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Abstract

In this thesis, we study topological and Hodge theoretic invariants associated to smooth complex

algebraic varieties with particular focuses on algebraic curves and smooth projective families of

curves. The central question we would like to understand is to what extent these invariants capture

morphisms between the corresponding varieties.

More precisely, inspired by Grothendieck’s section conjecture in anabelian geometry, we for-

mulated and studied a topological and a Hodge theoretic section question for smooth projective

family of curves and made progress towards answering those questions. In the topological setting,

many of our results are analogous to existing results in anabelian geometry. In the Hodge setting,

much less is known, and so we also studied the connection between the Hodge theoretic section

question and classical results in non-abelian Hodge theory. In a different direction, motivated by

the famous theorem of Torelli, we studied if the Torelli’s theorem can be made functorial. We con-

struct interesting examples of morphisms of Hodge structures which do not arise from morphism

between curves, and connect our construction to the study of isotrivial isogeny factors in family of

curves.
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Chapter 1

Introduction

One of the most useful ideas in mathematics is that one may study complicated mathematical
objects (e.g. geometry of algebraic varieties) by finding and studying suitable functorial invariants
attached to these mathematical objects. These functorial invariants tend to be very useful when
one wants to distinguish different mathematical objects: if two mathematical objects have different
invariants, then they must be different to start with. An elementary but also illustrative example of
this principle is that one may distinguish smooth compact orientable closed surfaces by looking at
their topological fundamental groups and/or first homology groups (which are abelianizations of
their topological fundamental groups).

It’s then very natural to ask when the converse of this principle holds, i.e., if we have two math-
ematical objects with isomorphic invariants, when can we say that these two objects are the same?
In other words, we would like to know to what extent our mathematical objects are determined
by these invariants. In the case of topological surfaces, our invariants turn out to extremely good:
not only can we say that two surfaces with isomorphic topological fundamental groups are home-
omorphic, but we can also say that continuous maps between topological surfaces up to homotopy
correspond exactly to maps between topological fundamental groups. In other words, these topo-
logical surfaces are examples of k(π, 1) spaces.

Now let’s turn to the world of complex algebraic geometry. What are some invariants in al-
gebraic geometry that are powerful enough to determine the geometry of algebraic varieties and
morphisms between them? One classical approach to find such invariants is via Hodge theory. The
idea is the following: given a smooth connected complex algebraic variety X, we can consider its
(singular) cohomology groups Hi(X, Z). By a classical theorem of Deligne [12], we know that these
cohomology groups carry extra linear algebraic data known as mixed Hodge structures. Therefore,
one may ask to what extent the mixed Hodge structures on the cohomology groups of algebraic va-
rieties capture the geometry of the corresponding algebraic varieties. Perhaps the most celebrated
theorem in this direction is the Torelli theorem for smooth projective curves [3, page 245]: if X and
Y are two smooth projective curves of genus g such that H1(X, Z) and H1(Y, Z) are isomorphic as
polarized integral Hodge structures, then X and Y must have isomorphic algebraic structures.

There’s a long and beautiful line of work extending the classical Torelli’s theorem to varieties
of dimension greater than 1 (e.g. K3 surfaces [45], cubic fourfolds [57], etc.). In a different di-
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CHAPTER 1. INTRODUCTION 2

rection, one may try to extend the classical Torelli’s theorem by asking if Hodge structures can
be used to capture morphisms between algebraic varieties. One very successful theorem in this
direction is the pointed Torelli theorem of Hain [23] and Pulte [46]. In this extension, cohomol-
ogy groups are replaced by fundamental groups: given a complex algebraic variety X and a point
x ∈ X, Hain functorially defines a mixed Hodge structure on the truncated integral group ring
Z[π1(X, x)]/Jr+1, where J is the augmentation ideal (see [23, Theorem 5.1]; Morgan [42] proved
an equivalent result using a different method). The pointed Torelli theorem of Hain and Pulte says
the following: Let (X, x) and (Y, y) be two smooth projective pointed curves of genus g. If there’s
a ring isomorphism

θ : Z[π1(X, x)]/J3 → Z[π1(Y, y)]/J3

which induces an isomorphism of mixed Hodge structures, then there exists an isomorphism f :
X → Y such that, with the possible exception of two points, f (x) = y.

In a different area of algebraic geometry, people have also been studying the role of fundamental
groups and how they might capture morphisms of the corresponding algebraic variety. This is the
anabelian geometry program proposed by Grothendieck [19]. Here the fundamental groups in
consideration are étale fundamental groups defined by Grothendieck. Recall that given a quasi-
compact and geometrically integral scheme over some number field k, fixing a separable closure k
of k, we have a short exact sequence of étale fundamental groups

1→ πét
1 (Xk̄)→ πét

1 (X)→ Gal(k̄/k)→ 1 (1.0.1)

where Xk is the base-change of X to the separable closure (see e.g. [52, Theorem 5.6.1]). Grothendieck
then proposed that there is a “natural” class of schemes, known as anabelian schemes, such that
morphism between anabelian schemes are entirely determined by maps of extensions of (1.0.1).
Motivated by this philosophy, Grothendieck proposed his famous section conjecture: if X is a
smooth projective curve of genus g ≥ 2, then the set of k-rational points of X is in bijection with the
set of equivalence classes of splittings of (1.0.1).

This thesis aims to continue these traditions and ideas. More precisely, we are interested in
understanding to what extent invariants like fundamental groups and cohomology capture mor-
phisms between smooth connected complex algebraic varieties. Given the prominence of curves and
more generally, family of curves in these lines of research, we will also focus on them. In particular,
we mainly study the following two types of morphisms:

1. algebraic sections to smooth projective family of curves (Chapter 3 and Chapter 4);

2. morphisms between curves of different genus (Chapter 5).

For algebraic sections to smooth projective family of curves, we formulated a topological and a
Hodge theoretic analogue of Grothendieck’s section conjecture and made partial progress towards
understanding these analogous questions. In particular, in the topological setting, we proved the
following collection of results

Proposition 1.0.1.

1. The topological section map is injective for Kodaira fibrations (i.e. non-isotrivial smooth projective
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family of curves over smooth projective curves) if the monodromy representation has no invariants (see
Corollary 3.1.4);

2. The topological section map is in general not surjective (see Corollary 3.2.4).

In the Hodge theoretic setting, we replace topological fundamental group of a complex variety
X with the category of graded-polarizable, admissible variation of mixed Hodge structures over X.
We proved the following theorems:

Proposition 1.0.2.

1. If we consider the category of Z-variation of mixed Hodge structures, then the Hodge theoretic section
map is injective (see Proposition 4.2.3);

2. If we consider the category of Q-variation of mixed Hodge structure, we may apply Tannakian duality
and obtain an exact sequence of Tannakian fundamental groups for any smooth projective map f :
X → B with connected fibers (see Proposition 4.3.1)

π1(LShdg
Q

(Xb))→ π1(VMHSQ(X))→ π1(VMHSQ(B))→ 1. (1.0.2)

3. Fixing some g ≥ 2, and working with Q-variation of mixed Hodge structures, then we can show that
the Hodge theoretic section map is a bijection for universal family of curves f : Cg → Mg and for
the moduli space of degree 1 line bundles on the universal curve p : Pic1

Cg/Mg
→Mg (see Corollary

4.6.6).

We defer the precise definition of these objects and the formulation of the topological and Hodge
theoretic section conjecture to later chapters. To motivate the discussion of these results, we also
include a brief recap of some of the results appearing in the study of Grothendieck’s section con-
jecture (Chapter 2). One will see that many of the results proven in this thesis have counterparts in
the study of Grothendieck’s section conjecture.

It’s also worth pointing out that the Hodge theoretic formulation is relatively new (but see also
the thesis work of Ferrario [16]) and we investigated many natural questions one may ask in this
Hodge theoretic setting (see Chapter 4). In particular, we are able to relate the study of the exact
sequence (1.0.2) to Simpson’s work on non-abelian Hodge locus [47]. The majority of the content
of Chapter 3 and Chapter 4 are contained in the arXiv preprints [59] and [58].

For morphisms between curves, we are interested in the question of whether Torelli’s theorem
can be made functorial for curves of different genus. We give examples to show that this is not
true, and also relate the constructions to the study of isotrivial isogeny factors in family of curves
(Chapter 5). More precisely, we prove that

Proposition 1.0.3.

1. Let R be any curve of genus 2. Then for any g > 2, there exists a topological cover C of R of genus g
such that the covering map is not homotopic to an algebraic map but induces maps of Hodge structure
on cohomology (see Proposition 5.1.1);
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2. The construction above can be modified to give subvarieties ofMg whose associated families of curves
have isotrivial isogeny factor and the dimension of these subvarieties is as big as possible (see Proposi-
tion 5.2.1).



Chapter 2

A brief review of Grothendieck’s
section conjecture

This section does not aim to be a comprehensive overview of Grothendieck’s section conjecture.
A good reference for that is Stix’s book on the section conjecture [51]. Instead we only mention
those results that will be relevant to our discussion later on. We first give a brief overview of the
anabelian philosophy.

Let X be a quasi-compact and geometrically integral scheme over some number field k. Fix
some separable closure k of k as before and fix some geometric point of X. We will however omit
the geometric point in our notation as it will not be very relevant for us. Consider the functor from
the category of k-schemes to the category of short exact sequence of (profinite) groups which sends
X to the extension

1→ πét
1 (Xk)→ πét

1 (X)→ Gal(k/k)→ 1.

Given a morphism of short exact sequence of groups

1 H1 G1 K1 1

1 H2 G2 K2 1

we may define an equivalence relation on the set of morphism between these two sequences by
the conjugation action of H2. Then morphisms in the category of extensions are defined to be
equivalence classes of morphisms of short exact sequences under this conjugation action.

Remark 2.0.1. The equivalence relation is needed to account for the fact that we’ve fixed a base
point and the conjugation action amounts to changing the base points. One may remove this equiv-
alence relation by working with pointed varieties.

Grothendieck then conjectured that there’s a class of schemes, known as the anabelian schemes,
for which this functor is fully faithful. Furthermore, he then conjectured that this class of schemes
should at least have the following properties:

5



CHAPTER 2. A BRIEF REVIEW OF GROTHENDIECK’S SECTION CONJECTURE 6

1. smooth projective curves of genus g ≥ 2 should be anabelian;

2. the moduli stackMg,n should be anabelian;

3. this class of schemes should be closed under taking fibrations: if f : X → Y is a smooth
projective map where Y is anabelian and so are the fibers Xb, then X should be anabelian as
well.

If one in addition believes that Spec k is anabelian, then one arrives at Grothendieck’s section
conjecture: Let X be a smooth projective curve of genus g ≥ 2 over some number field k. Any
k-rational point induces a splitting of (1.0.1) and so we have a section map

sec : X(k)→ {splittings of (1.0.1)}/conjugation by πét
1 (Xk).

Then the section conjecture says that

Conjecture 2.0.2 (Grothendieck’s section conjecture). The map sec is a bijection.

One direction of this conjecture is already known to Grothendieck.

Proposition 2.0.3 (Grothendieck; see section 7 of [51] for a proof). The section map is injective.

The question of surjectivity is much more difficult and not much is known. The only examples
where we can verify the section conjecture involve curves with no rational points (see for example
the constructions in section 7 of [50]). On the other hand, Stix showed that the case of curves with
no rational points are in fact the most interesting case, as in fact the question of surjectivity, and
hence the section conjecture itself, may be reduced to this case entirely. To state this result, we first
state the weak section conjecture.

Conjecture 2.0.4 (Weak section conjecture). Let X be a smooth projective curve of genus g ≥ 2 over
some number field k. Then X has a k-rational point if and only if the sequence (1.0.1) splits.

It’s clear that the weak section conjecture is implied by the Grothendieck’s section conjecture.
What’s less obvious is that if weak section conjecture holds for all curves, then the Grothendieck’s
section conjecture also holds for all curves. More precisely, Stix proved the following:

Proposition 2.0.5 (Theorem 31 in [50]). Let X be a smooth projective curve of genus g ≥ 2 over some
number field k. Then the section map is surjective for X if and only if the weak section conjecture is true for
every finite étale cover of X which is geometrically connected over k.

One may also consider other fields. Of particular interest to us is the section conjectures on
generic curves over the generic point of Mg first proven by Hain. More precisely, we have the
following proposition:

Proposition 2.0.6 ([20], [37]). Let f : Cg → Mg be the universal family of genus g > 2 curves, and K
the function field of Mg. Suppose K is a separable closure of K. Let Cg,K be the pullback of the universal
family to the function field (i.e. the generic curve), and Cg,K the base change to the separable closure. Then
the sequence

1→ πét
1 (Cg,K)→ πét

1 (Cg,K)→ Gal(K/K)→ 1

do not split, and hence the section conjecture is trivially true for the generic curve.
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Remark 2.0.7. Both the work of Hain [20] and the work of Li-Litt-Salter-Srinivasan [37] proved
much more than this result. For example, Hain proved analogous statements for moduli space
of curves with level structure and unipotent version of the section conjecture for moduli space of
curves with marked points. The work of Li-Litt-Salter-Srinivasan proved analogous statement for
the moduli space of degree 1 line bundles on the universal curve p : Pic1

Cg/Mg
→ Mg. They also

formulated and proved many cases of a tropical version of the Grothendieck’s section conjecture,
which concerns generic curves of a given reduction type.



Chapter 3

Topological section conjecture for
family of curves

Let f : X → B be a smooth projective family of smooth projective curves of genus g. By the
universal property ofMg, this is equivalent to the data of a map from B intoMg. Associated to
such a family is a long exact sequence of topological fundamental groups

· · · → π2(B)→ π1(Xb)→ π1(X)→ π1(B)→ 1

where Xb is the fiber of f : X → B over some base point b ∈ B.

