1. Evaluate
\[\int_0^{2\pi} \frac{\cos \theta}{3 + \cos \theta} d\theta. \]

2. Show that there is a complex analytic function defined on the set
\[U = \{ z \in \mathbb{C} : |z| > 4 \} \]
whose derivative is
\[\frac{z}{(z-1)(z-2)(z-3)}. \]

Is there a complex analytic function on \(U \) whose derivative is
\[\frac{z^2}{(z-1)(z-2)(z-3)}? \]
Explain your answer.

3. Let \(S \) be the half-strip \(S = \{ z = x + iy : |x| < 1, y > 0 \} \) and let \(f \) be an
analytic function defined on \(S \) such that
a) \(|f(z)| \leq 2, z \in S; \)
b) \(\lim_{y \to \infty} f(iy) = 1. \)
Prove that for any \(0 < a < 1, \lim_{y \to \infty} f(x + iy) = 1 \) uniformly for \(|x| \leq a. \)
(\textit{Hint: consider the family of functions } f_t : S \to \mathbb{C}, f_t(z) := f(z + it), t \geq 0.)

4. Let \(f : \mathbb{C} \to \mathbb{C} \) be an entire function. Prove that if \(|f(z^2)| \leq 2|f(z)| \) for all
\(z \in \mathbb{C}, \) then \(f \) is constant.