DEPARTMENT OF MATHEMATICS University of Toronto

Analysis Comprehensive Exam 3 hours

September, 4 2019

......

Make sure to justify all your work. If you make a reference to a result in the textbook, please make sure to carefully quote it (correctly!).

Problem 1

Each of the following questions have equal weight can be solved independently

- (a) Let $f_n(x) = \sin(2\pi nx)$ for $n \in \mathbb{N}$. Show that the sequence $\{f_n\}_{n=1}^{\infty}$ has no subsequence which converges Lebesgue-a.e. on [0, 1].
- (b) Let μ and ν be two finite positive measures on a measurable space (X, \mathcal{A}) so that $\mu \ll \nu$ and $\nu \ll \mu$. Let $\lambda = \mu + \nu$; show that the Radon–Nikodym derivative $d\nu/d\lambda$ satisfies a.e. the following bound:

$$0 < \frac{d\nu}{d\lambda} < 1.$$

Problem 2

- (a) State the definition of the space $L^p(\mathbb{R})$ for $1 \leq p < \infty$ and for $p = \infty$
- (b) Let $1 \leq p < \infty$ and $f \in L^p(\mathbb{R})$. Show that:

$$\lim_{h\to 0} \|f(x+h) - f(x)\|_{L^p} = 0.$$

(c) Is the statement true if $p = \infty$? Either prove or find a counterexample.

Problem 3

Let $\mathcal H$ be a Hilbert space, and let $\mathcal L(\mathcal H,\mathcal H)$ denote the space of all bounded linear operators on $\mathcal H.$

- (a) Let $T \in \mathcal{L}(\mathcal{H}, \mathcal{H})$. Define the adjoint T^* of T, quoting necessary theorems on why it's well defined.
- (b) Let $V \subset \mathcal{H}$ be a closed linear subspace, and $T \in \mathcal{L}(\mathcal{H}, \mathcal{H})$. Suppose that $TV \subset V$ and $T^*V \subset V$, prove that $TV^{\perp} \subset V^{\perp}$ and $T^*V^{\perp} \subset V^{\perp}$.
- (c) Suppose $A : \mathcal{H} \to \mathcal{H}$ is a linear mapping (not assumed to be bounded), and suppose $\langle Ax, y \rangle = \langle x, Ay \rangle$ for all $x, y \in \mathcal{H}$, prove that A is bounded and hence self-adjoint. (Hint: closed graph theorem).

Continues on next page –

Problem 4

- (a) Prove that the Fourier transform $f \mapsto \hat{f}$ is a bounded linear operator from $L^1(\mathbb{R})$ to $L^\infty(\mathbb{R})$.
- (b) Let $f, g \in L^1(\mathbb{R})$, show that

$$\int f\hat{g} = \int \hat{f}g,$$

including why this expression makes sense.

(c) Let $f_k, f \in L^1(\mathbb{R}), k \in \mathbb{N}$, satisfy the following: $\sup_k \|f_k\|_{L^1} < \infty$, and the Fourier transforms $\hat{f}_k \to \hat{f}$ pointwise. Prove that for every Schwartz function φ , we have

$$\lim_{k\to\infty}\int f_k\varphi=\int f\varphi.$$

You may use without proof that the Fourier transform is a bijection on the space of Schwartz functions. You should carefully justify your answer.

Problem 5

Let \mathcal{A} denote the set of all holomorphic functions f(z) on the open unit disk $D = \{|z| < 1\}$ such that f(0) = 1 and Re f > 0.

(a) Show that, if $f \in \mathcal{A}$, then

$$\frac{1-|z|}{1+|z|} \le |f(z)| \le \frac{1+|z|}{1-|z|}$$

(Hint. Schwarz's Lemma.)

- (b) Prove that $\mathcal A$ is a normal family.
- (c) How large can |f'(0)| be?

PROBLEM 6 Use residues to show that

 $\int_0^1 \frac{dx}{\sqrt[3]{x^2 - x^3}} = \frac{2\pi}{\sqrt{3}}.$