MAT1101F

Comprehensive Algebra Exam 2014

Date and Time: Thursday, September 4, 2014, 1:00 - 4:00 p.m. in BA6183.

- No aids are allowed.
- Answer as many problems as you can. The total number of points possible is 100. As an experiment, if you achieve 80% or more on questions (1) through (4) you will not be required to take Algebra I, MAT1100F, the first half of the Algebra core course. If you achieve 70% or more on the whole exam you will not be required to take Algebra I, MAT1100F, nor Algebra II, MAT1101S.

Problems:

- (1) (10 POINTS) The dihedral group D_6 , of order 12, acts by rotations and reflections on a regular hexagon. Label the vertices of the hexagon 1, 2, 3, 4, 5, 6. Let \mathcal{P} be the set of ordered pairs of vertices, so the cardinality of \mathcal{P} is 36. Then D_6 acts on \mathcal{P} in the obvious way: For $\sigma \in D_6, 1 \leq i, j \leq 6, \sigma \cdot (i, j) = (\sigma(i), \sigma(j))$, where $\sigma(i)$ is the image of the vertex *i* under the action of σ on the vertices.
 - (a) Describe the orbits in \mathcal{P} under this action of D_6 .
 - (b) For each of the orbits of D_6 in \mathcal{P} , fix an element in the orbit and find the order of its stabilizer in D_6 .
- (2) (10 POINTS) Let p be an odd prime and S_{2p} the symmetric group on 2p letters. Show that a Sylow p-subgroup of S_{2p} is abelian, isomorphic to the direct product of two cyclic groups of order p. How many such Sylow subgroups are there? Verify directly the third Sylow theorem for this case.
- (3) (5 POINTS EACH PART)
 - (a) Write $\mathbb{Z}/12\mathbb{Z} \times \mathbb{Z}/90\mathbb{Z}$ as a product of cyclic groups with the order of each factor a divisor of the order of the next, in the usual way.
 - (b) Write $\mathbb{Z}/12\mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Z}/90\mathbb{Z}$ as a product of cyclic groups with the order of each factor a divisor of the order of the next, in the usual way.
- (4) (20 POINTS) Let (G, \cdot) be a multiplicatively written finite group of odd order. Show that any $g \in G$ can be written as a product of squares, $g = g_1^2 \cdots g_n^2$, for some natural number $n \ge 1$ and group elements $g_1, \ldots, g_n \in G$. Give an example of a finite group of even order, where the statement is false.
- (5) (5 POINTS EACH PART) A given endomorphism $\varphi : V \to V$ of a 4-dimensional vector space over a field \mathbb{F} has a 2-dimensional kernel and satisfies $\varphi^2 = \varphi$.
 - (a) What are the possible minimal polynomials $m_{\varphi}(x)$ of φ ?
 - (b) What are the possible characteristic polynomials $c_{\varphi}(x)$ of φ ?

- (6) (5 POINTS EACH PART) For each of the following statements, either prove it or provide a counterexample (with an explanation why it is a counterexample.)
 - (a) If R is a principal ideal domain (PID) and $I \subset R$ is a proper prime ideal, then R/I is also a PID.
 - (b) If R is a PID and $S \subseteq R$ is a subring containing the unit element $1 \in R$, then S is also a PID.
 - (c) If R is a PID, then so is R[x], the formal power series ring in one variable over it.
 - (d) If R is a Euclidean domain, then it is a Unique Factorization Domain (UFD).
- (7) (20 POINTS) Explain why $x^3 + 8x 6 \in \mathbb{Q}[x]$ is irreducible. What is the degree of a splitting field of this polynomial over \mathbb{Q} ? What is the Galois group?