DEPARTMENT OF MATHEMATICS (Full) Analysis Comprehensive Exam 2025 September 15, 2025 - 6:00 - 11:00 p.m. BA6183

NO AIDS ALLOWED. Passing score is 80 percent.
Last name
First name
Email

1. Suppose $E \subset \mathbb{R}$ has positive Lebesgue measure, and A is a countable dense subset of \mathbb{R} . Show that $m(\mathbb{R} \setminus \bigcup_{a \in A} (a+E)) = 0$.

2. Let $f \in L^1(\mathbb{R})$. Show that there is a subsequence $n_k \to \infty$ such that $f(\cdot + 1/n_k) \to f$ a.e.

3. Suppose $f:[1,\infty)\to\mathbb{R}$ be a C^1 function satisfying f(1)=0 and $f'\in L^2$. Show that $f(x)/x\in L^2([1,\infty))$.

4. State the open mapping theorem and the closed graph theorem. You do not need to prove it.

5. Define the Fourier transform of a function $f \in L^1(\mathbb{R}^n)$ and show that it is a continuous linear mapping from $L^1(\mathbb{R}^n) \to L^{\infty}(\mathbb{R}^n)$. Is this mapping injective or surjective? Why?

- 6. Do the following functions define tempered distributions? Prove or disprove your claim.
 - $f(x) = x^2 \sin(x)$.
 - $f(x) = e^x.$

7. Use the residue at infinity to find the integrals

$$\int_{|z|=4} \frac{dz}{(z-3)(z^5-1)} \quad \text{and} \quad \int_{|z|=2} \frac{dz}{(z-3)(z^5-1)}.$$

- 8. Let f(z) denote a doubly periodic meromorphic function with group of periods Γ , where Γ is generated by $e_1, e_2 \in \mathbb{C}$ (linearly independent over \mathbb{R}). Suppose that
 - a) f(z) has zeros (all simple) precisely at the points $(me_1 + ne_2)/2$, where $m, n \in \mathbb{Z}$ and m + n is odd;
 - b) f(z) has poles (all simple) precisely at the points $(pe_1 + qe_2)/2$, where $p, q \in \mathbb{Z}$ and p + q is even.

Show that f(z) is a constant multiple of the function

$$\frac{\wp'(z)}{\wp(z) - a_3}$$
, where $a_3 = \wp((e_1 + e_2)/2)$.

9. a) Show that the infinite product

$$\prod_{n=1}^{\infty} \left(1 + \frac{z}{n} \right) e^{-z/n}$$

represents an entire function with simple zeros at the negative integers.

b) Define H(z) by

$$\frac{1}{H(z)} = ze^z \prod_{n=1}^{\infty} \left(1 + \frac{z}{n}\right) e^{-z/n}.$$

Prove that

$$\frac{d}{dz}\left(\frac{H'(z)}{H(z)}\right) = \sum_{n=0}^{\infty} \frac{1}{(z+n)^2}.$$

- 10. Suppose that f(z), g(z) are meromorphic functions on $\mathbb C$ with no common poles, such that $f^n+g^n=1$.
 - a) Prove that, if n > 2, then f and g are constant.
 - b) What can we say in the case n = 2?
 - c) What can we say in the case n = 3, if we allow common poles?