where K s
esiD 0 _(Sh}g)o(ho) t,}’z> DS;’ETleri I €2x1D2p_1Dp;162X1D2
0 e—siD ( ShypO ho),t, yl) S(;F)’Xl_yi 0 I

Sop Y DS\ [e=P 0
D! Sliyll?f(ho)yta—Yj Sgi)po(bo),tan 0 eSiD
(4.32)

Now we state the convergence theorem for each of the components. We will add
one more subscript in .S to denote that all the variables in .S are under the scaling we
are discussing.

Tt —SitYi TR TR —Si—Yq

Proposition 4.2.2. Recall S;5" =S = 2 7 % | Let 2§ = 2e /%2, 25 =

2671/2Z2.

( —1/2)a b —1/2S:Jck,yz (QTi)DQ(Zi,ZS)

3 , (4.33)
— /Tr/3 ww—:—pp tw5/3+(Xk+y'£)zz+(Z2*Z1*Si)wdw —. (S’;fbik+yz>*<zhz2 . Sz‘)
Where a,, < —|p|. For Saepblg],
2(6_1/2)(1—()6—1/20‘5’2?’75] (Zi, Z2> N ShyPO(f)O)’ Yi (Zl, ZQ) (434)

Proof. Recall the definition of S;Jb in equation (3.7). Plugging in all the scaled vari-

ables, we have

Tk ,Yi
a,b,e

1/2
:/rdw((_zguw++p;1/3> exp{e™¥ fi(w) + &7 fo(w) + &7 fo(w)}

—2r{D

e o(21, %)




CHAPTER 4. SCALING LIMIT AND THE HALF-SPACE KPZ FIXED POINT 100

where

fi(w) = —2tw + t(log(1 + 2w) — log(1l — 2w))/2,
fa(w) = —2x;(log(1 + 2w) + log(1 — 2w))/2, (4.35)
fa(w) = — (221 — 229 + 2rp)w + (ry — s;)(log(1 + 2w) — log(1 — 2w))/2

we have f](0) = f/'(0) = 0. We want to move the contour to C§/3 since this is a path
on which the real part of f; is decreasing ([BBCS18b] Lemma 5.9). We also check
here for completeness. Re[f1(re*™/3)] is —%(4r+log(1 —2r +4r%) —log(1+ 2r +4r?)).

dRe[fi(re*™/3)]  8(r?+42r')t

dr 14492 + 1674

And clearly, for any x; > 0, there exists ¢;(x;) > 0 such that Re[f;(re™™/3)] < —¢;
for 7 > k;. But we cannot directly move the contour to C /3 since there can exist
poles at +¢1/2|p|/2. We need to make a small blip at 0 to include the pole. We use
the same contour and notation as in [BBCS18b]. The contour C|p],p > 0 is defined

as in figure (4.1)).

Figure 4.1: The contour C|p].

Fix N > 0. We will first cut off the contour outside the ball By(N). The error

would be

(2w + pe'/?)? s B -
dw exp {2 f1(w) + e fo(w) + e 2 f3(w
/(,*g/3mBO(N)c (—2w + pe'/?)e xp { h(w) fa(w) fa(w)}
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Parametrizing the curve by {re*/3 : + > N}. For € small enough, there exists ¢ such
that

Re[e ™2 f(w) + e fo(w) + e 2 f5(w)}] < —ce™/?r,

and the term not in the exponent is bounded by c|r|l9*1®l thus the integral would be
O(e‘ce_S/QN), which goes to 0 as ¢ — 0.
Now we focus on the contour that is C[p] N Bo(N). We take the Taylor expansion
of the exponent and do the change of variable w — £'/2w/2, and derive that
w?
() 7 o)+ ) (Tt wtx —wln s )
= 20wt 4+ wix + w?(ry — ;)

