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Abstract
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2020

We consider the classical (local) vacua of the Weinberg-Salam (WS) model of electroweak forces. These

are defined as no-particle, static solutions to the WS equations minimizing the WS energy locally. In

the absence of particles, the Weinberg-Salam model reduces to the Yang-Mills-Higgs (YMH) equations

for the gauge group U(2).

We consider the WS system in a constant external magnetic field, b, and prove that (i) there is

a magnetic field threshold b∗ such that for b < b∗, the vacua are translationally invariant, while, for

b > b∗, they are not, (ii) for b > b∗, there are non-translationally invariant solutions with lower energy

per unit volume and with the discrete translational symmetry of a 2D lattice in the plane transversal to

the external magnetic field, and (iii) the lattice minimizing the energy per unit volume approaches the

hexagonal one as the magnetic field strength approaches the threshold b∗.
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Chapter 1

Introduction

The Weinberg-Salam (WS) model of electroweak interactions was the first triumph of the program to

unify the four fundamental forces of nature. It is a key part of the standard model of elementary

particles. It unifies electromagnetic and weak interactions, two of the three forces dealt with in the

standard model. It involves particle fields, gauge fields and the Higgs field.

While the gauge fields describe the electroweak interactions, the role of the Higgs field is to convert

the original massless fields (zero masses are required by the relativistic invariance) to massive ones. This

phenomenon is called the Higgs mechanism. This mechanism, together with the Goldstone theorem,

leads to all gauge particles but one acquiring mass, resulting in two massive bosons – denoted W and

Z – and a massless one – the photon. The W and Z particles where discovered experimentally 16 years

after their theoretical prediction.

In this paper, we consider the vacuum solutions of the classical WS model. These are static, no-

particle solutions minimizing the WS energy locally. For a constant external magnetic field, b, we prove

that (i) there is a magnetic field threshold b∗ such that for the magnetic fields b < b∗, the vacua are

translationally invariant, while, for b > b∗, they are not, (ii) for b > b∗, there are non-translationally

invariant solutions with lower energy per unit volume and with the discrete translational symmetry

of a 2D lattice in the plane transversal to the external magnetic field, and (iii) the lattice minimizing

the energy of the latter solutions per unit volume approaches the hexagonal one as the magnetic field

strength approaches the threshold b∗. We expect that these solutions are stable under field fluctuations

and, in fact, minimize the energy locally.

The phenomenon above was investigated extensively in the physics literature (see e.g. [12, 17, 23, 24]

and the references therein). It is similar to one occurring in superconductivity and the solutions whose

existence we establish are analogous to the superconducting Abrikosov vortex lattices ([1], see e.g. [32],

for a review). It is estimated in [23] that the spontaneous symmetry breaking take place at the critical

external magnetic field of approximately 1024 Gauss = 1020 Tesla. By comparison, the strongest magnetic

field produced on Earth is 1014 Tesla (in particle accelerators, the strongest magnetic field is about 1011

Tesla).

Note that, in the absence of particles, the WS system reduces to the Yang-Mills-Higgs (YMH) one

with the gauge group U(2). So ultimately, these are the equations we deal with.

The only rigorous result ([35, 36]) on the classical WS model deals with the vortices in the self-dual

regime, where the WS (or corresponding YMH) equations are equivalent to the first order equations,

1



Chapter 1. Introduction 2

and it uses this equivalence in an essential way. (The self-dual regime in this context was discovered in

[6, 7, 8], see also [33, 34].)

The paper is organized as follows. In Section 2, we formulate the problem and describe results. In

Sections 3 - 4, we fix the gauge and pass from the original Yang-Mills fields to the W and Z (massive

boson) and A (photon) fields and rescale the resulting equations. The proofs of the main results are

given in Section 5 (Theorem 1), Sections 6 - 10 (Theorem 2) and Section 11 (Theorem 3). In Appendix

A, we discuss various covariant derivatives used in the main text and in Appendix B, we review the

time-dependent YMH equations and derive the expression for the conserved energy as well as the YMH

equations used in the main text. In Appendix C, we write the YMH equations in the coordinate form

and derive a convenient expression for the energy functional, and in Appendices D - E, we derive the WS

equations in 3D and 2D, respectively, in terms of the fields W , Z, A and ϕ. In the remaining appendices,

we carry out technical computations.



