Algebra Qualifying Exam
Mathematics Department
University of Toronto

September, 2013
Answer as many questions as possible; you are not expected to do them all.
Three hours; no aids permitted; questions are of equal value; explain your answers.

1. Let G be a group and $G \rightarrow G \times G$ the diagonal map that sends g to (g, g) for each $g \in G$. When is the image a normal subgroup of $G \times G$, endowed with the componentwise operation?
2. (i) Show that any finite group with at least 3 elements admits an automorphism that is not the identity map.
(ii) Is the corresponding statement true if one replaces "group" with "ring"?
3. Let G be the group of invertible (2×2)-matrices with entries in the finite field with p elements, p a positive prime number.
(i) What is the size of a Sylow p-subgroup of G ?
(ii) How many such Sylow p-subgroups are there in G ?
4. Show that the index of the centre of a finite group is never a prime number (1 is not prime!)
5. If $H<G$ is a proper subgroup of a finite group G, show that $\cup_{g \in G} g H^{-1}$ is not equal to G.
6. (i) Show that the matrices

$$
A=\left(\begin{array}{ccc}
a & b & c \\
0 & a & b \\
0 & 0 & a
\end{array}\right)
$$

with a, b, c integers, form a commutative ring R under the usual addition and multiplication of matrices.
(ii) Determine all invertible elements as well as all zero divisors of R.
7. (i) Prove that the multiplicative group of a finite field must be cyclic. (You may use the Fundamental Theorem of abelian groups).
(ii) Suppose $p \in \mathbb{Z}$ is an odd prime. State and prove necessary and sufficient conditions on p for -1 to be a square in \mathbb{F}_{p}.
(iii) State and prove necessary and sufficient conditions that -1 is a square in $\mathbb{F}_{p^{2}}$.
8. Find an example of an irreducible cubic polynomial in $\mathbb{F}_{3}[x]$.
9. (i) What is the Galois group of the splitting field of $f(x)=x^{3}-2 x-3$ over \mathbb{Q} ?
(ii) Find an example of a cubic polynomial $f(x) \in \mathbb{Z}[x]$ whose splitting field has Galois group S_{3} over \mathbb{Q} but A_{3} over $\mathbb{Q}(i)$.
10. Suppose D, D^{\prime} are distinct non-squares in \mathbb{Q}. Show that $\mathbb{Q}\left(\sqrt{D}, \sqrt{D^{\prime}}\right) / \mathbb{Q}$ is an extension of degree either 2 or 4 .
(ii) Show that the extension is of degree 4 if and only if $D D^{\prime}$ is a non-square in \mathbb{Q}.
(iii) In this case, where the extension is of degree 4 , describe all the intermediate fields between \mathbb{Q} and $\mathbb{Q}\left(\sqrt{D}, \sqrt{D^{\prime}}\right)$.
11. Prove or disprove: the fields $\mathbb{Q}(\sqrt{3})$ and $\mathbb{Q}(\sqrt{7})$ are isomorphic as fields over \mathbb{Q}.
12. Suppose F is a field and $f(x) \in F[x]$ is irreducible of degree n. For any $g(x) \in F[x]$, consider $h(x)=f(g(x))$. Show that every irreducible factor of $h(x)$ has degree divisible by n.

