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Formulate and prove a version of Schwarz’s reflection principle for harmonic functions.

Suppose that f(z) is meromorphic in an open subset Q of C, and that K C Q is a
compact set with oriented boundary I'. Assume that f(z) does not take the value a on
I' and has no poles on I'. Use the residue theorem to determine what is computed by

the integral
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where p is a positive integer.

(a) Show that the infinite product
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n=1

represents an entire function with simple zeros at the negative integers.

(b) Define H(z) by
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Prove that

4. Given M > 0, let Sy, denote the set of functions f(z) which are holomorphic on the

open unit disk D, continuous on the closed unit disk, and satisfy
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Show that Sy is a normal family.



