DEPARTMENT OF MATHEMATICS
University of Toronto

Analysis Comprehensive Exam
3 hours

September, 5 2018

Make sure to justify all your work. If you make a reference to a result in the textbook, please make sure to state it explicitly (and correctly!).

Problem 1
Each of the following items can be solved independently

(a) Let X, Y be Banach spaces and $S, T : X \to Y$ two bounded linear operators; show that if T is a bijection, there exists $\delta > 0$ so that if $\|S - T\| < \delta$ then S is a bijection.

(b) Is it possible to find uncountably many disjoint measurable subsets of \mathbb{R} with strictly positive Lebesgue measure? Either give an example or show that this is impossible.

(c) Let $p > 1/2$ and assume $(x^p + x^{-p})f \in L^2(0, \infty)$; show that $f \in L^1(0, \infty)$.

Problem 2
Let \mathcal{M} denote the set of finite signed Borel measures on \mathbb{R}; given $z \in \mathbb{R}$ and $r > 0$, denote with $B(z, r) = \{y \in \mathbb{R} \text{ s.t. } |z - y| < r\}$ the ball of radius r centered at z. Given two $\mu, \mu' \in \mathcal{M}$, define

$$ (\mu, \mu')_r = \int_{\mathbb{R}} \mu(B(z, r))\mu'(B(z, r))\,dz. $$

(a) show that $\|\mu\|_r = \sqrt{(\mu, \mu)_r}$ is a norm on \mathcal{M} and deduce that

$$(\mu, \mu')_r \leq \|\mu\|_r\|\mu'\|_r.$$

(b) Let $\mu \in \mathcal{M}$ be so that $\mu(\mathbb{R}) = 1$ and define

$$\ell_r(\mu) = \liminf_{r \to 0^+} \frac{\|\mu\|_r}{r}.$$

Show that if $\ell_r(\mu) < \infty$, then $\mu \ll \text{Leb}$ and

$$\left\|\frac{d\mu}{dx}\right\|_{L^2} \leq \ell_r(\mu).$$

[HINT: For $r > 0$ define $g_r(x) = r^{-1}\mu(B(x, r))$; show that there exists a sequence $r_k \to 0^+$ so that $\lim_{k \to \infty} \|g_{r_k}\|_{L^2} \leq \ell_r(\mu)$ and g_{r_k} converges weakly to some \tilde{g}. Show that $\frac{du}{dx} = \tilde{g}$.]
Problem 3

(a) State the Hahn Banach theorem, the open mapping theorem, the uniform boundedness principle and Alaoglu’s theorem.
(b) Define the weak topology on a Banach space \mathcal{X}, and the weak-* topology on its dual \mathcal{X}^*.
(c) Suppose that B is the closed unit ball in \mathcal{X}, and that \mathcal{X} is reflexive. Prove that B is compact in the weak topology on \mathcal{X}.

Problem 4

a) What is the general formula for the Fourier transform of a function f on \mathbb{R}? The Fourier inversion formula? The Plancherel formula?
b) Explain what conditions you can put on f in order to make these formulas valid.
c) (Optional question on distribution theory)
 Can you define the Fourier transform of the function $f(x) = 1 + 2x + 3x^2 + \ldots + (m+1)x^m$?
 What is it?

Problem 5

(a) Does every holomorphic mapping of the open unit disk D to itself have a fixed point? Why or why not?
(b) Does there exist a holomorphic mapping of D onto \mathbb{C}? Explain.

Problem 6

Suppose that $f(z)$ is meromorphic in an open subset Ω of \mathbb{C}, and that $K \subset \Omega$ is a compact set with oriented boundary Γ. Assume that $f(z)$ does not take the value a on Γ and has no poles on Γ. Use the residue theorem to determine what is counted by the integral

$$\frac{1}{2\pi i} \int_{\Gamma} \frac{zf'(z)}{f(z) - a} \, dz.$$

Problem 7

Let $\{f_n\}$ denote a sequence of holomorphic functions on a domain $\Omega \subset \mathbb{C}$. Suppose that $\{f_n\}$ is a normal family, and that every subsequence $\{f_{n_k}\}$ which converges uniformly on compact sets converges to the same holomorphic function f on Ω. Prove that $\{f_n\}$ converges to f uniformly on compact subsets of Ω.

— End of the exam —