Lemma 3.0.1. The map π1(Xb)→ π1(X) is always injective and hence we get a short exact sequence

1→ π1(Xb)→ π1(X)→ π1(B)→ 1. (3.0.1)

Proof. Since this family is pulled back from the universal family Cg → Mg via the map B → Mg,
we have the following commutative diagram

π1(Xb) π1(Cg) π1(Mg) 1

π1(Xb) π1(X) π1(B) 1

=

Then if the map π1(Xb) → π1(X) has a non-trivial kernel, so does the map π1(Xb) → π1(Cg).
However, the map π1(Xb) → π1(Cg) is necessarily injective becauseMg is a k(π, 1)-space, and so
π2(Mg) = 0.

Now any algebraic section s of the family f : X → B induces a splitting of the short exact
sequence (3.0.1). Hence, we get a map

sectop : {algebraic sections to f : X → B} → {splittings of (3.0.1)}/ ∼

where the equivalence relation on the set of splittings is defined in the following way: we say two

8



CHAPTER 3. TOPOLOGICAL SECTION CONJECTURE FOR FAMILY OF CURVES 9

sections s1, s2 : π1(B) → π1(X) are isomorphic if and only if they are conjugate via some elements
in π1(Xb). We are interested in the following question:

Question 3.0.2 (Topological section question). Is the map sectop a bijection?

This question has a very simple answer in the case where f : X → B has trivial monodromy (i.e.
X = B× Xb for some curve Xb and f is the projection map onto B). In this case, there are infinitely
many algebraic sections but only one group theoretic section, and so the map sectop is surjective but
never injective.1 Therefore, to make this question interesting, we would like to add the additional
assumption that f : X → B is non-isotrivial. Of special interest to us is the case where B is another
smooth projective curve.

Definition 3.0.3. A Kodaira fibration is a smooth projective, non-isotrival family X of curves over
some smooth projective curve B whose fibers are all smooth projective of genus g.

Remark 3.0.4.

1. Some constructions of Kodaira fibrations are recorded in Appendix A.

2. It’s known that if f : X → B is a Kodaira fibration, then g(B) ≥ 2 and g(Xb) ≥ 3 [28, Theorem
1.1], and so by Grothendieck’s anabelian philosophy, Kodaira fibrations should be considered
as an anabelian scheme as well.

In this chapter, our goal is to provide partial answers to Question 3.0.2 for Kodaira fibrations.
The main idea is to replace sequence (3.0.1) with an abelian version:

0→ H1(Xb, Z)→ π1(X)/[π1(Xb), π1(Xb)]→ π1(B)→ 1. (3.0.2)

This is obtained from the original sequence (3.0.1) by pushing out along the abelianization map
π1(Xb) ↠ H1(Xb, Z). Furthermore, this sequence also has a geometric interpretation: this is the
short exact sequence of topological fundamental groups associated to the family of Jacobians p :
Pic0

X/B → B. Therefore, one can similarly define a section map

secab : {algebraic sections to p : Pic0
X/B → B} → {splittings of (3.0.2)}/ ∼

and ask if this map secab is a bijection. The first two sections are devoted to understanding this
abelian version of the topological section question, and we will use the results to deduce conse-
quences for the original topological section question (i.e. Question 3.0.2). In the next section, we
consider the general case where the base is no longer assumed to be a curve, and relate the question
of surjectivity of sectop to a certain weak topological section question, and in the last section, we
give examples of Kodaira fibrations for whom sectop is not surjective.

1One may remedy this issue by replacing the space of algebraic sections by π0 of that space and this is the approach used
in the formulation of real section conjectures; see for example [51, Section 16.1].
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3.1 Family of Jacobians and injectivity

Results in this section holds more generally for any abelian schemes over a curve, so we first work
in that generality. Let p : A → B be an abelian scheme over a smooth projective curve B. Associated
to this map is a short exact sequence of topological fundamental groups

1→ H1(Ab, Z)→ π1(A)→ π1(B)→ 1.

Given an algebraic section s : B→ A, we get a group theoretic splitting of this short exact sequence.
It’s well known that isomorphism classes of group theoretic splittings are parametrized by the
cohomology group H1(π1(B), H1(Ab, Z)) [34, Chapter 8, Theorem 1.3], and so the map secab may
be rewritten as

secab : H0(B,A)→ H1(π1(B), H1(Ab, Z)),

where we view A as a sheaf over B and H0(B,A) is the group of algebraic sections of p : A → B.
We would like to relate secab with a boundary map in some long exact sequence of cohomology
groups which we now explain.

Consider the short exact sequence 0 → R1 p∗Z(1) → R1 p∗O → A → 0. Over each b ∈ B, this
short exact sequence becomes the universal covering map H1(Ab, Z)→ Ab with kernel H1(Ab, Z).
Taking the long exact sequence in cohomology, we get

· · · → H0(B, R1 p∗OA)→ H0(B,A) ψ−→ H1(B, R1 p∗Z(1))→ H1(B, R1 p∗OA)→ . . .

We would like to construct an isomorphism F : H1(π1(B), H1(Ab, Z)) → H1(B, R1 p∗Z(1)) such
that the following diagram commutes

H0(B,A) H1(π1(B), H1(Ab, Z))

H1(B, R1 p∗Z(1))

secab

ψ
F

To do so, first observe that there’s a natural inclusion map ι : H0(B,A) → H0(B, (A)cont), where
Acont is the sheaf of continuous sections to A, and the map secab evidently factors through this
natural inclusion. Now we claim that ψ also factors through ι. Consider the following commutative
diagram of short exact sequences:

0 R1 p∗Z(1) R1 p∗OA A 0

0 R1 p∗Z(1) (R1 p∗OA)cont (A)cont 0

=
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Taking long exact sequence in cohomology, we get

. . . H0(B,A) H1(B, R1 p∗Z(1)) H1(B, R1 p∗O) . . .

. . . H0(B, (A)cont) H1(B, R1 p∗Z(1)) H1(B, (R1 p∗O)cont) = 0

ψ

ι =
ψcont

This shows that ψ factors through ι. In particular, we see that it’s enough to construct an isomor-
phism F : H1(π1(B), H1(Ab, Z))→ H1(B, R1 p∗Z(1)) so that the following diagram commutes:

H0(B, (A)cont) H1(π1(B), H1(Ab, Z))

H1(B, R1 p∗Z(1))

(secab)cont

ψcont
F

Note that because (R1 p∗O)cont is a fine sheaf, H1(B, (R1 p∗O)cont) = 0 and the map ψcont is sur-
jective. On the other hand, because p : A → B is a map of k(π, 1) spaces, it follows that the map
(secab)cont is also surjective. This suggests the following definition of F: for any [s] ∈ H1(π1(B), H1(Ab, Z)),
represent it by some continuous section s : B→ A, and define F([s]) to be ψcont(s).

Lemma 3.1.1. The map F constructed as above is well-defined, and is an isomorphism that makes the fol-
lowing diagram commutes

H0(B,A) H1(π1(B), H1(Ab, Z))

H1(B, R1 p∗Z(1))

secab

ψ
F

Proof. Note that by construction, this map F, if well-defined, automatically makes the desired dia-
gram commutative and is also automatically surjective.

To show that F is well-defined, we need to show that given any pair of continuous section
s1 and s2, if they are homotopic, then ψcont(s1) = ψcont(s2) and if they induce conjugate group
theoretic splittings, then we also have ψcont(s1) = ψcont(s2). To this end, we need to use an explicit
description of the map ψcont. It’s well-known that H1(B, R1 p∗Z) parametrizes R1 p∗Z(1) torsors
on B [49, Lemma 21.4.3], and by unwinding the proof (e.g. the one given in [49]), we see that ψcont

admits the following description: let s ∈ H0(B, (A)cont) be a continuous section. Then ψcont(s) is
the isomorphism class of R1 p∗Z(1)-torsor F ⊂ (R1 p∗O)cont defined by the sections which maps to
s.

Now suppose s1 and s2 are homotopic continuous sections and let F1 and F2 be the torsor they
induce respectively. Explicitly, over some trivializing open subset U , Fi(U) is the set of sections s :
U → U × H1(Ab,OAb) which, after compositing with the projection U × H1(Ab,OAb) → U ×Ab

becomes si|U , i = 1, 2. Note that U× H1(Ab,OAb)→ U×Ab is a covering map and hence we may
lift the homotopy between s1 and s2 to homotopies between sections of F (U1) and F (U2). Hence
we get a bijection F1(U) ∼= F2(U) and an isomorphism F1

∼= F2.

Finally, suppose that s1 and s2 induce conjugate group theoretic splittings. This means that
they are related via the Deck transformation coming from R1 p∗Z(1) and so by definition, the two
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torsors F1 and F2 agree. Furthermore, this also shows that the map F is injective, and hence it’s an
isomorphism as desired.

Therefore, if we would like to understand if secab is injective/surjective, it’s enough to under-
stand if ψ is injective/surjective.

Proposition 3.1.2. Let p : A → B be an abelian scheme. Then the section map ϕ : H0(B,A) →
H1(π1(B), H1(Ab, Z)) is a injective if and only if the monodromy action of π1(B) on H1(Ab, Z) has
no invariant factors.

Proof. First suppose that the monodromy action has no invariant factors. By Lemma 3.1.1, it’s
enough to show that in this case, H0(B, R1 p∗OA) = 0. Consider the Higgs bundle associated to the
variation of Hodge structure R1 p∗Z:

E := p∗ωA/B ⊕ R1 p∗O
θ−→ p∗ωA/B ⊕ R1 p∗O ⊗ωB,

where the Higgs field θ is defined by the following two maps

p∗ωA/B
∇−→ R1 p∗O ⊗ωB

R1 p ∗ O zero map−−−−−→ p∗ωA/B ⊕ R1 p∗O ⊗ωB

Here ∇ is the flat connection associated to the vector bundle π∗ωA/B.

Now if H0(B, R1 p∗OA) ̸= 0, then OB maps into R1 p∗OA, and hence (O, 0) is a sub-Higgs
bundle of (R1 p∗OA, 0) and hence a sub-Higgs bundle of (E , θ). On the other hand, by a theorem of
Simpson [48, Theorem 1], Higgs bundles associated to a variation of Hodge structure are polystable,
i.e., it’s a direct sum of stable Higgs bundles of the same slope. SinceO is a line bundle, we see that
(O, 0) must be one of the irreducible factors of (E , θ). In particular, by the non-abelian Hodge cor-
respondence, the trivial representation should appear as a sub-representation of the monodromy
representation associated to R1 p∗Z. This contradicts the fact that the monodromy representation
no invariant factors.

Now suppose the section map ϕ is injective. Again by Lemma 3.1.1, we know that H0(B, R1 p∗Z(1)) ∼=
H0(B, R1 p∗O). However, the former is a discrete group whereas the latter is a vector space over C

and hence they are isomorphic if and only if both are 0. In particular, the invariants H0(B, R1 p∗Z(1)) =
H0(B, R1 p∗Z)(1) of the local system R1 p∗Z(1) is trivial. It follows that the action of π1(B) on
H1(Ab, Z) has no invariants, as desired.

We can immediately deduce the following corollary for family of Jacobians associated to a Ko-
daira fibration:

Corollary 3.1.3. Let f : X → B be a Kodaira fibration and p : Pic0
X/B → B be the corresponding family of

Jacobians. Then
ϕ : H0(X, Pic0

X/B)→ H1(π1(B), H1(Xb, Z))

is injective if and only if the associated monodromy action on H1(Xb, Z) has no invariants.
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Furthermore, the abelian version of the section question is also related to the original topological
section question for Kodaira fibrations:

Corollary 3.1.4. Let f : X → B be a Kodaira fibration whose monodromy action on H1(Xb, Z) has no
invariants, then the corresponding map

{algebraic sections to f : X → B} → {sections of (3.0.1)}/conjugation

is injective.

Proof. If f : X → B has no sections, then the statement is trivially true so let’s assume that we have
a fixed section s0 : B→ X. Then we may define a B-morphism h : C → Pic0

X/B which maps x ∈ Xb

to the divisor class [s0( f (x))− x]. Note that h is injective, as it’s just the Abel-Jacobi map on each
fiber.

Now recall that we have the following commutative diagram:

1 π1(Xb) π1(X) π1(B) 1

0 H1(Xb, Z) = π1(Xb)
ab π1(Pic0

X/B) π1(B) 1

=

Let s and s′ be two distinct algebraic sections of f : X → B. By post-composing with h and using
the injectivity of h, we get two distinct sections s̃ and s̃′ of π : Pic0

X/B → B. If s and s′ are conjugate
via some element g ∈ π1(Xb), then s̃ and s̃′ must be conjugate via the image of g in H1(Xb, Z),
contradicting Corollary 3.1.3. Hence, the map from algebraic sections to group theoretic splittings
modulo conjugation is injective as desired.

Remark 3.1.5. Note that by Lemma A.0.1, we see that the Kodaira fibration constructed using
the moduli construction will satisfy the assumption of Corollary 3.1.4. On the other hand, many
classical constructions of Kodaira fibration (including Kodaira’s original construction [30]) involves
taking branched covers of a product of curves and so typically the monodromy action will have
invariants. Bregman gave a partial converse to this observation in [5] when the dimension of the
invariants is small.

3.2 Family of Jacobians and non-surjectivity

In this section, we come back to the special case of family of Jacobians p : Pic0
X/B → B associated

to a Kodaira fibration. The goal is to show that under the assumption that the Kodaira fibration
f : X → B admits an algebraic section, the map secab is never surjective. Note that the existence of
such Kodaira fibrations is guaranteed by Proposition A.0.2.

In view of Lemma 3.1.1, it’s enough to show that the connecting homomorphism ψ : H0(C, Pic0
X/B)→

H1(C, R1 p∗Z(1)) is not surjective. Since we have an algebraic section, we get a map h : X →
Pic0

X/B, which induces canonical isomorphisms R1 p∗Z(1) ∼= R1 f∗Z(1) and R1 p∗O ∼= R1 f∗O.
Therefore, we may work within the relative curve setting and instead study the map H1(B, R1 f∗Z(1))→
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H1(B, R1 f∗OX). To understand this map, we first compute the degree of the vector bundle R1 f∗OX .
This computation is probably known to experts but we could not find a reference:

Lemma 3.2.1. The vector bundle R1 f∗OX is of negative degree.

