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1. Formulate and prove a version of Schwarz’s reflection principle for harmonic functions.

2. Suppose that f(z) is meromorphic in an open subset Ω of C, and that K ⊂ Ω is a
compact set with oriented boundary Γ. Assume that f(z) does not take the value a on
Γ and has no poles on Γ. Use the residue theorem to determine what is computed by
the integral
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where p is a positive integer.

3. (a) Show that the infinite product
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represents an entire function with simple zeros at the negative integers.

(b) Define H(z) by
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Prove that
d

dz

(
H ′(z)

H(z)

)
=

∞∑
n=0

1

(z + n)2
.

4. Given M > 0, let SM denote the set of functions f(z) which are holomorphic on the
open unit disk D, continuous on the closed unit disk, and satisfy∫ 2π

0

|f(eiθ)| dθ ≤M .

Show that SM is a normal family.


