DEPARTMENT OF MATHEMATICS University of Toronto

Complex Analysis Exam

1.5 hours

September 3, 2014

There are three questions, all of equal value.
Show all your work.

1. Evaluate via residues

$$
\int_{0}^{\infty} \frac{x^{a-1}}{1+x} d x
$$

where $0<a<1$.
2. Suppose that Ω is a domain in \mathbb{C}, f_{k} is a sequence of analytic functions on Ω, $f_{k} \rightarrow f$ uniformly on compact subsets of Ω, and f has a zero of order N at $z_{0} \in \Omega$. Show that there exists $\rho>0$ such that for k sufficiently large, f_{k} has exactly N zeros counting multiplicities on $\left|z-z_{0}\right|<\rho$.
3. a) Let f and g be $1-1$ analytic mappings from a domain $\Omega \subset \mathbb{C}$ onto the unit open disc $\Delta \subset \mathbb{C}$. Suppose that for some point $z_{0} \in \Omega, f\left(z_{0}\right)=g\left(z_{0}\right)=0$. What is the relation between f and g ?
b) Let f be a $1-1$ analytic map of the unit disc Δ onto the unit square with centre 0 , satisfying $f(0)=0$. Show that $f(i z)=i f(z)$.