Proof. Let f : X → B be a Kodaira fibration such that the fiber Xb has genus g and the base B has
genus h. By Grothendieck-Riemann-Roch, we know that

ch( f!(OX)) = f∗(ch(OX) · tdX/B),

where ch denotes the Chern character, and tdX/B is the Todd class of the relative tangent bundle
TX/B. Since we are in the relative curve setting, we know that the higher derived pushforward
Ri f∗(OX) vanishes for all i ≥ 2, so we can rewrite the the left hand side of the equation to get

ch( f!(OX)) = ch( f∗OX)− ch(R1 f∗(OX))

= ch(OB)− ch(R1 f∗(OX))

= 1− (rk(R1 f∗(OX)) + c1(R1 f∗(OX)) + . . . ).

On the other hand, since ch(OX) = 1, we see that the right hand side is simply

f∗ tdX/B = f∗(td(TX/B))

= f∗

(
1 +

c1(TX/B)

2
+

c2
1(TX/B) + c2(TX/B)

12
+ . . .

)
.

As TX/B is a line bundle, we know that it has no higher Chern classes. It follows then

deg R1 f∗(OX) = c1(R1 f∗(OX)) = − f∗

(
c2

1(TX/B)

12

)
.

Thus, it’s enough to compute f∗(c2
1(TX/B)). Since TX/B = Ω∨X/B, we know that c2

1(TX/B) =

c2
1(ΩX/B) so we can work with the relative differential. Consider the following short exact sequence

0→ f ∗ΩB → ΩX → ΩX/B → 0.

By taking the wedge power, we get the following isomorphism

∧2ΩX ∼= f∗ΩB ⊗ΩX/B.

Since c1 is a group homomorphism, we know that c1(∧2ΩX) = c1( f∗ΩB) + c1(ΩX/B). Then

c1(ΩX/B)
2 = (c1(∧2ΩX))

2 − 2c1(∧2ΩX) · c1( f ∗ΩB) + (c1( f ∗ΩB))
2

= K2
X − 2KX · c1( f ∗(KB)) + (c1( f ∗(KB))

2)

where KX is a canonical divisor on X, and KB is a canonical divisor on B. Now since c1 is functorial
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and f ∗ is a ring homomorphism, we know that

(c1( f ∗(KB)))
2 = f ∗(c1(KB)

2).

Because B is a curve, this has to vanish. It follows then

(c1(ΩX/B))
2 = K2

X − 2KX · f ∗KB

and hence
f∗((c1(ΩX/B))

2) = f∗(K2
X)− 2 f∗(KX · f ∗KB).

Since we may compute degrees both before and after pushing-forward, we know that f∗(K2
B) = K2

B.
To understand the last term, we first use projection formula to write it as

2 f∗(KX · f ∗KB) = 2 f∗(KX) · KB.

Now deg f∗(KX) = KX · Xb, and because KX · Xb = deg KX |Xb = deg KX/B|Xb for any generic fiber
Xb, we see that KX · Xb = 2g− 2,. Now since KB has degree 2h− 2, we see that

f∗((c1(ΩX/B))
2) = K2

X − 8(g− 1)(h− 1).

Hence, we have

deg R1 f∗OX = c1(R1 f∗OX) =
−K2

X + 8(g− 1)(h− 1)
12

=
−K2

X + 2χX

12
,

where χX is the Euler characteristics of X. Finally, by the signature formula of Hirzebruch, Atiyah
and Singer, we know that the signature σ(X) of X is precisely given by

σ(X) =
1
3
(K2

X − 2χX).

Since Kodaira fibrations necessarily have positive signatures [8, Corollary 42], deg R1 f∗OX < 0 as
desired.

Corollary 3.2.2. dim H1(B, R1 f∗OX) > 3.

Proof. By Riemann-Roch, we know that

dim H1(B, R1 f∗OX) = −
(

deg R1 f∗OX + rk(R1 f∗OX)(1− h)− dim H0(B, R1 f∗OX)
)

.

Lemma 3.2.1 says that −deg R1 f∗OX > 0. Furthermore, by [28, Theorem 1.1], the base curve of a
Kodaira fibration has genus at least 2 and the fiber has genus at least 3, so we know that

dim H1(B, R1 f∗OX) > rk(R1 f∗OX)(h− 1) ≥ 3 · 1 = 3,

as desired.

We will use this corollary to show that H1(B, R1 f∗Z)→ H1(B, R1 f∗OX) is non-zero.
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Proposition 3.2.3. The map θ : H1(B, R1 f∗Z(1))→ H1(B, R1 f∗OX) is non-zero.

Proof. Note that there’s a map from Θ : H2(X, Z(1)) → H2(X,OX) and by Leray spectral se-
quence, both cohomology groups are equipped with Leray filtrations. Furthermore, the map θ :
H1(B, R1 f∗Z(1)) → H1(B, R1 f∗OX) may be viewed as the map induced by Θ between the asso-
ciated graded pieces of the Leray filtration. Because the map f : X → B admits a section, the
Leray filtration splits, and so we may view H1(B, R1 f∗Z(1)) (resp. H1(B, R1 f∗OX)) as a subgroup
of H2(B, Z(1)) (as a subspace of H2(S,OX)). As the map Θ factors through H2(X, C(1)), we have
the following commutative diagram:

H2(X, Z(1)) H2(X, C(1)) H2(X,OX)

H1(B, R1 f∗Z(1)) H1(B, R1 f∗OX)θ

Notice that the map from H2(X, C(1)) → H2(X,OX) is induced by the exponential map (twisted
by Z(1)) and hence agrees with the projection map coming from Hodge decomposition and in
particular is surjective.

Since f : X → B is a relative curve over another curve, we see that H2(X,OX) ∼= H1(B, R1 f∗OX)

and hence by Corollary 3.2.2, dim H2(X,OX) has dimension at least 4. On the other hand, as both
H2(B, Z(1)) and H0(B, R2 f∗Z(1)) are of dimension 2, we see that H2(B, R1 f∗Z(1)) is a lattice that
generates a subspace of codimension 2 inside H2(X, C(1)). In particular, for the projection map
to be surjective, the restriction onto the lattice H1(B, R1 f∗Z(1)) has to be non-zero. Hence, θ is
non-zero, as desired.

Finally, using Lemma 3.1.1, we arrive at the following conclusion.

Corollary 3.2.4. Let f : X → B be a Kodaira fibration with an algebraic section, and p : Pic0
X/B → B. The

map secab is never surjective for these families of Jacobians.

Remark 3.2.5. In the case where f : X → B has an algebraic section, one may identify Pic0
X/B with

Pic1
X/B, and hence our results shows that the topological section question has a negative answer for

Pic1
X/B → B in the case where the associated Kodaira fibration has a section. This in fact differs from

the universal case: the universal family of moduli space of degree 1 line bundles p′ : Pic1
Cg/Mg

→
Mg does satisfies the topological section question when g ≥ 3 in a trivial way, i.e., there’s no
topological section to p′ (this is first proven by Morita when g ≥ 9; see [43, Corollary 3, Theorem
4]. The strengthened result is proven in [37]).

3.3 A note on weak topological section question

In this section, we work with the general case of a smooth projective non-isotrivial family of curves
f : X → B. We are interested in understanding the surjectivity of the map sectop and we claim that,
similar to the arithmetic setting described in section 2, the surjectivity of sectop is related to a “weak
topological section conjecture”. More precisely, we have the following two statements
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Statement 3.3.1 (Weak topological section conjecture). The map X → B admits an algebraic section
if and only if the associated short exact sequence of topological fundamental groups split.

Statement 3.3.2 (Surjectivity of top. section question). The topological section map

sectop : {algebraic sections to f : X → B} → {splittings of (3.0.1)}/ ∼

is surjective.

We prove the following proposition:

Proposition 3.3.3. Let f : X → B be a smooth projective non-isotrivial family of curves whose fibers are of
genus at least 2. Then Statement 3.3.2 being true for X → B is equivalent to Statement 3.3.1 being true for
all finite étale connected covers X′ of X such that the composed map X′ → B has connected fibers.

Our proof is very much inspired by the proof in the arithmetic setting. To distinguish an alge-
braic section of f : X → B and a group theoretic section of (3.0.1), we will denote the former s and
the latter x.

Definition 3.3.4 (Neighbourhood of a section x). Let x : π1(B) → π1(X) be a group theoretic
splitting of the short exact sequence of topological fundamental groups (3.0.1). Then a neighbourhood
of x is a finite étale connected cover S′ of S such that S′ → C has connected fibers and the finite
index subgroup π1(S′) ⊂ π1(S) contains the image x(π1(C)) of the section x.

Note that given a neighbourhood of x, we get a lift of x to a group theoretic section x′ : π1(B)→
π1(X′) of the short exact sequence of fundamental groups associated to X′ → B. Furthermore, if
we post-compose x′ with the natural inclusion map π1(X′) → π1(X), we recover the section x so
one may alternatively define a neighbourhood of x as a pair (X′, x′) of finite étale covers S′ with
connected fibers over B and a group theoretic section x′ which descends to x.

Lemma 3.3.5. Let x = xs be a geometric section, i.e., it’s induced by some algebraic section s : B → X,
then a neighbourhood of x is the same as pair (X′, xs′), where X′ is a finite étale connected cover of X with
connected fibers over B, and xs′ is a group theoretic section induced by some algebraic section s′ : B → X
that is a lift of s.

Proof. Recall that a finite étale connected covers is the same as a finite set with a transitive π1(X)

action. In this case, the finite set is given by the set π1(X)/π1(X′) of cosets of π1(X′). Using
the section xs : π1(B) → π1(X), we get an induced action of π1(B) on this set. Since π1(X′)
contains π1(B), it follows that this action has a fixed point. Therefore, the cover that corresponds
to this action of π1(B) is disconnected and has a copy of B. Hence, we may lift the section s to an
algebraric section s′ : B→ X.

Given a group theoretic splitting x : π1(B) → π1(X), let Xx be the pro-étale cover of X defined
by the the projective system (X′ → X), where X′ runs over all neighbourhoods of x.

Lemma 3.3.6. Let x1 and x2 be two group theoretic sections. Then Xx1 = Xx2 if and only if they are
conjugate to each other.
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Proof. It’s enough to show that π1(Xx) = x(π1(C)). This is the case since Xx1 = Xx2 is equivalent
to π1(Xx1) being conjugate to π1(Xx2). Hence, if π1(Xx) = x(π1(B)), then π1(Xx1) being conjugate
to π1(Xx2) is equivalent to x1 being conjugate to x2.

Now to see that π1(Xx) = s(π1(B)), consider all finite index subgroups H of π1(X) contain-
ing x(π1(B)). Observe that π1(Xx) =

⋂
H so it’s enough to show that x(π1(B)) =

⋂
H. Since

we have a section, π1(X) can be written as a semi-direct product π1(X) ∼= π1(Xb) ⋊ π1(B). Let
Ni :=

⋂
[π1(Xb):H]=i H ⊂ π1(Xb). Note that because π1(Xb) is finitely generated, it admits finitely

many maps into the symmetric group Si and hence there are only finitely many index i subgroups
of π1(Xb). In particular, this intersection is finite and Ni is again of finite index. Since every au-
tomorphism of π1(Xb) preserves the index of a subgroup, we see that Ni is also characteristics. It
follows that Nix(π1(B)) are finite index subgroups of π1(X). Since fundamental group of a surface
is residually finite [25], we know that

⋂
Ni is trivial. It follows that Nix(π1(B)) = x(π1(B)) and

hence the intersection of all finite index subgroups of π1(X) containing x(π1(B)) is x(π1(B)) as
desired.

Combining these two lemmas, we may give a characterization of group theoretic sections that
come from algebraic geometry:

Corollary 3.3.7. A group theoretic section x is conjugate to xs for some algebraic section s : B → X if
and only if s belongs to the image of the natural map Xx(B) → X(B), where Xx(B) is the set of algebraic
sections of Xx → B and X(B) is the set of algebraic sections of X → B.

Proof. If x : B → X is an algebraic section, by Lemma 3.3.5, it lifts to a compatible system of
algebraic sections and hence it lifts to an algebraic section of Xx → B.

Conversely, if s is in the image of Xx(B) → X(B), the section x and xs have the same collection
of neighbourhood and so are conjugate to each other by Lemma 3.3.6.

Finally, we need the following lemma to prove the main proposition.

Lemma 3.3.8. Let f : X → B be any non-isotrivial smooth projective family of curves of genus at least 1.
Then the set of algebraic sections is finite.

Proof. When B is a curve, this is the content of the geometric Mordell conjecture [39]. Now suppose
dim B > 1. If X → B has infinitely many algebraic sections, note that the locus where these
infinitely many algebraic sections agree is a countable union of closed subvarieties of B, and hence
we may find a smooth proper curve C ⊂ B such that the restriction of all these sections are distinct.
Furthermore, we may also choose C such that the map from B toMg restricts to a non-constant map
on C. This then gives us a Kodaira fibration with infinitely many algebraic sections, contradicting
the geometric Mordell conjecture.

Now we are ready to prove Proposition 3.3.3.

Proof of Prop. 3.3.3. First let’s deduce the weak topological section conjecture for connected finite
étale covers with connected fibers over B from the surjectivity of the section map for f : X → B.
Suppose there exists a connected finite étale cover X′ → X with connected fibers over B and a
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group theoretic section x′. Then x′ descends to a group theoretic section from π1(B)→ π1(X) and
hence by the surjectivity, there exists an algebraic section from B → X. By Lemma 3.3.5, we may
lift this to an algebraic section from B to X′, and hence the weak topological section question holds
for X′ → B.

For the other direction, by Corollary 3.3.7, it’s enough to show that Xx(B) = lim←−X′(B) is non-
empty, where X′(B) is the set of algebraic sections of X′ → B. Since every neighbourhood X′

has a topological section by definition, it follows from the weak topological section conjecture that
X′(B) is non-empty. It’s finite by Lemma 3.3.8, and therefore it’s a non-empty set with a compact
Hausdorff topology. Then such projective limit is always non-empty as desired.