Chapter 2

The vacuum sector of

Weinberg-Salam model

The vacuum sector of the Weinberg-Salam model involves the interacting, static Higgs and SU(2) and

U(1) gauge fields, Φ and V and X, while the particle fields are set to zero. The field Φ is a vector-

function defined on the physical space R3 with values in C2, and the fields V and X are one-forms on

R3 with values in the algebras su(2) and u(1), respectively. We write Q = V + X, which is a one-form

with values in u(2). We consider SU(2) as a matrix group and U(1) as multiples of the identity matrix

1 acting on C2. Geometrically, V,X and Q can be thought of as connections on the trivial bundles

R3 × SU(2),R3 × U(1) and R3 × U(2).

These fields satisfy the static YMH equations, which are the Euler-Lagrange equations for the energy

functional1

ET (Φ, Q) := ‖∇QΦ‖2Ω1
C2

+
1

2
λ(‖Φ‖2L2 − ϕ2

0)2 +
1

2
‖FQ‖2Ω2

u(2)
, (2.1)

where T is a bounded domain in R3 with appropriate boundary conditions (specified in (2.14) below),

λ and ϕ0 are positive parameters, and the remaining symbols are defined as follows:

∇Q is the covariant derivative mapping C2-valued functions (sections) into C2-valued one-forms

defined as

∇Q = d+ gV + g′X, (2.2)

with the coupling constants g and g′ and d, the exterior derivative;

FQ is the curvature form of the one-form Q, viewed as a connection, i.e. the u(2)-valued two-form

given by

FQ = dQ+
1

2
[Q,Q], (2.3)

where [A,B] is defined in local coordinates {xi} as

[A,B] := [Ai, Bj ]dx
i ∧ dxj = [B,A], (2.4)

with A = Aidx
i and B = Bjdx

j . Here and in what follows we use the convention of summing over

repeated indices.

1For discussion of the the time-dependent theory and a derivation of the energy functional (2.1) see [21], [24], [30], [31]
and Appendix B.
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Chapter 2. The vacuum sector of Weinberg-Salam model 4

‖ · ‖L2 is the standard norm on L2(T,C2) and ‖ · ‖ΩpU is the norm on the space ΩpU := U ⊗ Ωp(T ) of

U -valued p-forms on T (e.g. for B = Bidx
i ∈ Ω1

U , we have ‖B‖Ω1
U

:= (
∫
T

∑
i ‖Bi‖2U )1/2). 2

Since Q = V +X and X has the values in the center, u(1), of the algebra u(2), we have FQ = FV +FX ,

where

FV := dV +
g

2
[V, V ] and FX := dX (2.5)

are the curvatures of the connections V and X.3 Note also that ‖FQ‖2Ω2
u(2)

= ‖FV ‖2Ω2
u(2)

+ ‖FX‖2Ω2
u(1)

.

We introduce the covariant derivative dQ mapping u(2)-valued one-forms into u(2)-valued two-forms

as4

dQB = dVB := dB + g[V,B]. (2.6)

The Euler-Lagrange equations for energy functional (2.1) are given by (see Appendix B)

∇∗Q∇QΦ = λ(ϕ2
0 − ||Φ||2)Φ, (2.7)

d∗QFQ = J(Φ, Q), (2.8)

where ∇∗Q is the adjoint of ∇Q and maps C2-valued one-forms into C2-valued functions, d∗Q is the adjoint

of dQ and maps u(2)-valued two-forms into u(2)-valued one-forms, and J(Φ, Q) is the electroweak current,

which is the u(2)-valued one-form given by

J(Φ, Q) := − ig
2
τa Im〈τaΦ,∇QΦ〉 − ig′

2
τ0 Im〈τ0Φ,∇QΦ〉, (2.9)

where summing over repeated indices is understood, τ0 := 1 and τa, a = 1, 2, 3, are the Pauli matrices,

τ1 :=

(
0 1

1 0

)
, τ2 :=

(
0 −i
i 0

)
, τ3 :=

(
1 0

0 −1

)
. (2.10)

(The Pauli matrices, multiplied by −i/2, form an orthonormal basis in su(2) with the inner product

〈g, h〉su(2) := 2 Tr(g∗h) = −2 Tr(gh)).

