DEPARTMENT OF MATHEMATICS
 University of Toronto

 Analysis Comprehensive Exam

 Analysis Comprehensive Exam}

September 28, 2020

Time: 3 hours. Please be brief but justify your work.
If you make a reference to a textbook result, be sure to carefully quote it (correctly!).

1. State ...
(a) ...Fubini's Theorem;
(b) ...the Lebesgue Differentiation Theorem;
(c) ...Hölder's Inequality;
(d) ... the Open Mapping Theorem.

Remember to give the assumptions as well as the conclusions!
2. Consider a sequence $\left\{f_{n}\right\}_{n \geq 1}$ of integrable functions on $[0,1]$ such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} f_{n}(x)=0 \tag{1}
\end{equation*}
$$

for almost every $x \in[0,1]$.
(a) Assuming that the functions f_{n} are nonnegative, find $\lim _{n \rightarrow \infty} \int_{0}^{1} e^{-f_{n}(x)} d x$.
(b) What can you say about this limit if the functions f_{n} may take both positive and negative values?
(c) Suppose, instead of Eq. (1), you only know that $\lim _{n \rightarrow \infty} \int_{0}^{1}\left|f_{n}(x)\right| d x=0$.

Do your conclusions in (a) and (b) remain valid? How?
3. (a) Define the Fourier transform \hat{f} of an integrable function f on \mathbb{R}^{d}.
(b) What is the Fourier transform of the Gaussian $g(x)=e^{-x(x-2)}$ (in dimension $d=1$)?
(c) Give an example of a function on \mathbb{R}^{d} that lies in L^{2} but not in L^{1}. How do you compute the Fourier transform of such a function? Please justify why your procedure works!
(d) The Fourier transform $\mathcal{F}: f \mapsto \hat{f}$ defines a linear transformation from L^{1} to L^{∞}. Is it continuous? injective? surjective?
4. Let \mathcal{H} be a Hilbert space, and $A: \mathcal{H} \rightarrow \mathcal{H}$ a bounded linear operator.
(a) Define the term bounded linear operator. Also define weak convergence in \mathcal{H}.
(b) If $x_{n} \rightharpoonup x$ weakly in \mathcal{H}, prove that $A x_{n} \rightharpoonup A x$ weakly in \mathcal{H}.
(c) If $x_{n} \rightharpoonup x$ weakly, and $y_{n} \rightarrow y$ (strongly) in \mathcal{H}, prove that $\left\langle x_{n}, y_{n}\right\rangle \rightarrow\langle x, y\rangle$.

Assume that A has the following three properties:

- Hermitian: $\langle A x, y\rangle=\langle x, A y\rangle$ for all $x, y \in \mathcal{H}$;
- positive definite: $\langle A x, x\rangle>0$ for all $x \neq 0$;
- compact: If $\left(x_{n}\right)$ is a bounded sequence, then $\left(A x_{n}\right)$ has a convergent subsequence.

Define $\bar{\lambda}:=\sup _{\|x\|=1}\langle A x, x\rangle$.
(d) Prove that the supremum is attained, i.e., there exists $\bar{x} \in \mathcal{H}$ with $\|\bar{x}\|=1$ such that $\langle A \bar{x}, \bar{x}\rangle=\bar{\lambda}$. (Consider a maximizing sequence $\left(x_{n}\right)$.)
5. Formulate and prove a version of Schwarz's reflection principle for harmonic functions.
6. Suppose that $f(z)$ is meromorphic in an open subset Ω of \mathbb{C}, and that $K \subset \Omega$ is a compact set with oriented boundary Γ. Assume that $f(z)$ does not take the value a on Γ and has no poles on Γ. Use the residue theorem to determine what is computed by the integral

$$
\frac{1}{2 \pi i} \int_{\Gamma} \frac{z^{p} f^{\prime}(z)}{f(z)-a} d z
$$

where p is a positive integer.
7. (a) Show that the infinite product

$$
\prod_{n=1}^{\infty}\left(1+\frac{z}{n}\right) e^{-z / n}
$$

represents an entire function with simple zeros at the negative integers.
(b) Define $H(z)$ by

$$
\frac{1}{H(z)}=z e^{z} \prod_{n=1}^{\infty}\left(1+\frac{z}{n}\right) e^{-z / n}
$$

Prove that

$$
\frac{d}{d z}\left(\frac{H^{\prime}(z)}{H(z)}\right)=\sum_{n=0}^{\infty} \frac{1}{(z+n)^{2}}
$$