3.4 Kodaira fibrations and non-surjectivity after S. Lee and C. Serván

In this section, we record and slightly generalize an example due to Seraphina Lee and Carlos
Serván of Kodaira fibrations with infinitely many π1-sections [35]. We thank Seraphina and Carlos
for generously allowing us to include their construction in this thesis. The construction is similar
to the one used in their recent paper [36]. In view of the geometric Mordell conjecture, sectop is not
surjective for such Kodaira fibrations. More precisely, we prove the following result:

Proposition 3.4.1. Let f : X → B be a Kodaira fibration. Then there exists a branched cover B′ → B such
that the base change X′ := X ×B B′ → B′ is a Kodaira fibration with infinitely many π1-sections up to
conjugation.

Let f : X → B be a Kodaira fibration whose fiber Xb has genus g. Since we can always replace
B by a finite cover, by Proposition A.0.2, we may without loss of generality assume that f : X → B
has an algebraic section. Let B′ → B be a double cover of B branched at 2 points and consider the
base change f ′ : X′ := B′ ×B X → B′. We would like to give a topological description of this fiber
bundle. First, we introduce some notations.

Let Σg be a closed smooth compact orientable genus g surface. Then Xb is homeomorphic to Σg

for all b ∈ B. Let B1 = B2 = B− D2 for some open disk D2 ⊂ B. Then B′ can be constructed by
gluing together B1 and B2 along the boundaries ∂B1 = ∂B2 = S1 via the reflection map r. Similarly,
set Xi := f−1(Bi). Notice that since D2 is contractible, the family f |Xi : Xi → Bi must have trivial
monodromy along the boundary ∂Bi = S1 and hence the fiber bundle restricts to the trivial one
S1×Σg → S1 along the boundary. Then, X′ can be constructed by gluing together X1 and X2 along
the boundary ∂X1 = ∂X2 = S1 × Σg via the map (r, id).

It follows from Van Kampen theorem that

π1(B′) = π1(B1) ∗π1(S1) π1(B2) and π1(X′) = π1(X1) ∗π1(S1×Σg)
π1(X2).

Let si be the restriction of s to Bi. They certainly induce group theoretic sections (si)∗ : π1(Bi) →
π1(Xi).
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Definition 3.4.2. Let γ ∈ π1(Σg). Define a group theoretic sγ : π1(B′)→ π1(X′) by

sγ(l) =

(s1)∗(l) if l ∈ π1(X1)

γ(s2)∗(l)γ−1 if l ∈ π1(X2)

Lemma 3.4.3. The sections sγ is well-defined.

Proof. Let l ∈ π1(S1) = π1(∂B1) = π1(∂B2). Note that the restriction of the section to the boundary

((si)∗)|π1(∂Bi)
: π1(S1)→ π1(S1 × Σg) = π1(S1)× π1(Σg)

is simply (id, 1). In particular, the action of π1(Σg) commutes with the section and so γ(s2)∗(l)γ−1 =

(s2)∗(l) = (s1)∗(l) as desired.

Now Proposition 3.4.1 follows from the following lemma:

Lemma 3.4.4. If two group theoretic sections sγ is conjugate to sδ, then [γ] − [δ] ∈ W, where W is the
invariants of the monodromy action of π1(B) on H1(Σg, Z).

Proof. Suppose that sγ = msδm−1 for some m ∈ π1(Σg). More explicitly, this means that(s1)∗(l) = m(s1)∗(l)m−1 if l ∈ π1(B1)

γ(s2)∗(l)γ−1 = mδ(s2)∗(l)δ−1m−1 if l ∈ π1(B2)

We know that π1(B1) = π1(B2) and π1(X1) = π1(X2). Furthermore, under this identification,
(s1)∗(l) = (s2)∗(l) ∈ π1(X1) = π1(X2) for every l ∈ π1(B1) = π1(B2). On the other hand, the
conjugation relation says that in π1(Xi) we have

m(s1)∗(l)m−1 = (s1)∗(l) = (s2)∗(l) = γ−1mδ(s2)∗(l)δ−1m−1γ.

This means that
(s2)∗(l) = (s1)∗(l) = (m−1γ−1mδ)(s2)∗(l)(δ−1m−1γm)

In particular, we see that (s2)∗(l) commutes with m−1γ−1mδ for all l ∈ π1(B2). Therefore the
monodromy action of π1(B2) on H1(Σg, Z) must fixes [m−1γ−1mδ]. In other words, [m−1γ−1mδ] =

[−γ] + [δ] ∈W, as desired.

Corollary 3.4.5. There exists a Kodaira fibration with a continuous section but no algebraic sections

Proof. This follows directly from Proposition 3.3.3.



Chapter 4

Hodge theoretic fundamental groups
and section conjecture

In this section, we formulate and study a Hodge theoretic analogue of Grothendieck’s section con-
jecture for families of curves and study many natural questions one might ask in this Hodge theo-
retic setting. The main player here is the category of variation of mixed Hodge structure. We first
introduce some notations

4.1 Notation

Let X be a smooth connected variety over C. Let VMHSR(X) be the category of admissible, graded-
polarizable, R-variation of mixed Hodge structures (VMHS) over X, where R is either Z or Q. For
a precise definition of such an object, see [29]. Note that this is an abelian tensor category. The unit
object in this category is the constant variation of mixed Hodge structure R(0) and by trivial objects,
we mean direct sums of the unit objects. Finally, let LShdg(X) be the category of R-local systems on
X which are subquotients of local systems underlying a variation of mixed Hodge structures.

Suppose X and Y are two smooth complex varieties. Any functor F : VMHSR(X)→ VMHSR(Y)
is assumed to be exact, additive ⊗-functor. Note that if we have a map f : Y → X, then the pull-
back functor f ∗ satisfies these assumptions.

Remark 4.1.1. Admissibility is a technical condition on the behavior of a variation of mixed Hodge
structure at infinity that will not play a big role in this thesis. The main point is that it ensures the
variation of mixed Hodge structure to have some nice properties, which all variations of mixed
Hodge structure of geometric origin have. Any VMHS that comes from geometry is admissible. If
one wants to ignore this technical point, one may assume that all the spaces in this chapter are com-
pact, in which case all graded-polarizable variation of R-mixed Hodge structures are automatically
admissible.

21
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4.2 Formulation of the question and injectivity for families of

curves

For this section, assume R = Z. Let f : X → B be a smooth projective morphism with connected
fibers between two smooth connected varieties. Let Xb be the fiber over b ∈ B, and ι : Xb → X the
natural inclusion map. We have the following sequence

VMHSZ(B)
f ∗−→ VMHSZ(X)

ι∗−→ LShdg(Xb)

where f ∗ is the pullback functor induced by f , and ι∗ is defined by first pulling back a variation of
mixed Hodge structure on X to a fiber and then taking the underlying local system. Furthermore,
if s : B → X is an algebraic section to f , we get a functor s∗ : VMHSZ(X) → VMHSZ(B) such that
f ∗ ◦ s∗ = idVMHSZ(Y). We can make a formal definition:

Definition 4.2.1. A functor F : VMHSZ(X)→ VMHSZ(B) is a section to f ∗ if f ∗ ◦ F is isomorphic
to the identity functor on VMHSZ(B).

Now we formulate the question we are interested in:

Question 4.2.2 (Hodge theoretic section question).

1. (injectivity) If s1, s2 are two distinct algebraic sections to f : X → B, can the functors s∗1 and s∗2
be isomorphic?

2. (surjectivity) Suppose that F : VMHSZ(X) → VMHSZ(B) is a functor which is a section to
f ∗. Then can we find an algebraic section s : B→ X such that F is isomorphic to s∗?

In this section, we study Question 4.2.2 for families of curves. Let f : X → B be a smooth
projective family of curves of genus ≥ 1. We would like to prove the following proposition:

Proposition 4.2.3. For any pair of algebraic sections s1, s2 : B → X, if s∗1 is isomorphic to s∗2 as functors
from VMHSZ(X)→ VMHSZ(B), then s1 = s2.

To prove this proposition, we need to find a graded-polarizable, admissible Z-variation of
mixed Hodge structure on X whose associated period map is injective (or at least injective on each
fiber). We do so by using the canonical variation of mixed Hodge structure of Hain and Zucker. We
first recall some definitions and facts.

Let X be a smooth algebraic variety over C, and let PX be the space of piecewise-smooth paths
in X endowed with the compact open topology. The free path fibration p : PX → X× X is defined
as

p : PX → X× X

γ 7→ (γ(0), γ(1))

Denote the Px,y the fiber of p : PX → X × X over the point (x, y). Now there’s a isomorphism
H0(Px,x, Z) ∼= Z[π1(X, x)]. Let Jx be the augmentation ideal of the group ring Z[π1(X, x)]. Note
that H0(Px,y) carries a canonical left Z[π1(X, x)]-module structure, so we get an induced filtration
J• by the augmentation ideal Jx.
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Proposition-Definition 4.2.4 (r-th canonical VMHS, Prop. 4.20 + Def. 4.21 of [24]). Let X be a smooth
algebraic variety over C and x ∈ X a fixed point. Then there exists a graded-polarizable variationJx of mixed
Hodge structure on X such that for any y ∈ X,

Jx,y := (Jx)y = H0(Px,y, Z)/Jr+1.

We will in particular be interested in the case where r = 1. In this case, we have an extension of
mixed Hodge structures [24, Prop. 5.39]

0→ H1(X, Z)→ H1(X, {x, y})→ Z(0)→ 0

In particular, when x ̸= y, we just have H0(Px,y, Z)/J2 ∼= H1(X, {x, y}). We have the following
proposition which classifies such extensions:

Proposition 4.2.5. [7] Extensions of this form is classified by the Albanese Alb(X) of X, and the map
y 7→ H1(X, {x, y}) agrees with the Albanese mapping with basepoint x:

αx : X → Alb(X) := F1H1(X)∨/H1(X, Z)

y 7→
(

ω 7→
∫

γ
ω

)
where γ is any path from x to y.

Theorem 4.2.6. [24, Cor. 5.40] This period map αx agrees with the period map for the 1-st canonical VMHS.

Corollary 4.2.7. When (X, x) is a curve, the 1-st canonical VMHS on X with base point x has injective
period map.

Now we may proceed to the proof of Proposition 4.2.3.

Proof of Prop. 4.2.3. If f : X → B has no section, then the claim is trivially true, so we may without
loss of generality assume that we have an algebraic section s0 : B → X. Then as before we get a
commutative diagram

X Pic0
X/B

B

h

f
π

The fibers of π : Pic0
X/B → B is Jac(Xb) = Alb(Xb), which we may view as a mixed period do-

main. In particular, Pic0
X/B carries a universal variation of mixed Hodge structure U such that for a

given point p ∈ Jac(Xb), U|p is the extension class in Ext1(Z(0), H1(Xb)) corresponding to p. Now
pulling back U along h, we get a variation of mixed Hodge structure J := h∗U on X , whose period
map factors through h, and which, when restricting to the fiber Xb, agrees with Js0(b),y. By Corollary
4.2.7, we know that V is injective on each fiber.

Therefore, if s∗1 is isomorphic to s∗2 as functors, then for all b ∈ B, s∗1V|b ∼= s∗2V|b or equivalently,
V|s1(b)

∼= V|s2(b). By the injectivity of the period map, we see that s1(b) = s2(b). Therefore, the
desired proposition follows immediately if one can verify that J is admissible.
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Lemma 4.2.8. The Z-VMHS J constructed in the proof above is admissible.

This lemma, again, is automatically true when X is proper. It was proven in [22] and we pro-
vide a sketch of a proof that’s motivated by Beilinson-Deligne-Goncharov’s construction of mixed
Hodge structures on truncated fundamental groups [13]. For a detailed description of this con-
struction, see section 3.6 of [6].

Sketch of a proof. We claim that this variation of mixed Hodge structures comes from geometry as
it’s the cohomology of a family of cosimplicial schemes. Since any variation of mixed Hodge struc-
ture that comes from geometry is admissible, this proves the desired claim. The main idea is to run
the Beilinson-Deligne-Goncharov’s construction of the mixed Hodge structure on Z[π1(X, x, y)]/Jr+1

in families.

Consider the fiber product

X×B X X

X B

p2

p1

We get a fibration φ : X×B X → B, where over each point b ∈ B, the fiber is given by the product of
curves φ−1(b) = Xb × Xb. Let Z0 be the image of the diagonal map ∆ : X → X ×B X. Let D be the
image of the fixed section s0 : B→ X, and let Z1 be the preimage of D in X×B X under the second
projection map p2. Note that Z0 ∩ π−1(b) is the closed subset Z0 ⊂ Xb × Xb defined by {x1 = x2},
where the xi are coordinates of Xb × Xb and Z1 ∩ π−1(b) is the closed subset Z1 ⊂ Xb × Xb defined
by {x1 = s0(b)}

Let ZZi
be the extension by zero of the constant sheaf on Zi along the natural inclusion map.

We can define the following complex

Ks : 0→ Z→ ZZ0
⊕ZZ1

→ 0,

where the map Z → ZZ0
⊕ZZ1

is given by the alternating sum of the natural restriction map.
Note that if we restrict this complex to π−1(b), we recover the complex of sheaves on Xb × Xb used
in Beilinson-Deligne-Goncharov’s construction

•Ks(b)⟨1⟩ : 0→ Z→ ZZ0
⊕ZZ1

→ 0.

Now the desired variation of mixed Hodge structure agrees with the variation of mixed Hodge
structure defined on the local system R1(p1)∗(Ks) on X, whose fiber at y ∈ Sb is given by the
hypercohomology H1(Xb, yKs(b)⟨1⟩), which agrees with H1(Xb, {s(b), y}) when s(b) ̸= y. When
s(b) = y, this hypercohomology becomes the split extension of H1(Xb, s(b)) by Z(0).

