
Department of Mathematics
Comprehensive Exam 2023
First half: Monday, September 18, 2023 - 6:00 - 9:00 p.m.
BA6183

Last name . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

First name . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Email . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

NO AIDS ALLOWED. Solve 6 questions out 12 questions. Indicate
which questions you want to be graded. Overall passing score is 80 percent
from those 6 questions (over 2 days). Each one of the 6 problems chosen
has to get a minimum score of 70%. Do not attempt all problems; instead,
aim for complete solutions.
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1. (10 pts) Let (X,M, µ) be a finite measure space.

(a) (3 points) Let f ∈ L1(µ), show that for every ϵ > 0, there exists
δ > 0 such that

µ(E) < δ =⇒
∫
E

|f |dµ < ϵ.

(b) (5 points) Let fn be a sequence of measurable functions on (X,M),
we assume that for every ϵ > 0, there exists δ > 0 such that

µ(E) < δ =⇒ sup
n

∫
E

|fn|dµ < ϵ.

Prove that if fn is a Cauchy sequence in measure, then fn is a
Cauchy sequence in L1.

(c) (2 points) If fn is Cauchy in measure and supn

∫
|fn|2dµ < ∞,

then fn is a Cauchy sequence in L1.

2



3



4



2. (10 pts) Let u, v in C(Rn × [0, T ]) ∩ C2(Rn × (0, T )) be bounded
solutions of the following heat equations on the whole space:{

ut −∆u = F in Rn × (0, T ),

vt −∆v = 0 in Rn × (0, T ),
(H)

with initial data u(x, 0) = u0(x) and v(x, 0) = v0(x) satisfying

sup
x∈Rn

|u0(x)|+
∫
Rn

|u0| ≤ A, sup
x∈Rn

|v0(x)|+
∫
Rn

|v0| ≤ B,

and given forcing term F = F (x, t).

a) Prove that for some constant C = C(n) > 0, v satisfies the
estimate

sup
x∈Rn

|v(x, t)| ≤ Cn
B

(1 + t)n/2
.

b) Prove that, for all t ≤ T , one has

∥u(·, t)∥L2 ≤ ∥u0∥L2 +

∫ t

0

∥F (·, s)∥L2 ds,

provided the right-hand side is finite.

c) Consider the case when (H) is a system of coupled equations
with

F (x, t) = v3(x, t).

Determine in which dimension n one has

∥u(·, t)∥L2 ≤ C = C(A,B).
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3. (10 pts total) Let f(x) ∈ Q[x] be an irreducible polynomial in one
variable over Q.

a) (5 pts) Prove that F = Q[x]/(f(x)) is a field.

b) (5 pts) Prove that

{1 mod f, x mod f, x2 mod f, ..., x(deg f)−1 mod f}

is a basis for F over Q, where a(x) mod f(x) denotes the image
of a(x) ∈ Q[x] under the projection map Q[x] ↠ F .

(You are welcome to utilize the Long Division Algorithm in Q[x]
without proof.)
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4. (10 pts)

Let v ∈ Ω2(S2) satisfy
∫
S2 v = 1, and let f : S3 → S2 be a smooth

map.

a) (2 pts) Prove that there exists ξ ∈ Ω1(S3) such that dξ = f ∗v.

b) (2 pts) Prove that if dξ′ = f ∗v, then ξ′ = ξ + dλ, for λ ∈
C∞(S3,R).

Define the Hopf invariant of f to be the following integral:

H(f) =

∫
S3

ξ ∧ dξ.

c) (2 pts) Prove that H(f) does not depend on the choice of ξ such
that dξ = f ∗v.

d) (2 pts)Prove that H(f) is unchanged if v is replaced by v′ ∈
Ω2(S2) which also satisfies

∫
S2 v

′ = 1.

e) (2 pts)Let f0, f1 be smooth maps S3 → S2. Prove that if f0, f1
are smoothly homotopic, then they have the same Hopf invariant.
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5. (10 pts) Let Xn, n ∈ N be a sequence of independent exponential
random variables of mean 1, and let Sn = X1+X2+ . . . Xn. For every
positive a find

lim
n→∞

1

n
P(Sn < a).
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6. (10 pts) An n×nmatrix with complex-valued entries, A, is Hermitian
if A∗ = A where A∗ is the matrix constructed from A via (A∗)ij =
Aji for all 1 ≤ i, j ≤ n. Hermitian matrices can be orthogonally
diagonalized and their eigenvalues are real:

λ1 ≤ λ2 ≤ · · · ≤ λn.

a) AssumeA is Hermitian. The Rayleigh quotientR(A, x) is defined
for a nonzero vector x via

R(A, x) =
x∗Ax

x∗x

Prove one of the two equalities:

λ1 = min
x ̸=0

R(A, x) λn = max
x ̸=0

R(A, x).

They’re both true but if you can prove one then you can prove
the other with similar ideas.

b) From above, you can find λ1 and λn by optimizing over all
nonzero vectors. What about other eigenvalues? Find subspaces
W2 and V2 so that

λ2 = min
x ̸=0,x∈W2

x∗Ax

x∗x
= max

x ̸=0,x∈V2

x∗Ax

x∗x

and prove that your choices work. What subspaces Wk and Vk

would you use to find λk? (No proof requested.)

c) The previous part gives a pen-and-paper way of finding interme-
diate eigenvalues λi such that λ1 < λi < λn. Is it practical? (Do
you see any challenges in coding it up on a computer?)

d) Can you think of a promising way to find such intermediate
eigenvalues using either a min-max or a max-min optimization?
(Note: it will have different computational challenges, if you try
to code it up on a computer. But if you come up with the one
I’m hoping you come up with, it’s an analytically super-powerful
one.)
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