Department of Mathematics

University of Toronto

Algebra Exam

Best of Luck!

1. Let $n \ge 5$ be an integer. You may assume that the alternating group A_n is simple.

- (a) Prove that the only nontrivial proper normal subgroup of the symmetric group S_n is A_n .
- (b) Prove that the only proper subgroup of index < n in S_n is A_n .
- (c) Describe a proper subgroup of S_n having index n. Describe a proper subgroup of S_4 having index 3.

2. Let G be a finite group which acts on a finite set S. Let V denote a vector space over \mathbb{C} with basis $\{v_s\}_{s\in S}$ indexed by the elements in S. We obtain a representation $\rho: G \to \operatorname{GL}(V)$, where $\rho(g)(v_s) := v_{gs}$. Let $\chi: G \to \mathbb{C}$ be the character (i.e., trace) of ρ .

- (a) Define the action of G on S×S given by g(s,t) := (gs, gt). Prove that the character of the representation corresponding to this new action is equal to χ².
- (b) Prove that the representation ρ contains exactly c copies of the trivial representation, where c is the number of orbits of G on S.

3. Let R be a commutative ring. We say that an R-module M is simple if $M \neq 0$ and the only R-submodules of M are 0 and M.

- (a) Let F be a field. What are the (isomorphism classes of) simple F-modules?
- (b) Let M_1 and M_2 be simple *R*-modules, and let $f: M_1 \to M_2$ be a homomorphism of *R*-modules. Prove that f is either zero or an isomorphism.
- (c) Prove that M is a simple R-module if and only if M is isomorphic to R/I for some maximal ideal I of R.
- (d) What are the isomorphism classes of simple $\mathbb{C}[x]$ -modules? (Prove that no two modules in your list are isomorphic.)
- **4**.
 - (a) Suppose that K is an extension of a field F. What does it mean for $\alpha \in K$ to be algebraic over F? Transcendental over F?

- (b) If α is algebraic, what is its minimal polynomial over F? What properties does it have?
- (c) If $f(x) \in F[x]$ is irreducible over F, prove that E = F[x]/(f(x)) is a field. Find a root α of f in E, and prove that f(x) is the minimal polynomial of α over F.

5.

- (a) State the correspondence between groups and fields given by the Fundamental Theorem of Galois theory.
- (b) State as many properties of the correspondence as you can.
- (c) Suppose that K/\mathbb{Q} is the splitting field of a monic irreducible polynomial $f(x) \in \mathbb{Z}[x]$ of degree 3, with $\operatorname{Gal}(K/\mathbb{Q}) \cong S_3$. How many intermediate fields

$$\mathbb{Q} \subsetneq E \subsetneq K$$

are there such that K/E is Galois, and how many with E/\mathbb{Q} Galois? How many pairs of fields

$$\mathbb{Q} \subsetneq E_1, E_2 \subsetneq K$$

are there with $E_1 \cdot E_2 = K$, and how many with $E_1 \cap E_2 = \mathbb{Q}$?

6. State the Hilbert Nullstellensatz, and describe the correspondence between geometry and algebra that it provides.