4.3 Exact sequence of Hodge theoretic fundamental groups

In this section, we set R = Q. Note that, after fixing a base point x ∈ X and thus a fiber functor,
both VMHSQ(X) and LShdg

Q
(X) are Tannakian categories over Q, and thus we may talk about
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Tannakian fundamental groups. We will again omit the choice of base point in our notation. This is
then more analogous to Grothendieck’s anabelian philosophy as we may now use group theoretic
information to understand the geometry of algebraic varieties and maps between them. In addition,
for technical reasons we shall explain later, we will henceforth require all variations of mixed Hodge
structures and local systems to have underlying integral structures. For some preliminaries on
Tannakian categories, see Appendix B. Now given a Serre fibration of k(π, 1)-spaces f : X → B,
we should get a (long) exact sequence of topological fundamental groups, so it’s natural to ask
that if we have a smooth projective family f : X → B with connected fibers between two smooth
connected varieties, do we have an analogous exact sequence of Tannakian fundamental groups?

If B is a point, this question is answered in [10], where the authors showed that for any smooth
connected complex variety X, we have a short exact sequence of groups

1→ πTann
1 (LShdg

Q
(X))→ πTann

1 (VMHSQ(X))→ πTann
1 (MHSQ)→ 1.

In this section, we generalize this to the case where B is not a single point. The key theorems we
need from the theory of Tannakian categories are summarized in Appendix B.

Proposition 4.3.1. Given a smooth projective morphism f : X → B with connected fibers between two
smooth connected varieties, we have an exact sequence

πTann
1 (LShdg

Q
(Xb))

π(ι)−−→ πTann
1 (VMHSQ(X))

π( f )−−→ πTann
1 (VMHSQ(B))→ 1 (4.3.1)

Proof. To see that f ∗(VMHSQ(B)) ⊂ VMHSQ(X) is a full subcategory, note that since f is smooth
projective and V is admissible, f∗V is naturally a variation of mixed Hodge structure. Furthermore,
since f has connected fibers, we know that f∗ ◦ f ∗ = id. In particular, by adjunction, we know that

Hom( f ∗V , f ∗W) = Hom(V , f∗ f ∗W) = Hom(V ,W).

It follows that f ∗(VMHSQ(B)) is a full subcategory. It’s closed under taking subobjects because if
W is a subobject of f ∗V , then it must come from f∗W ⊂ f∗ f ∗V = V . By part (1) of Proposition
B.0.3, π( f ) is faithfully flat.

Now ι∗ ◦ f ∗ is certainly trivial, as the objects in the image are local systems underlying a varia-
tion of mixed Hodge structure on Xb that are pulled back from a point. Furthermore, the semisim-
ple objects in VMHSQ(X) are exactly the pure variation of Q-Hodge structures, and by Deligne’s
semisimplicity theorem, the underlying local system is also semisimple. Finally, we claim that the
maximal trivial subobjects of ι∗(V) comes from f∗V . It’s enough to check this at the level of local
systems. Let U be the maximal trivial part of ι∗V ; it’s a constant sheaf with values in H0(Xb, ι∗V).
Since ι∗ f ∗ f∗V is also trivial, there’s certainly a map ι∗ f ∗ f∗V → U . It’s an isomorphism because
the induced maps on stalks are the isomorphism ( f∗V)b

∼= H0(Xb, ι∗V). Therefore, by Proposition
B.0.4, the sequence is exact in the middle.

Furthermore, we have the following proposition:
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Proposition 4.3.2. Let f : X → B be as above. Then the map

πTann
1 (LShdg

Q
(Xb))→ πTann

1 (VMHSQ(X))

is injective if and only if every local system V ∈ LShdg
Q

(Xb) is a subquotient of a local system which extends
to a local system W on all of X with W underlying a (graded-polarizable, admissible) Q-variation of mixed
Hodge structure on X.

Proof. This is a direct consequence of part 2 of Proposition B.0.3.

Using this proposition and building upon recent work of Landesman-Litt [33] and Lam [31], we
prove the following corollary:

Corollary 4.3.3. Fix g ≥ 2, and consider the universal family of curves Cg → Mg. Then for some
b = [Xb] ∈ Mg, the induced map

πTann
1 (LShdg

Q
(Xb))→ πTann

1 (VMHSQ(Cg))

is not injective.

The key to apply results from [33] and [31] is the following lemma.

Lemma 4.3.4. Let f : X → B be a smooth projective family of algebraic varieties and let V be an irreducible
Q-local system on Xb0 for some b0 ∈ B. If V is a subquotient of a local system W which extends to a local
system underlying some Q-variation of mixed Hodge structure in VMHSQ(X), then V underlies a pure
Q-variation of Hodge structure on Xb for every b ∈ B.

Proof. Suppose that W extends to the local system W′ on all of X, and supposeW is some variation
of mixed Hodge structure in VMHS(X) whose underlying local system is W′. Then the parallel
transport of V (which we will again call V) must be a subquotient of W′|Xb for any b ∈ B. It
follows that V is a sub-local system of Gr•W′|Xb . Since W ′|Xb underlies a Q-variation of mixed
Hodge structure, then Gr•W ′|Xb underlies a Q, and hence C-variation of pure Hodge structures.
Since V is irreducible, non-abelian Hodge correspondence then tells us that V must underlies a
pure C-variation of Hodge structure on Xb for every b ∈ B. Since V is a Q-local system, we see that
it must underlies a Q-variation of pure Hodge structure.

Therefore to prove that the map πTann
1 (LShdg

Q
(Xb)) → πTann

1 (VMHSQ(Cg)) is not injective, it’s
enough to produce an irreducible Q-local system V on a curve Xb such that after we deform the
algebraic structure on Xb, V no longer underlies a variation of Hodge structure. This can be done
by applying one of the main theorems in Landesman-Litt [33, Theorem 1.2.12] which says that this
is possible if the rank of the local system is relatively small compared to the genus. More precisely,
suppose X is a curve and V is a local system on X with rank≤ 2

√
g + 1. Then if the isomonodromy

deformation of V to an analytic general nearby curve still underlies a variation of Hodge structure,
then V must be unitary. Therefore, any non-unitary irreducible local systems of small rank on
curves of large genera can be used to prove Corollary 4.3.3.
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To make things more explicit, and to make our result holds for all g ≥ 2, we instead opted to
slightly generalize the proof of [31, Theorem 1.1]. The main idea is to use any motivic uniformizing
Higgs bundles in the sense of Hitchin [26]. Recall that a uniformizing Higgs bundle (E , θ) on a
smooth projective curve X is defined by E = L⊕L∨, where L is some square root of the canonical
bundle, θ|L is the tautological isomorphism between L and L ⊗ΩS, and θ|L∨ = 0. Note that this
defines a system of Hodge bundles, with H1,0 = L and H0,1 = L∨ and hence is the Higgs bundle
associated to an irreducible local system V on X which underlies a C (in fact, R)-variation of Hodge
structure. Furthermore, consider the classifying map

ϕ : S̃→ H,

where X̃ is the universal cover of X, andH is the upper half plane, viewed as the classifying space
of rank 2 weight 1 polarized R-Hodge structure. Since the derivative of ϕ agrees with the Higgs
field, we see that ϕ must also be an isomorphism, and thus the local system is uniformizing and
ρ(π1(X)) ⊂ PSL2(R) determines X.

Lemma 4.3.5. If ρ(π1(X)) is an arithmetic subgroup, then there are only finitely many curves of genus g
for which the local system V underlies a Q-variation of Hodge structure.

Proof. This follows from the finiteness of conjugacy classes of arithmetic Fuchsian groups of bounded
genus due to Takeuchi [53].

Proof of Corollary 4.3.3. In view of the two lemmas above, we see that it’s enough to show that for
every g ≥ 2, there exists of a curve C of genus g with a uniformizing local system whose associated
monodromy representation ρ(π1(Xb)) ⊂ PSL2(R) is arithmetic. If g = 2, we may take a genus
2 Shimura curve (see e.g. [54]), as any Shimura curve carries a motivic SL2-local system V. If
g ≥ 3, then there’s a curve C′ which is a degree g − 1 cover of a genus 2 Shimura curve C, and
we can simply pull the local system V back to C′. Again for degree reasons, the local system
will be uniformizing, and the image of the monodromy representation will be arithmetic, as the
monodromy representation factors through the monodromy representation associated to C and
V.

Remark 4.3.6. The same argument also shows that any positive dimensional family of smooth
projective curves whose fiber contains a curve with such a uniformizing local system gives example
for which the sequence (4.3.1) is not exact. In particular, any positive dimensional subvariety ofMg

passing through the point corresponding such a curve would work.

4.4 Injectivity and non-abelian Hodge locus

We continue to work in the setting as in the previous section: let f : X → B be a smooth projective
map between smooth connected complex varieties with connected fibers. We have just seen that
the map

πTann
1 (LSHdg

Q
(Xb))→ πTann

1 (VMHSQ(X))
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is not always injective. In this section, by using the work of Simpson on non-abelian Hodge locus
[47], we show that in many cases, this map is in fact usually injective if we restrict to the sub-
category generated by the semi-simple objects. We explain what that means: semi-simple objects
in VMHSQ(X) are precisely the direct sums of polarizable Q-variations of pure Hodge structures
and the semi-simple objects in LSHdg

Q
(Xb) are exactly local systems that are sub-objects of local

systems underlying polarizable Q-variation of pure Hodge structures (see [1, Remark on page 8]).
Call these two categories VHSQ(X) and LShdg,ss

Q
(Xb). On the group theory side, their correspond-

ing Tannakian fundamental groups are the pro-reductive quotients of the original groups we’ve
worked with:

πTann
1 (VHSQ(X)) =

(
πTann

1 (VMHSQ(X))
)red

, πTann
1 (LShdg, ss

Q
(Xb)) =

(
πTann

1 (LShdg
Q

(Xb))
)red

.

The same argument that proves that sequence (4.3.1) is exact now shows that the following
sequence is exact

π1(LShdg,ss
Q

(Xb))
ιss
b−→ π1(VHSQ(X))→ π1(VHSQ(B))→ 1.

Definition 4.4.1. Let f : X → B be given as above. Define the

NG(X/B) := {b ∈ B : ιb : πTann
1 (LShdg

Q
(Xb))→ πTann

1 (VMHSQ(X)) is not injective}

NG(X/B)red := {b ∈ B : ιss
b : πTann

1 (LShdg,ss
Q

(Xb))→ πTann
1 (VHSQ(X)) is not injective}

In view of Proposition B.0.4 part (2), we see that the points b ∈ NG(X/B) can be thought of as
the set of points over which the fibers Xb have “extra” local systems that underlies Q-variation of
Hodge structures. This can be viewed as a non-abelian analogue of the Hodge exceptional locus
studied in Cattani-Deligne-Kaplan [9], which is the locus of points over which the fibers Xb have
“extra” Hodge classes. Because Hodge filtrations vary holomorphically in a polarizable Q-variation
of Hodge structure, it’s not hard to see that the Hodge exceptional locus is a countable union of
closed analytic subsets (see e.g. [55, section 3.1] for an detailed exposition). We prove an analogous
result in the non-abelian setting:

Theorem 4.4.2. Suppose f : X → B is a smooth projective family of algebraic varieties such that πét
1 (Xb)

injects into πét
1 (X). Then NG(X/B)red is a countable union of closed analytic subsets of B.

We prove this theorem by relating this set NG(X/B)red to Simpson’s non-abelian Hodge locus
[47, section 12] (also known as the non-abelian Noether-Lefschetz locus). We briefly recall the
definition of non-abelian Hodge locus and some well-known results about it. The definition and
all the relevant facts can be found in [47]. Let f : X → B be a smooth projective family of algebraic
varieties. Let MDol(X/B) be the relative moduli space of semistable Higgs bundles (E , ϕ) with
vanishing rational Chern classes andMdR(X/B) the relative moduli space of vector bundles with
flat connections. From non-abelian Hodge theory, we get two things:

1. an homeomorphism betweenMDol(X/B) andMdR(X/B) known as the non-abelian Hodge
correspondence;
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2. a Gm-action on MDol(X/B) whose fixed points are exactly those Higgs bundles that corre-
spond to systems of Hodge bundles associated to a C-variation of Hodge structure.

Let V be the set of fixed points of the action of Gm on MDol(X/B) and let VdR be its image in
MdR(X/B) under the non-abelian Hodge correspondence. Now letMdR(X/B, Z) be the subset
ofMdR(X/B) which over each fiber Xb correspond to a flat bundle whose associated monodromy
representation has an integral structure. Simpson’s non-abelian Hodge locus NAHL(X/B) is then
defined as the intersection of these two sets

NAHL(X/B) := VdR ∩MdR(X/B, Z)

The important fact we need is the following:

Proposition 4.4.3 (Theorem 12.1 in [47]).

1. Simpson’s non-abelian Hodge locus NAHL(X/B) has a unique structure of a reduced analytic variety
such that the inclusion NAHL(X/B) ↪→MdR(X/B) is complex analytic.

2. The canonical mapMdR(X/B)→ B restricts to a proper map from NAHL(X/B)→ B.

The key lemma that relates Simpson’s non-abelian Hodge locus and NG(X/B)red is the follow-
ing:

Lemma 4.4.4. If f : X → B is a smooth projective family of algebraic varieties such that πét
1 (Xb) injects

into πét
1 (X). Then the set NG(X/B)red is the image of the components of NAHL(X/B) ⊂ MdR(X/B)

which do not surject onto B under the canonical mapMdR(X/B)→ B.

Proof. It’s clear that the image of the components which do not surject onto B is contained in
NG(X/B)red, so it’s enough to show that if V is a local system on Xb which is contained in a
connected component that does surjects onto all of B, then V is a subquotient (equivalently sub-
objects) of some local system which does extend to a variation of Hodge structure on all of X. Since
V is contained in such a component, we know that the isomonodromic deformation of V onto any
fiber of f : X → B is a local system which underlies a variation of Hodge structure. By [14, Theorem
1.4], we know that the orbit of V under the action of π1(B) is of finite orbit, and therefore it extends
to a local system V′ on some finite cover X′ → X that underlies a Q-variation of Hodge structure
on X′. Then f∗V′ is a local system underlying some Q-variation of Hodge structure on X whose
restriction contains V as a sub-local system as desired.

