Complex analysis questions for Comprehensive Exam in Analysis September 2018

- 1. (a) Does every holomorphic mapping of the open unit disk D to itself have a fixed point? Why or why not?
 - (b) Does there exist a holomorphic mapping of D onto \mathbb{C} ? Explain.
- 2. Suppose that f(z) is meromorphic in an open subset Ω of \mathbb{C} , and that $K \subset \Omega$ is a compact set with oriented boundary Γ . Assume that f(z) does not take the value a on Γ and has no poles on Γ . Use the residue theorem to determine what is counted by the integral

$$\frac{1}{2\pi i} \int_{\Gamma} \frac{zf'(z)}{f(z) - a} dz.$$

3. Let $\{f_n\}$ denote a sequence of holomorphic functions on a domain $\Omega \subset \mathbb{C}$. Suppose that $\{f_n\}$ is a normal family, and that every subsequence $\{f_{n_k}\}$ which converges uniformly on compact sets converges to the *same* holomorphic function f on Ω . Prove that $\{f_n\}$ converges to f uniformly on compact subsets of Ω .