Denote O(t,x,11 — 8;) = O(w*t + w3x + w?(r; —s;). All the extra (¢1/2)*% cancels
the one from (4.33). What we have is

b 3
/dw(<w+—p)a exp {(w—t +w?x —w(zy +5 —29) +720(t,x, 11 — ;) },

—w + p) 3
where the contour is 2e7/2(C[p] N By(N)). Using the bound that |e* — 1] < ell|z|,

if we want to eliminate the error term in the exponent, we pick up an error
¢s! POttt W (=) 120 (e 4 wx + w? (1) — ;)
(]
which is less than
N O trwixtwl(ci=s)) N O(wt 4 wx 4+ w'(ry — s;))

Since the contour is in the ball By(N). The integral over the circular region in
2e-1/2(C[p] N By(N)) is bounded which in &, for the part on Ci/*, by choosing N
small enough, we can ensure the coefficient of w? in the exponent is positive, thus w?
will have exponential decay along C /3, By the dominated convergence theorem, the
error would be O(¢'/2) which goes to 0.

Lastly, we append the contour 2e~Y/2(C[p] N By(N)) to infinity. Similar to the
cutoff in the first step, due to the exponential decay of the exponent, as € — 0, the

error of appending the contour goes to 0. Thus we get the desired result. For Ssii’gj
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, recall the definition:

a,b,e

SV (5 2) Z/ = k, ExpWalk(W), = ng,)e(HQT’“)DS;f’“*yj(23, 29)
—2'I"k

Now we plug in the scaling, also scale z§ = 2e~/2z3, we have

(871/2)a7b2€71/296 2r%) DS Tks—Yj N S Xk —Yj (Zg,ZQ + Sj)

a,b,e

The reason that the ¢ is not present in the scaled shift operator is because 7} =
e732¢ 8_1/2I‘k, thus we need to re-shift by ¢ to place the random walk in the

correct scale, thus it does not appear in the scaling. Now the probability becomes
Py 1y2,, (7° = ke~ ', ExpWalk(W,) = dz5).

The walk now takes steps Exp(1/2) —2 and 2— Exp(1/2), which has variance 8. Since
we are diffusively scaling the random walk, with an extra factor 2 on the space, thus
the walk can be thought of as a walk with steps (Exp(1/2)—2)/2 and (2—Exp(1/2))/2,
which has variance 2. Thus, by Donsker’s theorem, ExpWalk(W.) converges locally
uniformly to a Brownian motion with coefficient 2. Moreover, since we reflected the
start and endpoint, now 7° is the hitting time of the hypograph of Dg rather than
hitting the epigraph of 0%2’;. Using Proposition 3.2 in [MQR21], we have 7 — T
in distribution, where 7 is the time of Brownian motion B hitting the hypograph of
ho = lim._,o Dgz. Thus

2( —1/2)(1 b _I/QQSZI;)I?J( 1,22 —>/dk/ dZ3]P)zl(T —k B —Z3)S lg (Z3,Z2+Sj>

= Shypo bo)t:—yi (Zl, Zo + Sj).

(4.37)

]

This is the main structure of the kernel. Now we look closely at the exact kernels
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in (120).

My = (Sepl yl)* (t+2r1) DS T1,-Y;) + DS $17yz f(t+2r1 DD ISepl
+ (5’8%17%) (t+2r1)D —r1b—1Db—1a—m1 (t+2r1)DD 156p1
My, = (Sepl yz)* (t+2r1) DDS :tl,y] + DS J:1,y1) —(t4+2r1) DSep1 Vi

+ (Sepl yl) (t+2r1)D a1 bfl Dbfla—arl —(t+2r1) DSepl 'Y

M21 — ( 1Se pi,— )*6 (t+2r1) Ds(l"h vi) S(()ﬂi)ly i) —(t+2r1)DD 1Sepl —Y;
( 156 pi,— z)*e(t+2r1 fxlmafxle (t+27’1)DD 1Sepl ~Yj
Myy = D™ ( epl z>*€ (t+2r1) DDsil’llyj S(xh i) (t+27‘1)DSep1=y3
. ( lsepl yz)* (t+2r1)D a p— 1Db 1 —x1 —(t+2r1)DSeP1 y]