Proof of Theorem 4.4.2. The desired result follows immediately from Lemma 4.4.4 since the map f :
NAHL(X/B)→ B is proper and hence closed.

Remark 4.4.5.

1. The assumption that πét
1 (Xb) injects into πét

1 (X) is needed to apply the results of Esnault-Kerz.
It’s very reasonable to conjecture that this description is still true without this assumption.
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2. This assumption however is important from a purely group theoretic perspective: The main
group theoretic result [14, Theorem 4.1] of Esnault-Kerz says that if H is a subgroup of G such
that Ĥ injects into Ĝ, then a semi-simple representation of H extends to a semi-simple repre-
sentation of some finite index subgroup G′ of G containing H if and only if this representation
is of finite orbit under the action of G/H. This result is not true if we don’t make any assump-
tion. Indeed, this statement with no assumptions imposed would imply that any extension
of residually finite group by residually finite group is residually finite, as we explain now:
consider the extension of groups

1→ H → G → G/H → 1,

where both H and G/H are residually finite. To show that G is residually finite, it’s enough to
show that every non-zero element g ∈ H ⊂ G is non-zero in some finite quotient of G. Since
H is residually finite, we know that H has some finite quotient in which g remains non-zero.
As every finite group is linear, we see that there’s a representation ρ of H of finite image such
that ρ(g) ̸= 0. Since every representation of finite image is automatically of finite orbit under
the action of G/H, then under the assumption, we may extend it to a representation ρ′ of
some finite index subgroup G′ of G containing H. In particular ρ′(g) ̸= 0. Let K′ be the kernel
of ρ′. It’s also of finite index in G and hence the intersection of all subgroups conjugate to
K′ is a normal, finite index subgroup. Furthermore, g is again non-zero in the corresponding
finite quotient, and so G is residually finite as claimed. On the other hand, Millson [40] has
constructed an example of an extension of residually finite group by a finite group that’s not
residually finite. Hence, some assumption is needed for the main group theoretic result of
Esnault-Kerz to hold.

Let’s return to the set NG(X/B). We know that in the abelian setting, the Hodge conjecture
famously implies that the Hodge exceptional locus is in fact algebraic and this is eventually proven
unconditionally in [9]. Similarly in the non-abelian setting, the non-abelian version of the Hodge
conjecture [47, Conjecture 12.4] would also imply that Simpson’s non-abelian Hodge locus, and
therefore NG(X/B)red, is algebraic. In fact, it seems reasonable to ask if the same is true with no
assumptions and without having to pass to pro-reductive quotient:

Question 4.4.6. Let f : X → B be a smooth projective family of algebraic varieties. Is NG(X/B)
always a countable union of algebraic subsets of B?

4.5 Case study: moduli space of degree 1 line bundles on univer-

sal curves, part 1

In this section, we study the example of moduli space of degree 1 line bundles on the universal
curve p : Pic1

Cg/Mg
→Mg. Let C be a smooth projective curve of genus g. We first give an explicit

description of π1(LShdg
Q

(Pic1(C))). In fact, this description works for any algebraic variety A whose
topological fundamental group is a finitely generated free abelian group, so we first work in that
generaltiy. More specifically, we prove that
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Proposition 4.5.1. Let A be smooth connected complex algebraic variety with π1(A) = Zk. For any choice
of base point, we have π1(LShdg

Q
(A)) = Gk

a × Ẑk.

The following lemma is probably well-known to experts, and we only prove it for completeness.

Lemma 4.5.2. Let A be a smooth connected complex algebraic variety with abelian fundamental groups and
V a Q-local system underlying a polarizable Q-variation of Hodge structure with an underlying integral
structure. Then V is of finite monodromy.

Proof. Let V be such a local system. Then V ⊗ C underlies a polarizable C-variation of Hodge
structure and since π1(A) is abelian, it splits into irreducible rank 1 summands V⊗ C =

⊕
Vi.

Now by non-abelian Hodge theory, we know that each Vi underlies a polarized C-variation of
Hodge structure. In particular, the polarization has to be positive-definite and hence Vi all have
unitary monodromy. It follows that V has unitary monodromy as well. Finally, since it in addition
has an associated integral structure, it’s finite as desired.

Remark 4.5.3. This lemma does use the fact that the local systems we are considering have integral
structures, and Proposition 4.5.1 will not be correct without the integrality assumption.

Proof of Proposition 4.5.1. We need to show that the category of representation of Gk
a × Ẑk is equiva-

lent to LSHdg(A) and the equivalence is compatible with tensor products and taking fiber functors.
Let V be a local system in LSHdg(A). Then it’s given by k commuting linear operators Li. Lemma
4.5.2 tells us that the semi-simplification Gr•V of V has finite monodromy, and so by the Jordan-
Chevalley decomposition, we may write Li = Ui Ni, where Ui is of finite order and Ni is unipotent.
Since Ui commutes with Ni, we see that we get a representation of Gk

a × Ẑk. This defines a functor

Φ : LSHdg(A)→ Rep(Gk
a × Ẑk).

Conversely, given a representation of Gk
a × Ẑk, we need to produce a local system in LSHdg(A).

Such a representation is the same as k linear operators Ui of finite order and k nilpotent operators Ni

that all commute with each other. Hence we get a local system V of A by assigning each generators
of Zk to Ui Ni. We need to show that V is a subquotient of a local system which underlies a variation
of mixed Hodge structure. Since the semi-simplification of Gr•V is of finite monodromy, we know
that there exists some positive integer m such that [m]∗V is a unipotent local system on A, where
[m] : A → A is the multiplication-by-m map. It follows that V is a sub-local system of [m]∗[m]∗V.
Therefore, it’s enough to show that every unipotent local system on V is a subquotient of some
local system which underlies a variation of mixed Hodge structure.

Let V be the fiber of V over a point in A and let {v1, . . . , vr} be a basis for V. Then we may
define a π1(A)-equivariant surjection

Q[π1(A, x)]r −→ V

1i 7→ vi
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where 1i is the multiplicative identity in the i-th copy of Q[π1(A, x)]. As V is a unipotent rep-
resentation, we know that there exists some N such that (g − 1)N is in the kernel of this map
for every g ∈ Q[π1(A, x)]. It follows that this map factors through (Q[π1(A, x)]/JN)r, where
J is the augmentation ideal inside the group ring. The work of Hain and Zucker [24] shows
that Q[π1(A, x)]/JN is a local system underlying an admissible, graded-polarizable Q-variation
of mixed Hodge structure, and hence so does (Q[π1(A, x)]/JN)r. It also has an integral structure
coming from the integral group ring. It follows that every unipotent local system on is a subquo-
tient of some local system which underlies a variation of mixed Hodge structure.

Finally, it’s clear that two constructions are inverses of each other, and are compatible with
taking tensor products and fiber functors, so the desired result follows from Tannakian duality.

Remark 4.5.4. The fact that every Q-unipotent local system (potentially with no integral structures)
is a subquotient of some local system that underlies a graded-polarizable, admissible Q-variation
of mixed Hodge structure also follows from the work of D’Addezio-Esnault [10, Theorem 4.4] and
the work of Jacobsen [27, Theorem 7.2]. In fact, they showed that the full subcategory of local
systems that are subquotients of local systems underlying such variation of mixed Hodge structures
is closed under taking extensions.

Now we return to the case of p : Pic1
Cg/Mg

→ Mg. The main theorem of this section is the
following:

Theorem 4.5.5. Fix some g ≥ 2, and let C be a smooth projective curve of genus g. Then the following
sequence is exact

1→ G
2g
a × Ẑ2g = π1(LShdg

Q
(Pic1(C)))→ π1(VMHSQ(Pic1

Cg/Mg
)→ π1(VMHSQ(Mg))→ 1

Note that to show that the map

G
2g
a × Ẑ2g = π1(LShdg

Q
(Pic1(C)))→ π1(VMHSQ(Pic1

Cg/Mg
))

is injective, it’s enough to find representations of π1(VMHSQ(Pic1
Cg/Mg

)) whose restrictions to

G
2g
a × Ẑ2g are jointly faithful.

By unpacking the identification of π1(LShdg
Q

(Pic1(C))) = G
2g
a × Ẑ2g in the proof of Proposition

4.5.1 and using Tannakian duality, we see that it’s enough to find local systems (Ei)i∈N on Pic1
Cg/Mg

satisfying the following conditions:

1. All of the Ei’s underlie some graded-polarizable, admissible Q-variation of mixed Hodge
structures Pic1

Cg/Mg
;

2. the restrictions of E0 to the fiber Pic1(C) is unipotent and faithful;

3. the restrictions of (Ei)i≥0 to the fiber Pic1(C) are of finite monodromy and are jointly faithful.

We first explain how to construct the local system E0. This is inspired by the local systems studied
by Hain-Matsumoto in [21] and the key tool is to use homologically trivial relative cycles.
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Consider X := Cg ×Mg Pic1
Cg/Mg

together with two projection maps p1 : X → Cg and p2 :

X → Pic1
Cg/Mg

. By definition of Pic1
Cg/Mg

, we know that there’s a universal line bundle Luniv on
X . On each fiber of p2, the line bundle Luniv restricts to a line bundle of degree 1. We would like to
modify Luniv so that the restriction is homologically trivial. Let ω := p∗1ωCg/Mg where ωCg/Mg is
the relative canonical bundle on the universal curve Cg →Mg. Then we see that the line bundle

L := (Luniv)2g−2 ⊗ω∨

has the desired property, as the restriction of L to each fiber of p2 is of degree 0. Let D be a divisor
corresponding to L and let |D| be the support of D together with the inclusion map ι : |D| → X .

Now the relative cycle class map yields an exact sequence

0→ R1(p2)∗Z(1)→ R1(p2|X−|D|)∗Z(1)→ (p2||D|)∗H2
|D|(Z(1))→ R2(p2)∗Z(1)→ . . .

where H2
|D|(Z(1)) := R2ι!Z(1) is the sheaf on |D| whose pushforward gives the bundle of local

cohomology groups with respect to the subset |D| on X . Since D is homologically trivial on each
fiber, we see that the image of the natural inclusion map Z → (p2||D|)∗H2

|D|(Z(1)) induced by D
goes to 0 in R2(p2)∗Z(1) and hence we may pullback to get a short exact sequence

0 R1(p2)∗Z(1) R1(p2|Pic1
Cg/Mg −|D|

)∗Z(1) (p2||D|)∗H2
|D|(Z(1)) R2(p2)∗Z(1)

0 R1(p2)∗Z(1) E0 Z(0) 0

=

Notice that all the maps involved are maps of variation of mixed Hodge structures, so E0 is a
local system which underlies a graded-polarizable, admissible variation of mixed Hodge structure
as well. Furthermore, since the fibers of p2 over any point of Pic1(C) ⊂ Pic1

Cg/Mg
is simply C, if we

restrict E0 to Pic1(C), we get a unipotent local system

0→ H1(C, Z(1))→ (E0)|Pic1(C) → Z(0)→ 0

We would like to compute the monodromy of this unipotent local system.

Recall that monodromy is a topological invariant and does not depend on the base point we
choose. Let x ∈ C. This corresponds to a degree 1 line bundle on C and hence gives us a point
[x] ∈ Pic1(C). We compute the monodromy with respect to this base point. Since the local system
is unipotent, the monodromy reprensentation is determined by a map

H1(C, Z) = π1(Pic1(C), [x])→ Hom(Z(0), H1(C, Z(1))) = H1(C, Z(1)) = H1(C, Z).

In particular, the monodromy of the local system (E0)|Pic1(C) is faithful if ρE0 is injective.

Observe that [x] ∈ Pic1(C) is in the image of the natural inclusion map C → Pic1(C) and we



CHAPTER 4. HODGE THEORETIC FUNDAMENTAL GROUPS AND SECTION CONJECTURE 34

have the following commutative diagram

C Pic1(C)

Cg Pic1
Cg/Mg

j

The inclusion from C into Pic1(C) induces a surjection of topological fundamental group π1(C, x) ↠
π1(Pic1(C), [x]) and hence to compute the monodromy of (E0)|Pic1(C), it’s enough to compute the
monodromy of (j∗E0)|C.

Now if we view Cg asMg,1, when we pull the family p2 : Cg×Mg → Pic1
Cg/Mg

back along this
embedding j, we get

(Cg ×Mg Pic1
Cg/Mg

)×Pic1
Cg/Mg

Cg,1 =Mg,1 ×Mg Mg,1 = Cg,1 →Mg

which is the universal pointed curve overMg,1, and the divisor can be chosen to be (2g− 2)ξ −
K, where ξ is the unique section from Mg,1 to Cg,1, and K is a relative canonical divisor for the
map Cg,1 → Mg,1. In particular, we can relate j∗E0 to a certain local system studied by Hain and
Matsumoto in [21]. In particular, building on their monodromy computation [21, Proposition 6.4],
we can prove the following:

Proposition 4.5.6. The monodromy representation is given by

π1(C, x) π1(Pic1(C), [x]) H1(C, Z)

γ (g− 1)[γ]

In particular, (E0)|Pic1(C) is faithful.

The proof of Proposition 4.5.6 goes through the Johnson homomorphism and since it requires
us to go on a tangent, we defer the proof to the Appendix C.

Proof of Theorem 4.5.5. It remains to write down local systems (Ei)i≥1 whose restrictions to Pic1(C)
are of finite monodromy and are jointly faithful. Let ρ : π1(Pic1

Cg/Mg
) → GLr(C) be the mon-

odromy representation associated to E0. Consider all finite quotients of the image of ρ. As every
finite group is linear, we may pick faithful representations of these finite quotients and hence we
get local systems Ei on Pic1

Cg/Mg
of finite monodromy, and hence underlies graded-polarizable,

admissible Q-variation of mixed Hodge structures on Pic1
Cg/Mg

. Consider the restriction of Ei to

the fiber Pic1(C). The restrictions are certainly of finite monodromy, and it remains to show that
they are jointly faithful. Since we showed that the restriction of ρ to π1(Pic1(C)) is faithful, we
may view it as a subgroup of the image of ρ. Since ρ(π1(Pic1

Cg/Mg
)) is a finitely generated linear

group, it’s residually finite [38], and hence for any g ∈ π1(Pic1(C)), there’s some finite quotient
of ρ(π1(Pic1

Cg/Mg
)) for which g remains non-zero. Hence, the Ei|Pic1(C)’s are jointly faithful as de-

sired.
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Remark 4.5.7. Note that since π1(Mg) is residually finite [15, Theorem 6.11], this argument also
shows that the topological fundamental group π1(Pic1

Cg/Mg
) of Pic1

Cg/Mg
is residually finite. In fact,

suppose f : X → B is any smooth projective family of curves over some base B with π1(B) resid-
ually finite. Then the same argument shows that the topological fundamental group π1(Pic1

X/B) is
residually finite.

