Department of Mathematics
 University of Toronto

Algebra Exam

Best of Luck!

1. Let $n \geq 5$ be an integer. You may assume that the alternating group A_{n} is simple.
(a) Prove that the only nontrivial proper normal subgroup of the symmetric group S_{n} is A_{n}.
(b) Prove that the only proper subgroup of index $<n$ in S_{n} is A_{n}.
(c) Describe a proper subgroup of S_{n} having index n. Describe a proper subgroup of S_{4} having index 3 .
2. Let G be a finite group which acts on a finite set S. Let V denote a vector space over \mathbb{C} with basis $\left\{v_{s}\right\}_{s \in S}$ indexed by the elements in S. We obtain a representation $\rho: G \rightarrow \mathrm{GL}(V)$, where $\rho(g)\left(v_{s}\right):=v_{g s}$. Let $\chi: G \rightarrow \mathbb{C}$ be the character (i.e., trace) of ρ.
(a) Define the action of G on $S \times S$ given by $g(s, t):=(g s, g t)$. Prove that the character of the representation corresponding to this new action is equal to χ^{2}.
(b) Prove that the representation ρ contains exactly c copies of the trivial representation, where c is the number of orbits of G on S.
3. Let R be a commutative ring. We say that an R-module M is simple if $M \neq 0$ and the only R-submodules of M are 0 and M.
(a) Let F be a field. What are the (isomorphism classes of) simple F-modules?
(b) Let M_{1} and M_{2} be simple R-modules, and let $f: M_{1} \rightarrow M_{2}$ be a homomorphism of R-modules. Prove that f is either zero or an isomorphism.
(c) Prove that M is a simple R-module if and only if M is isomorphic to R / I for some maximal ideal I of R.
(d) What are the isomorphism classes of simple $\mathbb{C}[x]$-modules? (Prove that no two modules in your list are isomorphic.)
4.

(a) Suppose that K is an extension of a field F. What does it mean for $\alpha \in K$ to be algebraic over F ? Transcendental over F ?
(b) If α is algebraic, what is its minimal polynomial over F ? What properties does it have?
(c) If $f(x) \in F[x]$ is irreducible over F, prove that $E=F[x] /(f(x))$ is a field. Find a root α of f in E, and prove that $f(x)$ is the minimal polynomial of α over F.
5.
(a) State the correspondence between groups and fields given by the Fundamental Theorem of Galois theory.
(b) State as many properties of the correspondence as you can.
(c) Suppose that K / \mathbb{Q} is the splitting field of a monic irreducible polynomial $f(x) \in \mathbb{Z}[x]$ of degree 3 , with $\operatorname{Gal}(K / \mathrm{Q}) \cong S_{3}$. How many intermediate fields

$$
\mathbb{Q} \subsetneq E \subsetneq K
$$

are there such that K / E is Galois, and how many with E / \mathbb{Q} Galois? How many pairs of fields

$$
\mathbb{Q} \subsetneq E_{1}, E_{2} \subsetneq K
$$

are there with $E_{1} \cdot E_{2}=K$, and how many with $E_{1} \cap E_{2}=\mathbb{Q}$?
6. State the Hilbert Nullstellensatz, and describe the correspondence between geometry and algebra that it provides.