There are multiple D, D~! appearing in the kernel. Notice that since we scale
the space by 2e7%/2, each D in the new space becomes ¢/2D/2, and D~' be-
comes 2¢~/2D~!. Then looking at a*“W?b*_la;‘“, if x; is scaled diffusively, i.e.
2§ = 2¢7!x, then by the central limit theorem,

1 —1/2 2 —1/2
625 1D N €X1D 7 e 2e z1D _ e

mE
a’i Ay

The drift terms will cancel each other since W(w, y) only depends on x — y. If
x{ is not scaled diffusively, i.e., if z; always has a fixed distance to the origin then
2§ — 0, and what is left is just W Lastly, using the explicit formula in (3.1.3),
we directly have the limit of the operator b=*Db_ :

2e/2b~1 Db L — p~Dp;*
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Now we can combine all the ingredients to write out the limit for the kernels above
2672 My — 5 [ — (Sppertyiysgla Yy DGyt Lyt
+ (Sg%pO(bo)t,yz)* x1D W x1D’y~ 1sliy1pi> bo).t, y]}e s;D
4e My — 5P [ — (S Mt DS 4 DS b gpee ey
My, — =P {(D LGP0t YiyrglaTYs g by p -1 gy (h) 6
- (DIShyf?f(hO)’t’_yi)*e"lDQWe’“DQD1Shyff(h°)’t’_”} 5P

28—1/2M22_>6—siD [D (Shylpf(%)t yz)*DStX1+YJ S tx1 yzsg%pO(ho)t,yg

. (D—1slly1pf(ho)7t,—yi )*exlDQp—le*_lexlDQ Sg%pO(ho),t,yj] SiD

We write this in matrix product form.

esiD 0 _(Sg}bpo(ho)vtybﬁ')* Dsl—’gcﬁyi I e2x1D2m62x1D2
( 0 e—siD> <<D—1Sfiy1rj<l>(ho)7t,yi)* S&g,xryi > (O I )
( SHES DS} ) (est 0 )
D- 1S}iylpf (ho)t,—v; Shyp0(ho 4y 0 D

(4.38)

This completes the pointwise asymptotic analysis for K (4, j,-) in (3.74). There
are two other terms required in (3.74)) that require analysis.

(a) " (a,) % (4.39)

where wj; = (y; —yi — s +5:) /2, d; = (y; —yi+5;— si)/2. This is the diffusive scaling
of the transition density of a random walk; thus, by the central limit theorem,

21/2(a) Wi (a,) s — P3P 5D

/ U 2 (440)
26 12(a,) i (a) % — 8P eViTyi)DTpmsiD,
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Lastly, for the element Yi*aij_liDa”_Tij,

_ gt ] L=+ —1;
48 1}/;*DY7 — aT‘z ri+r; lzb_lDblla*J L B
_— (€0 E 1 E
_ QST ) 2T P T Y T/ (4.41)
. D2
N €SZD+yZ p- le st+y]D

4.3 Trace Norm bounds

Up to now, we have shown the pointwise convergence of the kernel. In order to show
the Fredholm determinant convergence, we need to show that the kernel is convergent
in trace norm; thus, we now want to give a uniform bound of all the kernels above in

trace norm.

Proposition 4.3.1. Define M;. as the multiplication operator such that

My f(x) = " f ().

For any 0 < § < 1/2, the operator M_ |p|DS(x1’yl) ~@r)Pp- SepfngM|p| is bounded

in trace norm, uniformly in €.

Proof. In this proof, it should be understood that all the intermediate space vari-

ables zq, 2o - - - are scaled versions, which is 2¢71/2z1, 2e~1/22,, - - - . We start with the
operator DS}’ xl’yl e~ )P D= 1Sip11 2 (z1, 1), which is

/dzg/ dk/ng]P)ZQ(TE =k, ExpWalk(W), = dz,)
0

S (21,20 + 200) S T P (25, 24). (4.42)

Using the fact that

@A), < / dz; / dk / dzsP,, (7° = k, ExpWalk(W)_ = dz,)
0

NS (2, 20 4 200) ST (23, 24) 1.

(4.43)

Notice that the last operator is a rank-one operator in variable z;,z,. Using the fact

that the trace norm of a rank-one operator is the product of its L? norm, i.e.

