DEPARTMENT OF MATHEMATICS
 University of Toronto

 Complex Analysis Comprehensive Examination

 Complex Analysis Comprehensive Examination
 September 28, 2020120 minutes

1. Formulate and prove a version of Schwarz's reflection principle for harmonic functions.
2. Suppose that $f(z)$ is meromorphic in an open subset Ω of \mathbb{C}, and that $K \subset \Omega$ is a compact set with oriented boundary Γ. Assume that $f(z)$ does not take the value a on Γ and has no poles on Γ. Use the residue theorem to determine what is computed by the integral

$$
\frac{1}{2 \pi i} \int_{\Gamma} \frac{z^{p} f^{\prime}(z)}{f(z)-a} d z
$$

where p is a positive integer.
3. (a) Show that the infinite product

$$
\prod_{n=1}^{\infty}\left(1+\frac{z}{n}\right) e^{-z / n}
$$

represents an entire function with simple zeros at the negative integers.
(b) Define $H(z)$ by

$$
\frac{1}{H(z)}=z e^{z} \prod_{n=1}^{\infty}\left(1+\frac{z}{n}\right) e^{-z / n}
$$

Prove that

$$
\frac{d}{d z}\left(\frac{H^{\prime}(z)}{H(z)}\right)=\sum_{n=0}^{\infty} \frac{1}{(z+n)^{2}}
$$

4. Given $M>0$, let \mathcal{S}_{M} denote the set of functions $f(z)$ which are holomorphic on the open unit disk D, continuous on the closed unit disk, and satisfy

$$
\int_{0}^{2 \pi}\left|f\left(e^{i \theta}\right)\right| d \theta \leq M
$$

Show that \mathcal{S}_{M} is a normal family.

