Analysis Comprehensive Exam September 2013

Please be brief but justify your answers, citing relevant theorems.

- 1. Let $(f_n)_{n\geq 1}$ be a sequence of integrable functions that converges pointwise a.e. to an integrable function f.
 - (a) Prove that

$$\lim_{n \to \infty} \left\{ \int |f_n| - \int |f - f_n| \right\} = \int |f(x)|.$$

- (*Hint:* Use the triangle inequality.)
- (b) Argue that the above identity improves upon Fatou's lemma.
- (c) Give an example where the inequality in Fatou's lemma is strict.
- 2. True or False? Why? (Try to find one-line arguments.)
 (a) If A ⊂ [0, 1] is compact and its interior is empty, then A has Lebesgue measure zero.
 (b) Let B ⊂ ℝ² be measurable, and let

$$B_y = \{x \in \mathbb{R} \mid (x, y) \in B\}, \qquad B^x = \{y \in \mathbb{R} \mid (x, y) \in B\}$$

be its horizontal and vertical cross sections. (A sketch may help.)

- If B_y has measure zero for almost every y, then B^x has measure zero for almost every x.
- (c) If a Lebesgue-measurable set $C \subset [0, 1]$ satisfies

$$m(C \cap I) \geq \frac{1}{2}m(I)$$

for every interval $I \subset [0, 1]$, then m(C) = 1.

3. Let \mathcal{H} be an infinite-dimensional separable Hilbert space.

(a) What does it mean for a sequence $(u_n)_{n\geq 1}$ to be an orthonormal basis of \mathcal{H} ? Please give three equivalent criteria.

(b) Let $f_n \rightharpoonup f$ be a weakly convergent sequence in \mathcal{H} . Prove that

$$\lim_{n \to \infty} ||f_n - f|| = 0 \quad \Longleftrightarrow \quad \lim_{n \to \infty} ||f_n|| = ||f||.$$

(c) Give an example of a sequence that converges weakly, but not strongly in \mathcal{H} .

4. (a) Define the Fourier transform F : f → f̂ for integrable functions f on ℝ.
(b) How would you compute f̂ for a function f ∈ L² \ L¹ (such as f(x) = x⁻¹ sin x)? Please justify why your method works. (*Hint:* Plancherel's theorem.)

(c) Prove the Hausdorff-Young inequality

$$||f||_q \le C_p ||f||_p, \quad 1 \le p \le 2$$

for q = 1 - 1/p and a suitable constant C_p by interpolating between p = 1 and p = 2.

- 5. Suppose that f is an entire function and $|f(z)| \le A + B|z|^k$, where A, B are positive constants and k is a positive integer. Show that f is a polynomial. What can you say about its degree ?
- 6. (a) Evaluate

$$\int_{-\infty}^{\infty} \frac{e^{itx}}{x^2 + a^2} dx$$

via residues, where $t \in \mathbb{R}$ and a > 0.

(b) Suppose f is a holomorphic function on a domain $\Omega \subset \mathbb{C}$ and that the closed disc of centre a and radius r is contained in Ω . Let γ be the positively oriented circle with centre a and radius r, and suppose f has no zero on γ . For $p = 1, 2, 3, \ldots$, what is the value of

$$\frac{1}{2\pi i} \int_{\gamma} \frac{f'(z)}{f(z)} z^p dz?$$