DEPARTMENT OF MATHEMATICS University of Toronto

Analysis Comprehensive Exam

September 28, 2020

Time: 3 hours. Please be brief but justify your work. If you make a reference to a textbook result, be sure to carefully quote it (correctly!).

- 1. State ...
 - (a) ... Fubini's Theorem;
 - (b) ... the Lebesgue Differentiation Theorem;
 - (c) ... Hölder's Inequality;
 - (d) ... the Open Mapping Theorem.

Remember to give the assumptions as well as the conclusions!

2. Consider a sequence $\{f_n\}_{n\geq 1}$ of integrable functions on [0, 1] such that

$$\lim_{n \to \infty} f_n(x) = 0 \tag{1}$$

for almost every $x \in [0, 1]$.

- (a) Assuming that the functions f_n are nonnegative, find $\lim_{n \to \infty} \int_0^1 e^{-f_n(x)} dx$.
- (b) What can you say about this limit if the functions f_n may take both positive and negative values?
- (c) Suppose, instead of Eq. (1), you only know that $\lim_{n\to\infty} \int_0^1 |f_n(x)| dx = 0$. Do your conclusions in (a) and (b) remain valid? How?

- 3. (a) Define the *Fourier transform* \hat{f} of an integrable function f on \mathbb{R}^d .
 - (b) What is the Fourier transform of the Gaussian $g(x) = e^{-x(x-2)}$ (in dimension d = 1)?
 - (c) Give an example of a function on \mathbb{R}^d that lies in L^2 but not in L^1 . How do you compute the Fourier transform of such a function? Please justify why your procedure works!
 - (d) The Fourier transform $\mathcal{F} : f \mapsto \hat{f}$ defines a linear transformation from L^1 to L^{∞} . Is it continuous? injective? surjective?
- 4. Let \mathcal{H} be a Hilbert space, and $A : \mathcal{H} \to \mathcal{H}$ a bounded linear operator.
 - (a) Define the term *bounded* linear operator.Also define *weak convergence* in *H*.
 - (b) If $x_n \rightarrow x$ weakly in \mathcal{H} , prove that $Ax_n \rightarrow Ax$ weakly in \mathcal{H} .
 - (c) If $x_n \to x$ weakly, and $y_n \to y$ (strongly) in \mathcal{H} , prove that $\langle x_n, y_n \rangle \to \langle x, y \rangle$.

Assume that A has the following three properties:

- *Hermitian:* $\langle Ax, y \rangle = \langle x, Ay \rangle$ for all $x, y \in \mathcal{H}$;
- *positive definite:* $\langle Ax, x \rangle > 0$ for all $x \neq 0$;
- compact: If (x_n) is a bounded sequence, then (Ax_n) has a convergent subsequence.

Define $\overline{\lambda} := \sup_{||x||=1} \langle Ax, x \rangle.$

(d) Prove that the supremum is attained, i.e., there exists $\bar{x} \in \mathcal{H}$ with $||\bar{x}|| = 1$ such that $\langle A\bar{x}, \bar{x} \rangle = \overline{\lambda}$. (Consider a maximizing sequence (x_n) .)

- 5. Formulate and prove a version of Schwarz's reflection principle for harmonic functions.
- 6. Suppose that f(z) is meromorphic in an open subset Ω of \mathbb{C} , and that $K \subset \Omega$ is a compact set with oriented boundary Γ . Assume that f(z) does not take the value a on Γ and has no poles on Γ . Use the residue theorem to determine what is computed by the integral

$$\frac{1}{2\pi i} \int_{\Gamma} \frac{z^p f'(z)}{f(z) - a} dz \,,$$

where p is a positive integer.

7. (a) Show that the infinite product

$$\prod_{n=1}^{\infty} \left(1 + \frac{z}{n}\right) e^{-z/n}$$

represents an entire function with simple zeros at the negative integers.

(b) Define H(z) by

$$\frac{1}{H(z)} = ze^{z} \prod_{n=1}^{\infty} \left(1 + \frac{z}{n}\right) e^{-z/n}.$$

Prove that

$$\frac{d}{dz}\left(\frac{H'(z)}{H(z)}\right) = \sum_{n=0}^{\infty} \frac{1}{(z+n)^2}$$