DEPARTMENT OF MATHEMATICS University of Toronto

Analysis Comprehensive Exam 3 hours

September 6, 2017

There are 7 questions in total

- 1. Consider \mathbb{R}^n equipped with the outer Lebesgue measure ν .
- a) Prove or disprove: If $A \subset \mathbb{R}^n$ is uncountable, then $\nu(A) > 0$.
- b) Prove or disprove: If $A \subset \mathbb{R}^n$ satisfies $\nu(A \cap C) = \nu(C)$ for every compact $C \subset \mathbb{R}^n$, then $\bar{A} = \mathbb{R}^n$. (here the bar denotes the topological closure)
- c) Prove or disprove: If $f: \mathbb{R}^n \to \mathbb{R}^n$ is 1-Lipschitz, then $\nu(f^{-1}(A)) \geq \nu(A)$ for all $A \subset \mathbb{R}^n$.
- 2. Consider \mathbb{R} equipped with the Lebesgue measure.
- a) Give an example of a function $f: \mathbb{R} \to \mathbb{R}$ such that $f \in L^2(\mathbb{R})$ and $f \notin L^4(\mathbb{R})$.
- b) Let $f: \mathbb{R} \to \mathbb{R}$ be a Lebesgue measurable function such that

$$\left(\int_{\mathbb{R}} fg^3\right)^4 \le \left(\int_{\mathbb{R}} g^4\right)^3$$

for all $g \in C_c(\mathbb{R})$. Prove that $f \in L^4(\mathbb{R})$ and $||f||_{L^4(\mathbb{R})} \leq 1$.

c) Prove that if $f \in H^1(\mathbb{R})$, then f is Hölder continuous with exponent 1/2, i.e.

$$|f(x) - f(y)| \le C|x - y|^{1/2}$$

for some $C < \infty$. (here $H^1(\mathbb{R}) \subset L^2(\mathbb{R})$ denotes the Sobolev space of functions with weak derivative in $L^2(\mathbb{R})$)

3

- a) State the Hahn-Banach theorem, the open mapping theorem, the closed graph theorem and the uniform boundness principle.
- b) Prove that there is a natural linear isometry from a Banach space B to its double dual space $(B^*)^* = B^{**}$. Is this mapping surjective? Why?

4

- a) Define the Fourier transform of a function $f \in L^1(\mathbb{R}^n)$, and show that it is a continuous linear mapping from $L^1(\mathbb{R}^n)$ to $L^{\infty}(\mathbb{R}^n)$. Is this mapping surjective? Why?
- b) Calculate the Fourier coefficients of the following functions of $x \in [0,1]$.
 - i) f(x) = 1
 - ii) $f(x) = cos(2\pi x)$
 - iii) $f(x) = xe^{2\pi ix}$
- 5. Evaluate

$$\int_0^{2\pi} \frac{\cos \theta}{3 + \cos \theta} d\theta \ .$$

6. Show that there is a complex analytic function defined on the set $U = \{z \in \mathbb{C} : |z| > 4\}$ whose derivative is

$$\frac{z}{(z-1)(z-2)(z-3)}.$$

Is there a complex analytic function on U whose derivative is

$$\frac{z^2}{(z-1)(z-2)(z-3)} ?$$

Explain your answer.

- 7. Let S be the half-strip $S=\{z=x+iy:|x|<1,y>0\}$ and let f be an analytic function defined on S such that
- a) $|f(z)| \le 2, z \in S;$
- b) $\lim_{y\to\infty} f(iy) = 1$.

Prove that for any 0 < a < 1, $\lim_{y \to \infty} f(x + iy) = 1$ uniformly for $|x| \le a$. (Hint: consider the family of functions $f_t : S \to \mathbb{C}$, $f_t(z) := f(z + it), t \ge 0$.)