DEPARTMENT OF MATHEMATICS
 University of Toronto

Complex Analysis Exam

1.5 hours

September 6, 2017

There are 4 questions, all of equal value.
Show all your work.

1. Evaluate

$$
\int_{0}^{2 \pi} \frac{\cos \theta}{3+\cos \theta} d \theta
$$

2. Show that there is a complex analytic function defined on the set $U=\{z \in \mathbb{C}:|z|>4\}$ whose derivative is

$$
\frac{z}{(z-1)(z-2)(z-3)} .
$$

Is there a complex analytic function on U whose derivative is

$$
\frac{z^{2}}{(z-1)(z-2)(z-3)} ?
$$

Explain your answer.
3. Let S be the half-strip $S=\{z=x+i y:|x|<1, y>0\}$ and let f be an analytic function defined on S such that
a) $|f(z)| \leq 2, z \in S$;
b) $\lim _{y \rightarrow \infty} f(i y)=1$.

Prove that for any $0<a<1, \lim _{y \rightarrow \infty} f(x+i y)=1$ uniformly for $|x| \leq a$.
(Hint: consider the family of functions $f_{t}: S \rightarrow \mathbb{C}, f_{t}(z):=f(z+i t), t \geq 0$.)
4. Let $f: \mathbb{C} \rightarrow \mathbb{C}$ be an entire function. Prove that if $\left|f\left(z^{2}\right)\right| \leq 2|f(z)|$ for all $z \in \mathbb{C}$, then f is constant.