1) Cglllx = [1fllz2llgl 22
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Also, appending the multiplication operator M)y, M_,|, the trace norm becomes

[ / dzve 2P (ST (2, 2y + 211))2) / dzae?P (S0 (g 2,))2) V2

The probability term is well understood from classical theory. We cite the following
result in [MQR21]: there exist £ > 0 such that

(zo + C(1 + k)?
k

P,,(7° < k) < exp{—k } (4.44)

From (4.35)), it is easy to see that there exist ¢1, co > 0 such that

€272

Hsfﬁfﬁ)(zhz2)|\m <ce

since the error in the convergence does not depend on variable z,. The e2lPl#1 ig

172 p| will not have decay at co. Thus the

required since otherwise the residue from —|e
dzs integral is convergent. For z3 and k, first z3 is the place where the ExpWalk (V).
hits the initial condition. There is a natural bound on the place it hits; by our
assumption on the initial condition, we have z3 > —C'(1 4+ s). On the other hand, a
mean 0 random walk with finite variance almost surely cannot grow linearly; thus,

z5 < 7y + ¢ '/%s. For the bound on HS(_kl’E?)(z?), Z4)|12, it is

) ) ) ) 62F(wl)-i-F(wz) 1/2
dw / dws(ep® — 4wy)(ep” — 4w ) 4.45
(/;1 1 o 2( P 1)( P 2)25_1/2(w1+w2) _2|p| ( )

where F is the expression in (4.35). Here we define F(wy, k) = e 3/2f; + e f
(notice that x in becomes —k ).We do not need to add terms involving ry, since
we do not consider the regime that ry is large; we do not need to add z3 since it is
not involved in the expansion of ¢.

Solving 0y, F(wy, k) = 0, we see that two roots are 0 and £'/?k/t. Now we want
to move the contour to the critical point £'/?k/t. WLOG we can assume that k is
large enough (since we want to investigate the integrability in k) so that we do not
encounter the pole at 267V/2(w; +w,) — 2¢'/2|p|. On the other hand, we also will not
cross the other pole at 1/2 since if 1/2k/t > 1/2, the integrand in is analytic

and the whole integral reduces to 0. Thus, we simply take the contour to be C:l//?;k It
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i.e. {e2k/t +re*™3 . r > 0}. We show that the real part is strictly decreasing;

d(e732f1 + 71 fy) (eY?k /t 4 retT/3)
dr

B (4rt2(2rt? + 4r3t3 4+ 12k (t? — 4ek?)) 0
T (R332 + 267k + (—1+ )0 (322 + 262k + (1 + 1))

(4.46)

Notice that (t? —4ek?) > 0 exactly because of our restriction £'/?k/t < 1/2. Now we
can use the value of the integrand in (#.45)) at £/%k/t. We can write F(w,z) in the

following form

Fw, z)
Stw? 3 n—1
=( — 4w*r) (e%w)* 4 (8tw® — Sw’x) Z (M)
3 = (2n+1)n = (2n+1)n
3
= (w? + wa)v (e2w) 4+ (0 + 2w’z vy (e ?w)
(4.47)

where both 14,15 are uniformly bounded in absolute value and non-negative. So

plugging w = £'/%k/t, we get that there exists § > 0 such that

~ 3
F(eY?k/t,k) < —é — 5)11?—2.

3
So (4.45) € O(e*(%*‘s)%), which clearly makes the integral in (4.43)) convergent.

Thus, the trace norm is uniformly bounded in €. O]

Next, we investigate the other type of kernel in (4.20)), the term
(Sg%i,yi)*eQﬁDafxl b_lDb*_la;xl e—2riD p—1 Siplijl_yj‘
Write out the integration:

/ Shoe Y (22,21)Py, (7° = Ky, ExpWalk(W), = dzs)
22,23,k1,k2,24,2Z5

(am e lip T Db, Ta" v ) (25, 24) - P, (75 = ko, ExpWalk(W)_ = dzs) (4.48)

—ko,—y,
'Sé,o,; Y1) (25, 2)
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Using the same procedure,