Notice that in the example of p : Pic1
Cg/Mg

→ Mg, the group π1(LShdg
Q

(Pic1(C))) does not
depend on the choice of base point [C] in Mg. Recall that in the abelian setting, the Hodge ex-
ceptional locus also has a group-theoretic characterization: it’s the locus where the Mumford-Tate
group of the fiber becomes smaller than the Mumford-Tate group of a general fiber. Therefore, it’s
reasonable to ask the following question

Question 4.5.8. Given a smooth projective families of algebraic varieties f : X → B, can NG(X/B)
be characterized as the points b of B such that πTann

1 (LShdg
Q

(Xb)) differs from that of a general fiber?

If this question has an affirmative answer, then using Proposition 4.5.1, we can for example
conclude that for any smooth projective family of abelian varieties f : A → B, the locus NG(A/B)
is always empty.

4.6 Case study: moduli space of degree 1 line bundles on univer-

sal curves, part 2

We continue our study of p : Pic1
Cg/Mg

→Mg. In this section, we would like to go back and study
the Hodge theoretic section question for this family as well as for the universal family of curves
f : Cg →Mg.

Recall that in Grothendieck’s original formulation of anabelian geometry, group theoretic maps
are not just maps of étale fundamental groups but maps of extensions (1.0.1). Now the short exact
sequence proven by D’Addezio and Esnault

1→ πTann
1 (LShdg

Q
(X))→ πTann

1 (VMHSQ(X))→ πTann
1 (MHSQ))→ 1

may be viewed as the analogue of the short exact sequence 1.0.1. This motivates the following
definition:

Definition 4.6.1. Suppose X and Y are two smooth connected complex algebraic varieties. Then
a map f : π1(VMHSQ(X)) → π1(VMHSQ(Y)) is called Hodge theoretic if it induces a map of
extensions

1 π1(LShdg
Q

(X)) π1(VMHSQ(X)) π1(MHSQ) 1

1 π1(LShdg
Q

(Y)) π1(VMHSQ(Y)) π1(MHSQ) 1

Note that any algebraic morphism between X and Y induces Hodge theoretic maps between
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their Hodge theoretic fundamental groups. Then instead of going into the set of group theoretic
splittings of (4.3.1), we require that it lands in the set of Hodge theoretic splittings:

secHdg : {algebraic sections to f : X → B} → {Hodge theoretic splittings of (4.3.1)}/ ∽,

where the equivalence relation is defined by the conjugation action of π1(LShdg
Q

(B)). With this new
requirement, the Hodge theoretic section question becomes the following

Question 4.6.2. When is secHdg a bijection?

We show that this section map is a bijection in the case p : Pic1
Cg/Mg

→Mg (as well as the case
f : Mg → Cg). The main idea is to relate maps of Tannakian fundamental groups to the maps of
étale fundamental groups. More precisely, we have the following theorem:

Theorem 4.6.3. Let f : X → B be a smooth projective map between smooth connected complex quasi-
projective varieties. If π1(VMHSQ(X)) → π1(VMHSQ(B)) admits a Hodge theoretic splitting, then the
induced map of étale fundamental groups πét

1 (X)→ πét
1 (B) also splits.

Proof. Suppose that we have a Hodge theoretic section s : π1(VMHSQ(B))→ π1(VMHSQ(X)). By
definition, s restricts to a splitting s|LSQ

: π1(LShdg
Q

(B))→ π1(LShdg
Q

(X)) of the map π1(LShdg
Q

(X))→
π1(LShdg

Q
(B)). Applying Tannakian duality, we see that at the categorical side, we get a functor

s∗|LS : LShdg
Q

(X)→ LShdg
Q

(B) such that s∗|LS ◦ f ∗ is isomorphic to the identity functor on LShdg
Q

(B).

We claim that any additive tensor functor between LShdg
Q

(X) and LShdg
Q

(B) has to preserve local
systems of finite monodromy. Assuming this claim is true, then s∗|LS further restricts to a functor
from the category LSfin(X) of local systems with finite monodromy on X to LSfin(B), such that
precomposing with f ∗ is isomorphic to the identity functor on LSfin(B). This concludes the proof
as the étale fundamental group of a smooth connected complex algebraic variety X can be identified
with the Tannakian fundamental group πTann

1 (LSfin(X)).

Therefore, it remains to verify the following lemma:

Lemma 4.6.4. Let X and Y be two smooth connected complex quasi-projective varieties. Then any additive
tensor functors between (sub)categories of local systems have to send local systems of finite monodromy to
local systems of finite monodromy.

Proof. This follows from Nori’s criterion for a local system to be of finite monodromy: a local system
V on a smooth connected quasi-projective variety X is of finite monodromy if and only if there are
two polynomials P(x) ̸= Q(x) ∈ N[x] such that P(V) = Q(V), where multiplication of local
system is interpreted as tensor products and addition is interpreted as direct sum. This is first
proven by Nori in the case where X is a curve [44], and is later generalized to the case where X is a
smooth connected quasi-projective variety by the work of Biswas-Holla-Schumacher [4].

Remark 4.6.5. This criterion also works for Mg and Pic1
Cg/Mg

as one can check if a local system
is of finite monodromy by pulling back this local system to a finite étale cover, and bothMg and
Pic1
Cg/Mg

admit finite étale covering maps by smooth connected quasi-projective varieties.
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Corollary 4.6.6. Let U be any open subsets ofMg and f−1(U) its preimage in Cg and p−1(U) its preimage
in Pic1

Cg/Mg
. Then the maps

π1(VMHS(p−1(U)))→ π1(VMHS(U)), π1(VMHS( f−1(U)))→ π1(VMHS(U))

do not admit any Hodge theoretic sections, and the section maps secHdg are bijections in these two cases.
In particular, taking U to be Mg gives affirmative answers to Hodge theoretic section question for p :
Pic1
Cg/Mg

→Mg and f : Cg →Mg.

Proof. This follows from the fact that the associated maps of étale fundamental groups do not split
when the base is the generic point ofMg (see [20] and [37]).

Remark 4.6.7. André observed in [2] that given a smooth connected complex algebraic variety X,
the étale fundamental group πét

1 (X) can be identified with π0(π1(VMHS(X))) = π0(π1(LSHdg(X))).
In particular, Theorem 4.6.3 still holds even if we just work with group theoretic sections. It’s then
natural to ask if every group theoretic section is automatically Hodge theoretic.



Chapter 5

Maps between curves

In this section we switch gears and discuss algebraic maps between curves. We know that any
algebraic maps between curves must preserve Hodge structures on cohomology. Furthermore, by
Torelli’s theorem [3, page 245], we know that the algebraic structure of a smooth projective curve X
is determined by the polarized Hodge structure on H1(X, Z). We ask if maps between cohomology
which preserves Hodge structures are in one-to-one correspondence to the set of algebraic maps.

Now it’s in fact not difficult to see that the answer to this naı̈ve question is no. For example,
as an integral Hodge structure, H1(X, Z) always have non-trivial automorphisms, as the −1 maps
is always an automorphism. On the other hand, there are many curves of genus at least 2 which
do not admit any non-trivial automorphisms. However, in the case of automorphisms, a slightly
modified version of the naı̈ve indeed has a positive solution.

Proposition 5.0.1. Let X be a smooth projective curve. Given any isomorphism f of Hodge structures
H1(X, Z) → H1(X, Z) which preserves the polarization, there’s always an automorphism ϕ of X whose
induced map on cohomology is ± f .

Therefore, in some sense, it’s well-understood how automorphism of polarized integral Hodge
structure captures (or fails to capture) automorphisms of curves. In the next section, we produce
more examples of morphisms between curves of different genera that do not come from algebraic
geometry. These examples are in some sense more extreme and are related to finding families of
curves with isotrivial isogeny factors. In particular, this construction gives examples of families of
curves with isotrivial isogeny factors that are in some sense maximal. We explain this relation in
section 5.2.

5.1 Hodge structure on cohomology is not enough

Let ϕ : C → R be a non-constant map of algebraic curves where C is of genus g and R some curve
of genus h < g. Note that we get an induced map of Jacobians Jac(R) ↪→ Jac(C) and by Poincaré
complete reducibility theorem [41, Theorem 10.1], we know that Jac(C) is isogenous to Jac(R) ×
A′ for some abelian variety A′ of dimension g − h. In particular, this means that Mg intersects

38
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nontrivially with some Hecke translate of [Jac(R)] × Ag−h inside Ag. Now the codimension of
[Jac(R)]×Ag−h inside Ag is given by

(
g + 1

2

)
−
(

g− h + 1
2

)
= hg +

h− h2

2

and so the expected dimension of the intersection of [Jac(R)]×Ag−h withMg inside Ag is given
by 3g− 3− hg− h−h2

2 .

In particular, when h = 2, we see that the expected dimension of the intersection is g− 2 > 0.
Therefore, since the intersection is non-empty, we get a positive dimensional family of curves {Cb}
of genus g, parametrized by some base B. Since varying the algebraic structure does not change the
underlying topological space, we see that for all b ∈ B, Cb is still an unramified topological cover
of R with covering map ϕb := ϕ. Note that ϕb need not to be algebraic with respect to the algebraic
structure on Xb and R.

However, by construction, for every b ∈ B, the Jacobian Jac(Cb) of the fiber contains Jac(R)
as a polarized subvariety. It follows then that the map between cohomology induced by ϕb is a
morphism of polarized Hodge structure. Using this observation, we may construct examples of
maps of Hodge structures which do not come from algebraic geometry:

Proposition 5.1.1. Let R be any smooth projective curve of genus 2. Let ϕ : C → R be an étale cover of
genus g. As explained above, we get a family {Cb} of curves with maps ϕb into R. Then all but finitely many
of these maps ϕb are not homotopic to an algebraic map.

Proof. This follows from the fact that there are only finitely many étale covers of a fixed degree over
R and the fact that as continous maps, ϕb are all unramified covering maps.

Remark 5.1.2.

1. Note that by Riemann-Hurwitz, every non-constant map from a curve of genus 3 to a curve of
genus 2 is étale. In particular, there are examples where we have non-trivial maps of Hodge
structures but no algebraic maps at all.

2. When h = 1, we know that the expected dimension of the intersection is 2g− 3 > 0, but étale
covers of a genus 1 curve is still of genus 1 so this argument does not work.

3. The expected dimension of the intersection can be rewritten as

3g− 3− hg− h− h2

2
= 3g− 3− hg

2
− h

(
g− h + 1

2

)
.

Note that when h ≥ 6, this expression is clearly negative; the cases of h = 3, 4, and 5 can be
checked individually to be no greater than 0. Therefore, this argument does not work for any
R of genus greater than 2.

4. The proof the pointed Torelli theorem of Hain and Pulte crucially uses Proposition 5.0.1.
Therefore, if one would like to capture morphisms of pointed curves using the mixed Hodge
structure on fundamental groups, one may need a different idea.
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5.2 Family of curves and isotrivial isogeny factors

Note that the construction in the previous section produces a subvariety B insideMg, whose as-
sociated family of curves has an isotrivial isogeny factor. In this section, we show that the families
constructed in the following way are in some sense maximal.

Proposition 5.2.1. Let B be a subvariety ofMg whose associated family of curves has an isotrivial isogeny
factor, then dim B ≤ 2g− 3. This bound is sharp as the construction in the previous section produces such
a family when h = 1.

To prove this proposition, we first relate having an isotrivial isogeny factor to the derivative
of the period maps. Suppose f : X → B is a family of curves corresponding to an embedding
ι : B ↪→ Mg and suppose that the associated family of Jacobians π : A → B has an isotrivial
isogeny factor A f . The derivative of the (nonpolarized) period map associated to f : X → B at
some point b = [C] ∈ B is given by the following:

dP : TB,b → TMg ,b → Hom(H0(C, ωC), H1(C,OC)).

Another way to think about it is that it comes from the Gauss-Manin connection

∇ : R1 f∗C⊗OB → R1 f∗C⊗ΩB

in the following way: by Griffiths transversality, if we take the associated graded piece of ∇, we
get and OB-linear map

∇ : f∗ΩX/B → R1 f∗OX ⊗ΩB

and the derivative of the period map is obtained from first taking the fiber of ∇ at b

∇b : H0(C, ωC)→ H1(C,OC)⊗ (T∨B,b)

and then applying adjunction.

By definition, π : A → B having isotrivial isogeny factor A f is the same as saying that ∇ has
a nontrivial kernel. Since the kernel is also a Hodge structure, it has to intersect F1(R1 f∗C⊗OB)

non-trivially and hence both ∇ and ∇b have non-trivial kernel.

Since the derivative of the period map factors through TMg ,b, we see that ∇b factors in the
following way

∇b : H0(C, ωC)→ H1(C,OC)⊗ T∨Mg ,b → H1(C,OC)⊗ (T∨B,b)

Recall that we have identification H1(C,OC)
∨ = H0(C, ωC) coming from Hodge theory and TMg ,b =

H1(C, TC) = H0(C, ω⊗2
C ) coming from Serre duality. Then using these identifications and the

tensor-Hom adjunction, we can rewrite the map as

∇b : H0(C, ωC)→ Hom(H0(C, ωC), H0(C, ω⊗2
C ))→ Hom(H0(C, ωC), (T∨B,b)).

