The 6 questions on the other side of this page have equal value, but different parts of a question may have different weights.
Problem 1. Let G be a group and let $Z(G)$ denote its centre.

1. Show that if $G/Z(G)$ is cyclic then G is Abelian.

2. Prove that if the group $\text{Aut}(G)$ of automorphisms of G is cyclic, then G is Abelian.

Problem 2. Define a “Principal Ideal Domain (PID)” and a “Unique Factorization Domain (UFD)” and show that every PID is a UFD. If you need to use the lemma that an increasing chain of ideals in a PID must become constant at some point (i.e., that a PID is “Noetherian”), prove it.

Problem 3. Let $V = \mathbb{F}^n$ be an n-dimensional vector space over some field \mathbb{F}, let $T : V \rightarrow V$ be a linear transformation, let $R = \mathbb{F}[x]$ denote the ring of polynomials in a variable x with coefficients in \mathbb{F}, and consider V as an R-module by setting $xv = Tv$ for any $v \in V$. Let $\pi : R^n \rightarrow \mathbb{F}^n$ be the morphism of R-modules defined by mapping the standard basis elements e_i of R^n to their obvious counterparts in \mathbb{F}^n. Propose a set of n generators r_i of $\ker \pi$ and prove in detail that your proposed r_i indeed generate $\ker \pi$.

Problem 4. Let $\overline{\mathbb{Q}}$ be an algebraic closure of the rational numbers. Suppose that $\alpha, \beta \in \overline{\mathbb{Q}}$ are such that $\mathbb{Q}(\alpha)$ and $\mathbb{Q}(\beta)$ are Galois extensions of \mathbb{Q}.

1. Prove that $\mathbb{Q}(\alpha, \beta)$ is a Galois extension of \mathbb{Q}.

2. Suppose that $\text{Gal}(\mathbb{Q}(\alpha)/\mathbb{Q})$ and $\text{Gal}(\mathbb{Q}(\beta)/\mathbb{Q})$ are Abelian. Prove that $\text{Gal}(\mathbb{Q}(\alpha, \beta)/\mathbb{Q})$ is abelian.

3. If $F \subset \overline{\mathbb{Q}}$ is a finite extension of \mathbb{Q}, we say that F is Abelian over \mathbb{Q} if F is Galois over \mathbb{Q} and $\text{Gal}(F/\mathbb{Q})$ is Abelian. Prove that if $K \subset \overline{\mathbb{Q}}$ is a finite Galois extension of \mathbb{Q}, there exists a maximal Abelian subfield F of K that is Abelian over \mathbb{Q}.

Note: In your solution to this question, please do not quote theorems about Galois groups of composites of field extensions. Feel free to use other results from Galois theory.

Problem 5. Let G be a finite group and let $\chi = \chi_\rho$ be the character of an irreducible complex representation $\rho : G \rightarrow GL(V)$ of G. (In other words, V is a simple $\mathbb{C}[G]$-module.) Let H be a proper subgroup of G and let χ_1, \ldots, χ_r be the characters of the distinct isomorphism (that is, equivalence) classes of irreducible complex representations of H. Let χ_H be the restriction of χ to H.

1. Show that $\chi_H = \sum_{j=1}^r n_j \chi_j$ for nonnegative integers n_1, \ldots, n_r.

2. Show that $\sum_{j=1}^r n_j^2 \leq |G|/|H|$.

3. Show that if H is a normal subgroup of G, then all of the nonzero n_j's are equal.

Problem 6. Let I be an ideal in a commutative ring R with 1. The radical of I, denoted by $\text{Rad}(I)$, is equal to $\{c \in R \mid c^n \in I \text{ for some } n \geq 1\}$. The ideal I is primary if whenever $a, b \in R$ satisfy $ab \in I$, then $a \in I$ or $b \in \text{Rad}(I)$. Prove that I is prime if and only if $I = \text{Rad}(I)$ and I is primary.

Good Luck!