IS < | Py, (+* = ky, ExpWalk(W), = dz,)

2,23,k1,k2,24,25

( ”+“_lib_1Db;1a”+“_lj)(zg, z4) - Py, (7° = ko, ExpWalk(W), = dz;)
1SS0 ™Y (29, 21) S5 027 (25, 26) 1

(4.49)

The middle operator is the differential of a transition probability; there exists c1, co >
0 such that

(am-l-u—lib—lDb;larj—&-u—lj)(ZQ’ Z3) S 601Z2+cgzg‘
From previous calculations,

2
P,, (1 <ki) < exp{_H(ZQ +C(1+k))

}

k;
(4.50)
C(1 4+ ky))?
Pu.(r <Jo) < expl - ORI,
2
Also with a bound on z3, z5 that
—(C + 1)k1 S Z3 S Zo + €7lk1 (4 51)
—(O + 1)k2 <z <z3+ 5_1k2 ‘
Together with the bound for 5’0 k1,=yi) SO ki) i ki, ko,
S50 ™ < e Si T e < emekd (4.52)

Combining these together,we can see that is finite. Analogously, one can show
that all the components in the kernel are uniformly bounded in the trace norm.

Now we can show that the kernel converges in trace norm, following the argument
in [MQR21].

Theorem  4.3.2. The operator DS’ (m1.91) o= (2r)D D)= 136"1‘;;? converges  to

—t, hypo(ho),t,
DS, Y DS 002855 i trace norm.

Proof. By Donsker’s theorem ExpWalk(W)_ — B uniformly on compact sets, where
B is a Brownian motion with diffusion coefficient 2. By [MQR21] Proposition 3.2,

P,, (¢ = k, ExpWalk(W)_ = dz,) — Pg(0)—s, (T € dk, B(r) € dz,)
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as measures. Since it is uniformly bounded in €, we can restrict k,z,,z4 to com-
pact intervals, on which the measure is finite. Lastly, using || [ fedue — [ fduli <
| [ fedpe — [ fduc|li + || ) fdue — [ fdpl|1, the first term goes to 0 by the dominated
convergence theorem (recall the norm becomes L? norm on a rank one operator),
and the second term goes to 0 since p. — p weakly as a finite measure and f is
bounded. O

The pI‘OOf of the kernel
1,9 € — — _9r€ —1 €epi,—y;
(SS%’yl)*€2r1Da *1p 1Db* 1a* e 2T1DD IS le yj.

is the same. Thus, we showed that our kernel in (4.20]) converges in the trace norm.

4.4 Tightness and Markov property

To show that the limiting probability function is the transition probability of a Markov
process, we follow the same scheme in [MQR21]. Since the argument is very similar,
we just point out the method and what is different and needs to be checked in the
half-space case. First, we want to show the tightness, which is a result of Holder

regularity. We want to show

Proposition 4.4.1. Fizt > 0, assume the initial condition of TASEP h=(0,-) — by
in distribution, in UC. Then for each B € (0,1/2) and M < oo

Tim Tmnsup BB (6) s 0.1 > A) = 0 (453)
—00 =0

From the regularity, we can get the tightness; see the section on tightness and the
Markov property [MQR21] .

Tightness gives us that P(h(t,x;) < ry,---,b(t,x,) < h,) is a probability dis-
tribution for each fixed t. We want to show that as a process t, it is the transition
probability of a Markov process. Using the fact that the convergence we proved is
uniform over initial conditions h(0,-) in sets of locally bounded Hoélder S norm for
0 < 8 < 1/2, using Lemma 3.10 in [MQR21], it finishes the proof of the existence
of a Markov process with transition probability given by , which is the the
half-space KPZ fixed point.