By [56, Lemma 10.22], we know that the first map H0(C, ωC) → Hom(H0(C, ωC), H0(C, ω⊗2
C )) is
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just given by multiplication of sections, i.e, for any φ ∈ H0(C, ωC), the homomorphism we get just
sends ψ to ψ⊗ φ. In particular, for any φ ∈ H0(C, ωC), we have the following map

H0(C, ωC)
−⊗φ−−−→ H0(C, ω⊗2

C ) = T∨Mg ,b
ι∗−→ T∨B,b,

where ι∗ is just the induced map on cotangent spaces.

Lemma 5.2.2. For any φ ̸= 0 ∈ H0(C, ωC), the map ωC → ω⊗2
C defined by −⊗ φ is injective and so is

the induced map on global sections.

Proof. Given any non-zero global section ψ of ωC, it’s non-zero over some dense open subset of C.
It follows that given two non-zero holomorphic 1-forms φ and ψ, both of them has to be non-zero
at some point p ∈ C and hence φ⊗ ψ is also non-zero.

Proof of Proposition 5.2.1. Let φ be a non-zero holomorphic 1-form in the kernel of ∇. Then by defi-
nition the composed map

H0(C, ωC)
−⊗φ−−−→ H0(C, ω⊗2

C ) = T∨Mg ,b
ι∗−→ T∨B,b

is the zero map and hence the image of −⊗ φ is contained in the kernel of the map on cotangent
spaces ι∗ : T∨Mg ,b → T∨B,b. By Lemma 5.2.2, ker ι∗ is at least g dimensional. Since B is a subvariety of
Mg, ι∗ is surjective and so

dim B = dim T∨B,b ≤ dim T∨Mg ,b − dim H0(C, ωC) = 3g− 3− g = 2g− 3

as claimed.

If we additionally assume that the dimension of the isotrivial isogeny factor dim A f is at least 2,
then we get a linearly independent set of holomorphic 1-forms {φ1, φ2} ⊂ ker∇b. Then as before
we get two maps

mi : H0(C, ωC)
−⊗φi−−−→ H0(C, ω⊗2

C )

and the images of mi are both contained in the kernel of ι∗ so we would like to compute the dimen-
sion of the subspace spanned by the images of m1 and m2.

Lemma 5.2.3. If the zero sets of φ1 and φ2 are disjoint, then the image of m1 and the image of m2 has exactly
1-dimensional intersection given by Span(φ1 ⊗ φ2) = Span(φ2 ⊗ φ1).

Proof. First note that the two quadratic differentials φ1 ⊗ φ2 and φ2 ⊗ φ1 are scalar multiples of
each other, since they share the same zero sets and therefore differ by multiplying by some global
section ofO∗C. Hence, Span(φ1⊗ φ2) = Span(φ2⊗ φ1) is contained in the intersection of the image
of m1 and m2.

Now suppose that we have some non-zero quadratic differential η = ψ1 ⊗ φ1 = ψ2 ⊗ φ2 which
is also contained in the intersection of the images of mi’s. In particular, η has to vanish on the zero
sets of φ1 and the zero sets of φ2. Since deg ω⊗2

C = 4g− 4, the zero sets of η has to be of size 4g− 4
counting with multiplicity. On the other hand, since the zero sets of φ1 and φ2 are disjoint, and the
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union is of size 4g− 4 counting with multiplicity, it follows that η must share the same zero sets as
φ1 ⊗ φ2 and hence are non-zero scalar multiples of φ1 ⊗ φ2 as claimed.

Corollary 5.2.4. Suppose that B ⊂ Mg is a subvariety ofMg whose associated family of Jacobians has a
d-dimensional isotrivial isogeny factor for some d > 1, and suppose that there exists some point b = [C] ∈ B
with an unramified map g : C → A f that factors through the Abel-Jacobi map of C into its own Jacobian.
Then dim B ≤ g− 2.

Proof. It’s enough to show that the dimension of the subspace spanned by the images of m1 and m2

is at least 2g− 1. By Lemma 5.2.3, it’s enough to find two holomorphic 1-forms on C whose zero
sets are disjoint and are contained in the kernel of ∇.

Note that if we start with a holomorphic 1-form u on the isotrivial isogeny factor A f , then its
pullback g∗(u) will be a holomorphic 1-form on C which is in the kernel of ∇. Therefore, we just
need to find two such 1-forms on A f whose pullback will have disjoint zero sets. Now a point
x ∈ C is in the zero set of g∗(u) if and only if g(C) is tangent to the foliation induced by u at the
point g(x). Because TA f

∼= ΩA f = Odim A f , we know that H0(A f , ΩA f ) is dual to TA f ,x for every
point x ∈ A f , and g(C) being tangent to the foliation induced by u at g(x) is the same as saying
that u gives zero when paired with the image of the line TC,x inside TA f ,g(x). Since g is unramified,
the map on tangent spaces is injective at every point, so the image of TC,x is always a line.

Therefore, to find a second holomorphic 1-form u′ so that the zero set of g∗(u′) is disjoint from
g∗(u), we need to look for such u′ in the complement of the hyperplane of differential forms in
H0(A f , ΩA f ) which paired with the image of TC,x in TA f ,g(x) to be zero. Given that the zero set
of g∗(u) is a finite set, we are looking at the complement of finite union of hyperplanes which is
non-empty, as desired.

Remark 5.2.5.

1. Note that this bound is also sharp by the construction from the previous section; to satisfy
the assumption that g : C → A f is unramified, we can just require the covering map to be
unramified.

2. The assumption is also necessary; without this condition, we can take a family of degree 2
covers of a curve C of genus 2 branched over 2g− 6 points [32, Theorem C]. In this case, the
base is a generically finite cover of C(n) the n-fold symmetric product of C; this is of dimension
2g− 6 and when g is large, this is greater than g− 2.



Appendix A

Examples of Kodaira fibrations

In this appendix, we record some constructions of Kodaira fibrations. The goal is to give examples
that satisfy the assumptions of the results presented in Chapter 3. First we would like to construct
Kodaira fibrations whose monodromy representation has no invariant factors. The key is to use
the fact that a Kodaira fibration f : X → B is the same as a non-constant map from B into Mg.
Therefore, to construct a Kodaira fibration, it’s enough to construct complete curves inside Mg.
To avoid issues with stacks, we will work instead with the fine moduli space Mg[n] of genus g
curves with fixed level n ≥ 3 structure. The following construction, which we called the moduli
construction, is fairly well-known (see for example [17, Prop. 2.1]).

Moduli construction: Suppose g ≥ 4 and consider the Satake compactification Mg[n]∗, i.e.,
the closure of Mg[n] inside the Satake compactification Ag[n]∗ of Ag[n] via the Torelli map J :
Mg[n]→ Ag[n]. SinceMg[n]∗ is projective, we may embed it into some large projective space and
cut it with hyperplane sections and produce a curve. Now that when g ≥ 4, the boundary compo-
nentMg[n]∗ − J(Mg[n]) is of codimension at least 2 and the hyperelliptic locus Hg[n], where the
Torelli map fails to be an immersion, is of codimension at least 2. Hence, a curve obtained by cutting
Mg[n]∗ with hyperplane sections can avoid the boundary component as well as the hyperelliptic
locus, and corresponds to a Kodaira fibration via the universal property ofMg[n].

Lemma A.0.1. Let f : X → B be a Kodaira fibration constructed via the moduli construction explained
above. Then the image of the monodromy representation

ρ : π1(C)→ Sp2g(Z)

is of finite index inside Sp2g(Z) and hence the monodromy action on H1(Xb, Z) has no invariants (i.e.
H0(C, R1π∗Z) = 0).

Proof. By Lefschetz’s hyerplane theorem for quasi-projective varieties [18, page 153], the mon-
odromy representation ρ factors through π1(Mg[n]) via a surjection:

π1(C) ↠ π1(Mg[n])→ Sp2g(Z),

and by definition, the last map, which corresponds to the monodromy representation for the uni-
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versal family overMg[n], surjects onto the kernel of Sp2g(Z)→ Sp2g(Z/nZ), which certainly acts
on H1(Xb, Z) with no invariants.

Next, we need to give examples of Kodaira fibrations with algebraic sections

Proposition A.0.2. [5, Prop. 4.2] For every Kodaira fibration f : X → B, there exists a Kodaira fibration
f̃ : X̃ → B̃ with an algebraic section such that

1. The fibers of f : X → B and f̃ : X̃ → B̃ are of same genus g

2. The monodromy homomorphisms π1(B)→ Modg and π1(B̃)→ Modg have the same image.



Appendix B

Some Tannakian formalisms

The main references for this section are [11] and [10, Appendix A].

Definition B.0.1. A neutral Tannakian category over k is a rigid abelian k-linear tensor category C
for which there exists an exact faithful k-linear tensor functor ω : C → Veck. Any such functor ω is
said to be a fiber functor for C.

Given a neutral Tannakian category over k together with a fiber functor ω, we may define a
functor Aut⊗(ω) of k-algebras by setting Aut⊗(ω)(R) to be the families (λX), where X is an object
of C and λX is an R-linear automorphism of X⊗ R such that λX1⊗X2 = λX1 ⊗ λX2 , λ1 is the identity
on R, and for any morphism α from X to Y in C, we have

λY ◦ (α⊗ 1) = (α⊗ 1) ◦ λX : X⊗ R→ Y⊗ R.

The main theorem of the theory of Tannakian categories is the following:

Theorem B.0.2 ([11], Theorem 2.11). Let C be a Tannakian category over k equipped with a fiber functor
ω : C → Veck. Then

1. the functor Aut⊗(ω) is representable by an affine group scheme G

2. ω defines an equivalence of tensor categories C → Repk(G).

This group G is called the Tannakian fundamental group of C. We need to relate properties of
morphisms between Tannakian fundamental groups to properties of functors between Tannakian
categories.

Proposition B.0.3 ([11], Proposition 2.21). Let f : G → G′ be a homomorphism of affine group schemes
over k, and let f ∗ be the corresponding functor Repk(G

′)→ Repk(G). Then

1. f is faithfully flat if and only if f ∗ is fully faithful and for any object X′ in Repk(G
′), every subobject

of f ∗(X′) is isomorphic to the image of a subobject of X′;

2. f is a closed immersion if and only if every object of Repk(G) is isomorphic to a subquotient of an
object of the form f ∗(X′) for some object X′ of Repk(G

′).
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We also have a criterion for exactness:

Proposition B.0.4 ([10], Proposition A. 12+Proposition A. 13). Let

K
f−→ G

g−→ H

be a sequence of affine group schemes. Then this sequence is exact in the middle if and only if

1. f ∗ : Repk(G) → Repk(K) sends semi-simple object to semi-simple objects (i.e. it’s an observable
functor);

2. for every M ∈ Repk(G), there exists U ∈ Repk(H) such that the maximal trivial subobject of f ∗M
comes from g∗(U) ⊂ M.



Appendix C

Proof of Proposition 4.5.6

All the ingredients needed for a proof of Proposition 4.5.6 are contained in [21], although they
did not do this monodromy computation explicitly. They were mostly concerned with computing
the monodromy a related local system, which we will call Ecer, on Mg,1 and we explain how to
compute the monodromy of j∗E0 by using their results and some standard facts about the Johnson
homomorphism (see [15, section 6.6]).

We first set up some notations. Fix some integer g ≥ 2. Let f : Pic0
Cg,1/Mg,1

→ Mg,1 be the
relative Jacobian of the universal curve Cg,1 of genus g with 1 marked point and [C, x] ∈ Mg,1 some
base point. Let ξ :Mg,1 → Cg,1 be the unique section. Define two local systems onMg,1:

LZ := R2g−3 f∗Z(g− 1) HZ := R2g−1 f∗Z(g).

Note that HZ is the local system corresponding to the action of π1(Mg,1, [C, x]) on H := H1(C, Z(1))
and LZ is the local system corresponding to the action of π1(Mg,1, [C, x]) on L := [∧3H](−1).
There’s a natural projection map c : L→ H defined by

c(x ∧ y ∧ z) = ω(x, y)z + ω(y, z)x + ω(z, x)y

where ω is the intersection form.

The precise definition of the local system Ecer is not relevant to our story. The key is that it’s an
extension of the form

0→ LZ → Ecer → Z(0)→ 0.

More importantly, by [46, Corollary 6.7], we know that the map c is equivariant with respect to the
action of π1(Mg,1) and hence induces a commutative diagram:

0 LZ Ecer Z(0) 0

0 HZ j∗E0 Z(0) 0

In particular, the monodromy representation associated to (j∗E0)|C is determined by sending a loop
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γ ∈ π1(C, x) to a map of the form
Z→ L c−→ H.

Fix such a loop γ. Notice that π1(C, x) must be contained in the Torelli subgroup Tg,1 of π1(Mg,1)

as it’s already trivial under the projection onto π1(Mg). The key result of Hain and Matsumoto is
the following

Proposition C.0.1 (Proposition 6.4 in [21]). The monodromy of Ecer around γ is given by the map γ 7→
τ([γ]), where τ is the Johnson homomorphism τ : Tg,1 → L, and [γ] is the homology class of γ in H1(C, Z).

Proposition 4.5.6 now follows immediately:

Proof of Proposition 4.5.6. It’s enough to show that the composition

π1(C, x)→ Tg,1
τ−→ L c−→ H

is given by sending γ to (g− 1) · [γ]. Now we know that the map π1(C, x) → Tg,1
τ−→ L has the

following explicit description (see e.g. [15]): let {xi, yi}
g
i=1 be a symplectic basis for H with respect

to the intersection form ω and then this map is given by

π1(C, x) −→ L

γ 7→
(
∑ xi ∧ yi

)
∧ [γ]

Suppose [γ] = ∑ αixi + β jyi. We may now compute that

c
((

∑ xi ∧ yi
)
∧ [γ]

)
=

g

∑
i=1

c(xi ∧ yi ∧ [γ])

=
g

∑
i=1

[γ] + ω(yi, [γ])xi + ω([γ], xi)yi

=
g

∑
i=1

[γ]− αixi − βiyi

= (g− 1)[γ]

This concludes the proof of Proposition 4.5.6.
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