DEPARTMENT OF MATHEMATICS University of Toronto

Algebra Exam (3 hours)

Thursday, September 10, 2015, 1-4 PM

The 6 questions on the other side of this page have equal value, but different parts of a question may have different weights.

Good Luck!

Problem 1. Let G be a group and let Z(G) denote its centre.

- 1. Show that if G/Z(G) is cyclic then G is Abelian.
- 2. Prove that if the group Aut(G) of automorphisms of G is cyclic, then G is Abelian.

Problem 2. Define a "Principal Ideal Domain (PID)" and a "Unique Factorization Domain (UFD)" and show that every PID is a UFD. If you need to use the lemma that an increasing chain of ideals in a PID must become constant at some point (i.e., that a PID is "Noetherian"), prove it.

Problem 3. Let $V = F^n$ be an *n*-dimensional vector space over some field F, let $T: V \to V$ be a linear transformation, let R = F[x] denote the ring of polynomials in a variable x with coefficients in F, and consider V as an R-module by setting xv = Tv for any $v \in V$. Let $\pi: R^n \to F^n$ be the morphism of R-modules defined by mapping the standard basis elements e_i of R^n to their obvious counterparts in F^n . Propose a set of n generators r_i of ker π and prove in detail that your proposed r_i indeed generate ker π .

Problem 4. Let $\overline{\mathbb{Q}}$ be an algebraic closure of the rational numbers. Suppose that $\alpha, \beta \in \overline{\mathbb{Q}}$ are such that $\mathbb{Q}(\alpha)$ and $\mathbb{Q}(\beta)$ are Galois extensions of \mathbb{Q} .

- 1. Prove that $\mathbb{Q}(\alpha, \beta)$ is a Galois extension of \mathbb{Q} .
- 2. Suppose that $\operatorname{Gal}(\mathbb{Q}(\alpha)/\mathbb{Q})$ and $\operatorname{Gal}(\mathbb{Q}(\beta)/\mathbb{Q})$ are Abelian. Prove that $\operatorname{Gal}(\mathbb{Q}(\alpha,\beta)/\mathbb{Q})$ is abelian.
- 3. If $F \subset \overline{\mathbb{Q}}$ is a finite extension of \mathbb{Q} , we say that F is Abelian over \mathbb{Q} if F is Galois over \mathbb{Q} and $\operatorname{Gal}(F/\mathbb{Q})$ is Abelian. Prove that if $K \subset \mathbb{Q}$ is a finite Galois extension of \mathbb{Q} , there exists a maximal Abelian subfield F of K: that is, F is abelian over \mathbb{Q} and contains any subfield K' of K that is Abelian over \mathbb{Q} .

Note: In your solution to this question, please do not quote theorems about Galois groups of composites of field extensions. Feel free to use other results from Galois theory.

Problem 5. Let G be a finite group and let $\chi = \chi_{\rho}$ be the character of an irreducible complex representation $\rho: G \to GL(V)$ of G. (In other words, V is a simple $\mathbb{C}[G]$ -module.) Let H be a proper subgroup of G and let χ_1, \ldots, χ_r be the characters of the distinct isomorphism (that is, equivalence) classes of irreducible complex representations of H. Let χ_H be the restriction of χ to H.

- 1. Show that $\chi_H = \sum_{j=1}^r n_j \chi_j$ for nonnegative integers n_1, \ldots, n_r .
- 2. Show that $\sum_{j=1}^{r} n_j^2 \le |G|/|H|$.
- 3. Show that if H is a normal subgroup of G, then all of the nonzero n_i 's are equal.

Problem 6. Let *I* be an ideal in a commutative ring *R* with 1. The radical of *I*, denoted by $\operatorname{Rad}(I)$ is equal to $\{c \in R \mid c^n \in I \text{ for some } n \geq 1\}$. The ideal *I* is primary if whenever $a, b \in R$ satisfy $ab \in I$, then $a \in I$ or $b \in \operatorname{Rad}(I)$. Prove that *I* is prime if and only if $I = \operatorname{Rad}(I)$ and *I* is primary.

Good Luck!