Thus, in the following section, we just need to show . To prove this, we use

a version of the Kolmogorov continuity theorem:
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Theorem 4.4.2. Let h(x) be a stochastic process defined for x in an interval [0, M],
such that for some p > 1 and a > 0,

E[[b(z) = b(y)["] < Cilz —y|"*e.
Then for every 5 < a/p, there is a constant Cy = Cs(p, c, 8, Cy) such that
P([olls. 00 = B) < CoR™F (4.54)

We will fix t = 1 afterwards since the bound is only in the spatial variable. Let
h® to be the rescaled TASEP height function. Let hj, to be the cut-off:

hi(y) := (h*(y) A N) V (=N).
The reason we can have this cut-off is that

limsup limsupP( sup |h*(y)| > N) = 0.
N—o00 e—0 y€[0,M]

Let F*© be the cumulative distribution function, i.e. F¢(yi,s1;y2,82) = P(h®(y;) <
s1,h%(y2) <'sg). Use [MQR21] Lemma C.3, for p > 2,

N N
E[|hs (y1) — b (y2)[] = p(p — 1) / / ds1dsals, — sof? ™
-NJ-N

[F(y,81)1s,<s, + F(y1,82) 15,55, — F°(¥1,51; Y2, S2)]

(4.55)

We analyze the case that s; < s, first; the other case is the same. We want to bound
/ dsidss|s; — 82|p72[F5<y7 s1) — F°(y1,81;¥2,52)] (4.56)
—N<s1<sa<N

by C(N)|y1 —y2|'t for some constant C'(N). The difference of the two square roots

of the determinant can be bounded by

Vdet(I — A) — +/det(I — B) < NI Jlr N |A — B|| el Alh+IBlh+t

The fact that the denominator is bounded in both yq,ys is because we have the cut-
off at N and both square roots of determinants represent a probability CDF. Since
from (4.3.1]), we know the terms on the exponential are bounded, it remains to bound

|A — BlJ|1, where A, B are the corresponding kernels for F(y1,s1), F*(y1,81;¥2,S2).
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Here we need to use the path integral formula for the multi-point distribution (3.3.2]).

Recall from ((3.102))

—S DS\ (v —VyDV; S DS\ (Vi ViDVie
Kprowm= | . ° . (4.57)
p's —s)\o v p's s )\o v

Using det(I — AB) = det(I — BA), we bring the first matrix to the end. Since the

second matrix does not contain any information about the final configuration, we

S DS\ (Vi ViDVr\ [ —-S DS
p's s)\lo v DS -8

In the one-point y,s; case, the kernel is

focus on

Shila DShh a¥iblpa Yib~! ayfblga*yib_lDb*_la*_yi10af§b*
D-ighh gl 0 a, " b, 192l b,

—Shh DShsh
\p1gun _gun
€
(st DS (1o leatib Db lal 'l [ —Sigt DSV
D7'Spit Sigt )\ 0 Lo DTSyt —Seht )
(4.58)

where Iy = (hp + 2 — $1+ 11)/2,71 = (hp + T, — $1 — 21)/2. In the two-point

Y1,51;Y2,S: case, let W' = (I — a“/TOa_“'a_d/TOa‘f/) the kernel be

*

- Y1ty
Sgab DSf(’)TZ (W/>* (W/)*a— yl;yZ b_lDb*_la*_ 15 QW,
D-lSgy"® Sy 0 W’
st psi
(oo, P o
0.1 0,1

Thus, we have where ly = (—h, + x, — s2 + y2) /2,79 = (h, + x, — s1 — y1)/2. Notice

that ro = r1. We define W’ as the summation of two parts,

W' =a"(lpa "a ? + Toa_“/a;dllo)af/ =: W1 + Ws.
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. The part only involves W; reduces to the one-point case,

Sy DS\ (Wi (W)t Db ey WA
157’2712 512,7‘2 0 Wl

Sl2,r2 Slzﬂ"z
' 1511“2,12 STz,lz

C(oSpst DSEETY (1o lea b Db lay®l\ [ —SPyt DS
- IST1,11 Sl1ﬂ“1 0 10 181“1,11 Sﬁ,ll ’

(4.60)
Ws M
The rest is 2 211 where
0 p
le _ (Wz)*a y1+y2 1Db 12 2W2
Yyi1Ty2 yQ— y1ty
(W)t Db el W (4.61)
oyt y2 _nty
+ (Wy)* b 1Db la, * W,
Thus
Wy M21
4 B < HA||1||( A )nop (1.62
2

