DEPARTMENT OF MATHEMATICS University of Toronto

Algebra Exam (3 hours)

Tuesday, September 29, 2020

The 6 questions on the other side of this page have equal value, but different parts of a question may have different weights.

Good Luck!

Problem 1.

- (a) Suppose that p > q are prime numbers and that G is a finite group of order $p^n q$ for some $n \ge 1$. Prove that G contains a unique normal subgroup of index q.
- (b) Suppose that G is a finite p-group and $N \neq 1$ a normal subgroup of G. Prove that $N \cap Z(G) \neq 1$, where Z(G) denotes the centre of G.

Problem 2. Suppose that R is a commutative ring that is moreover an integral domain.

- (a) If R is finite (as set), show that R is a field.
- (b) If R is artinian, show that R is a field. (We say that R is artinian if any descending chain $I_1 \supseteq I_2 \supseteq I_3 \supseteq \cdots$ of ideals of R stabilises, i.e. $I_k = I_{k+1}$ for all sufficiently large k.)
- (c) Give an example of a (commutative) artinian ring that is not a field.

Problem 3.

- (a) Determine all $\mathbb{F}_2[x]$ -modules M, up to isomorphism, such that $\dim_{\mathbb{F}_2} M = 2$. Your list should not contain any duplicates.
- (b) Write $(\mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/3\mathbb{Z}) \otimes (\mathbb{Z}/4\mathbb{Z} \oplus \mathbb{Z}/6\mathbb{Z})$ as direct sum of cyclic groups.

Problem 4.

- (a) Prove that $p(x) = x^3 + 9x + 6$ is irreducible in $\mathbb{Q}[x]$.
- (b) Let θ be a root of p(x). Describe all the elements in the field $\mathbb{Q}(\theta)$ uniquely in terms of θ .
- (c) Compute $(1+\theta)^{-1}$ in the field $\mathbb{Q}(\theta)$.

Problem 5.

- (a) State the correspondence between groups and fields given by the Fundamental Theorem of Galois Theory.
- (b) Suppose that K/\mathbb{Q} is the splitting field of a monic integral polynomial of degree 3, and that $\operatorname{Gal}(K/\mathbb{Q}) \cong S_3$. How many intermediate fields $\mathbb{Q} \subset E \subset K$ are there? For how many of these is K/E Galois, and for how many is E/\mathbb{Q} Galois?

Problem 6.

- (a) What is an affine algebraic set, its coordinate ring, and a morphism between affine algebraic sets?
- (b) State the Hilbert Nullstellensatz, and describe the correspondence between geometry and algebra that it provides.