DEPARTMENT OF MATHEMATICS
 University of Toronto
 Analysis Comprehensive Exam

3 hours
September 6, 2017
There are 7 questions in total

1. Consider \mathbb{R}^{n} equipped with the outer Lebesgue measure ν.
a) Prove or disprove: If $A \subset \mathbb{R}^{n}$ is uncountable, then $\nu(A)>0$.
b) Prove or disprove: If $A \subset \mathbb{R}^{n}$ satisfies $\nu(A \cap C)=\nu(C)$ for every compact $C \subset \mathbb{R}^{n}$, then $\bar{A}=\mathbb{R}^{n}$. (here the bar denotes the topological closure)
c) Prove or disprove: If $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is 1-Lipschitz, then $\nu\left(f^{-1}(A)\right) \geq \nu(A)$ for all $A \subset \mathbb{R}^{n}$.
2. Consider \mathbb{R} equipped with the Lebesgue measure.
a) Give an example of a function $f: \mathbb{R} \rightarrow \mathbb{R}$ such that $f \in L^{2}(\mathbb{R})$ and $f \notin L^{4}(\mathbb{R})$.
b) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a Lebesgue measurable function such that

$$
\left(\int_{\mathbb{R}} f g^{3}\right)^{4} \leq\left(\int_{\mathbb{R}} g^{4}\right)^{3}
$$

for all $g \in C_{c}(\mathbb{R})$. Prove that $f \in L^{4}(\mathbb{R})$ and $\|f\|_{L^{4}(\mathbb{R})} \leq 1$.
c) Prove that if $f \in H^{1}(\mathbb{R})$, then f is Hölder continuous with exponent $1 / 2$, i.e.

$$
|f(x)-f(y)| \leq C|x-y|^{1 / 2}
$$

for some $C<\infty$. (here $H^{1}(\mathbb{R}) \subset L^{2}(\mathbb{R})$ denotes the Sobolev space of functions with weak derivative in $L^{2}(\mathbb{R})$)

3
a) State the Hahn-Banach theorem, the open mapping theorem, the closed graph theorem and the uniform boundness principle.
b) Prove that there is a natural linear isometry from a Banach space B to its double dual space $\left(B^{*}\right)^{*}=B^{* *}$. Is this mapping surjective? Why?
a) Define the Fourier transform of a function $f \in L^{1}\left(\mathbb{R}^{n}\right)$, and show that it is a continuous linear mapping from $L^{1}\left(\mathbb{R}^{n}\right)$ to $L^{\infty}\left(\mathbb{R}^{n}\right)$. Is this mapping surjective? Why?
b) Calculate the Fourier coefficients of the following functions of $x \in[0,1]$.
i) $f(x)=1$
ii) $f(x)=\cos (2 \pi x)$
iii) $f(x)=x e^{2 \pi i x}$
5. Evaluate

$$
\int_{0}^{2 \pi} \frac{\cos \theta}{3+\cos \theta} d \theta
$$

6. Show that there is a complex analytic function defined on the set $U=\{z \in \mathbb{C}:|z|>4\}$ whose derivative is

$$
\frac{z}{(z-1)(z-2)(z-3)} .
$$

Is there a complex analytic function on U whose derivative is

$$
\frac{z^{2}}{(z-1)(z-2)(z-3)} ?
$$

Explain your answer.
7. Let S be the half-strip $S=\{z=x+i y:|x|<1, y>0\}$ and let f be an analytic function defined on S such that
a) $|f(z)| \leq 2, z \in S$;
b) $\lim _{y \rightarrow \infty} f(i y)=1$.

Prove that for any $0<a<1, \lim _{y \rightarrow \infty} f(x+i y)=1$ uniformly for $|x| \leq a$.
(Hint: consider the family of functions $f_{t}: S \rightarrow \mathbb{C}, f_{t}(z):=f(z+i t), t \geq 0$.)