From the previous section, we know that ||Al|; is bounded. For the operator norm of

the matrix, notice that
* -0 _.,7 _q
Wollop = 13 llop = 11727 a7 Lo]lop-

Notice that the term a* and a? can be absorbed into S, thus not appearing in the

operator norm. Let By _ = = ExpWalk;,, , be the scaled mean 0 version of a "a ?,
thus
70_—u/ 751 e oo €
T2 2 Tollop = 1T B;,—y, Lsallop < | |By2 _n(y)dy.
S2—S1

For the three terms in Ms;, notice that in the middle of the terms they have the

comimon operator

o -t 521 yl-zm ' —Y15-1 14— U1
a, a Db ! a’ =a b Db a, ",
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which is the derivative of the transition density of a mean 0 random walk, thus
la”"' b~ Db e, lop < C

for some constant C'. What is left in W, is 1y, whose operator norm is bounded; what

is left in W is Toa_“'a*_ 414, which can be bounded in the same way above. Thus in

total,
I lo SC/ B, (y)dy.
0 W2 P ‘52—51‘ vy

Plug this bound into ((4.56)),

[e.9]

dSldS2|Sz - Sl|p_2/ B, (y)dy
I (4.63)

< CNE[B:,_, 7' < C(N,p)lys — yi|"=

Y2—uy1

@ <c |

—N<s1<s2<N

Using the Kolmogorov continuity theorem (4.4.2) with o = 1‘%3, we get that the
Holder continuity with § = % — % for any p > 2, which is the bound in (4.54)), which
further implies the equation in (4.4.1). Thus, we proved the process is local Holder

1/27 in space.
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Appendix

5.1 Fredholm determinant and Fredholm Pfaffian

In this section, we review the definition of the Fredholm determinant and some of
the important properties. All the properties are proved either in some textbooks, see
[Sim15l [Sim79, [Lax02]. For properties regarding the Pfaffian, see [OQRI17]. We will
only cite the properties.

Let X be a compact metric space with p a finite measure on X. Let K : X x X —
C be a continuous function. The K can be thought of as an operator on f € L*(X, 1)
such that

(K f)(x) = / K (2, 9)f (v)du(y). (5.1)

Definition 1. The Fredholm determinant is defined by
oo An
det([—l—)\K)Lz(X,du) = 1—{—2 m / e /det(K(xi, yj))1§i7j§ndu(3:1) c. du(xn) (52)
n=1

Definition 2. Assume K is a 2 matriz-valued skew-symmetric kernel,

Ku(z,y) Km@w)) CeyeX

Ko = (Km(l’ay) Ka(z,y)

its Fredholm Pfaffian is defined by

0o )\n
Pf(J—FAK)[;(X’d#) = 1 —I-Z F / Ce / Pf(K(ZEZ, yj))lgi,jgnd['b(xl) e du(l’n), (53)
n=1 ’

114
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where the kernel J is defined by

0 1
J(z,y) = lozy (_1 0) )

For a skew-symmetric 2k x 2k matriz A, its Pfaffian is defined by

1 :
Pf((aij)1<ij<on) = Sl Z SIEN(0) Ao(1)0(2) Ao (3)0(4) * * * Qo (2k—1)0 (2K)- (5.4)

0'65277,

For 2k x 2k skew-symmetric matrix A, it is known that Pf(A)? = det(A); we also

have the same relation between the Fredholm determinant and the Fredholm Pfaffian.

Proposition 5.1.1. For any skew-symmetric 2 x 2 matriz kernel K and A € C, we
have
PE(J + AK) T2 (x 9 = det(I — AT K) 2(x < 22(x ) (5.5)

given that both sides are convergent.

Proposition 5.1.2. (Cyclic property) If K : L*(X;) — L*(X3) and K; : L*(X5) —
L*(X,), then
det([ + KlKQ)L2(X2) = det([ + KQKI)LQ(Xl) (56)

Proposition 5.1.3.

det((I — A)(I — B)) = det(I — A) det(I — B) (5.7)
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