Analysis Comprehensive Exam September 2014

Please be brief but justify your answers, citing relevant theorems. Sometimes a sketch can help!

1. Let (f_n) be a sequence of Lebesgue measurable functions on \mathbb{R} that converges to f in L^1 , that is,

$$\lim \int |f_n - f| \, dx = 0 \, .$$

(a) If, in addition, each $f_n \in L^2$ and there exists a constant M such that $||f_n||_2 \leq M$, that is,

$$\left(\int |f_n|^2 \, dx\right)^{\frac{1}{2}} \le M \qquad \text{for all } n \,,$$

prove that $f \in L^2$.

- (b) Does it follow that f_n converges to f in L^2 ? Please substantiate your claim!
- (c) Prove that $\lim ||f_n f||_p = 0$ for all p with 1 .
- 2. Let K(x,y) be a complex-valued function in $L^2(\mathbb{R}^2)$, and set

$$Tf(x) = \int_{\mathbb{R}} K(x, y) f(y) \, dy.$$

- (a) Show that $f \mapsto Tf$ defines a bounded linear operator on $L^2(\mathbb{R})$. (*Hint*: Schwarz' inequality.)
- (b) Find a formula for its adjoint, T^* .

(You will need to exchange some integrals. Please explain why you can do that.)

(c) In the special case where $K(x,y) = \frac{1}{\sqrt{\pi}}e^{-(x-y)^2}$, prove that the quadratic form

$$Q(f) = \int_{\mathbb{R}} \bar{f}(x) Tf(x) dx$$

is positive definite, that is, Q(f) > 0 for all $f \neq 0$. (*Hint*: Fourier transform.)

- 3. (a) Define, in simple terms: What does it mean for a set $N \subset \mathbb{R}$ to have *measure zero*? What does it mean for a set $M \subset \mathbb{R}$ to be *meager* (that is, of first category)?
 - (b) State the *Baire Category Theorem*.
 - (c) Write \mathbb{R} as the disjoint union of a meager set and a set of measure zero, that is, construct M and N such that

$$M \otimes N = \mathbb{R}, \qquad M \cap N = \emptyset,$$

where M is meager and N has measure zero.

- 4. (a) Let X be a normed vector space. Define the *dual space*, X^* , and its norm.
 - (b) Define weak convergence in X.
 - (c) When $X = L^p(\mathbb{R})$ for some $p \in [1, \infty]$, what can you say about X^* ?
 - (d) Fix p with $1 , and consider a closed subspace <math>V \subset L^p(\mathbb{R})$. For $f \in L^p(\mathbb{R})$, let

$$d(f, V) = \inf_{v \in V} ||f - v||_p$$
.

Prove that there exists a function $v_0 \in V$ such that

$$d(f, V) = ||f - v_0||_p$$
.

(Hint: Consider a minimizing sequence (v_n) in V, and extract a weakly convergent subsequence.)

5. Evaluate via residues

$$\int_0^\infty \frac{x^{a-1}}{1+x} dx$$

where 0 < a < 1.

6. Suppose that Ω is a domain in \mathbb{C} , f_k is a sequence of analytic functions on Ω , $f_k \to f$ uniformly on compact subsets of Ω , and f has a zero of order N at $z_0 \in \Omega$. Show that there exists $\rho > 0$ such that for k sufficiently large, f_k has exactly N zeros counting multiplicities on $|z - z_0| < \rho$.