The energy functional (2.1) and Euler-Lagrange equations (2.7) - (2.8) are invariant under the group

of rigid motions and the gauge transformations (gauge symmetry)

(Φ(x), V (x), X(x)) 7→ (h1(x)h2(x)Φ(x), h1(x)V (x)h−1
1 (x)

−i2
g
h1(x)dh−1

1 (x), X(x)− i 2

g′
h2(x)dh−1

2 (x)), (2.11)

∀h1(x) ∈ SU(2), h2(x) ∈ U(1). (2.12)

Equations (2.7) - (2.8) have the simple solution given (up to a gauge symmetry) by

U b∗ := (Φ0,−
i

2
τ3A

b sin θ,− i
2
τ0A

b cos θ), (2.13)

2The inner products in the vector spaces of U−valued differential forms (with U = C2 or u(2)) is given by 〈A,B〉 :=∫
T 〈Aα, B

α〉U , where A = Aαdxα and Bαdxα are U -vauled n-forms, α is an n-index and 〈·, ·〉U is an inner product in U (the
summation over repeated indices is understood). For u(2), the inner product is given by 〈g, h〉u(2) := 2 Tr(g∗h) = −2 Tr(gh).

3For more discussion of covariant derivatives and their curvatures, see Appendix A for the general case, or Appendix C
for the case of the gauge group G = U(2) = SU(2)× U(1).

4This formula originates in the equation (δQFQ)(B) = dQB, where δQ is the Gâteaux derivative with respect to Q.
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where Φ0 := (0, ϕ0), Ab(x) is a magnetic potential in the constant magnetic field of strength b in the

x3-direction, dAb(x) = bdx1 ∧ dx2, and θ is Weinberg’s angle, given by tan θ = g′/g.5 This solution is

gauge-translationally invariant, i.e. invariant under translations up to a gauge symmetry. It corresponds

to the ‘total vacuum’ in the constant external magnetic field bdx1 ∧ dx2.

In this paper, we consider solutions for which the fields do not depend on the coordinate x3 and

therefore the problem is reduced to a 2D one.

We show that amongst 2D solutions, (i) (2.13) is linearly stable for b < b∗ and unstable for b > b∗,

where b∗ := g2ϕ2
0/2e, (ii) a new solution breaking the gauge-translational invariance bifurcates. This

solution has the discrete translational symmetry of a lattice and has lower energy per unit area. Finally,

we show also that (iii) the lattice shape minimizing the energy per unit area approaches the hexagonal

lattice as b approaches b∗.

To formulate these results precisely, we introduce some definitions. We fix a lattice L in R2 and say

a triple (Φ(x), V (x), X(x)) is L-gauge-periodic, or, L-equivariant, if and only if it satisfies the equation

(T gaugeγs )−1T transs (Φ, V,X) = (Φ, V,X), ∀s ∈ L, (2.14)

for some γs ∈ C1(R2, SU(2) × U(1)), where T gaugeγ is given by the right-hand side of (2.11), with

h1(x)h2(x) = γ(x), and T transs is the group of translations, T transs f(x) = f(x+ s). (When L is clear, we

omit it from the definition above.)

We denote by HsL the space of locally Sobolev class L-equivariant triples (Φ, V,X) on R2 with the

inner product given by the standard Sobolev inner product restricted to an arbitrary fundamental domain

Ω of L, and let L2
L = H0

L.

We say a solution U∗ := (Φ∗, V∗, X∗) of equation (2.7) - (2.8) is linearly stable (respectively un-

stable) if and only if the spectrum of the linearized operator for the Weinberg-Salam equations at

U∗ := (Φ∗, V∗, X∗) on L2
L is positive (respectively has a negative piece). (This operator has the real

spectrum.) A linearly stable solution is a local minimum of the energy functional (2.1).

For an L-equivariant triple U and a fundamental domain Ω of L, we define the energy per fundamental

cell

EL(U) :=
1

|Ω|
EWS

Ω (U), (2.15)

where |Ω| denotes the area of Ω. This energy is independent of Ω.

In what follows, Ω denotes an arbitrary (but fixed throughout) fundamental domain of L, and |L|,
the area of a fundamental cell of L, which is independent of the choice of the cell (and in particular,

|L| = |Ω|).
Finally, let MW := 1√

2
gϕ0, MZ := 1√

2 cos θ
gϕ0 and MH :=

√
2λϕ0. These are the masses of the W,

Z and Higgs bosons, respectively.6 Let

b∗ :=
g2ϕ2

0

2e
=
M2
W

e
, e := g sin θ. (2.16)

With the above definitions, we will prove the following:

5Indeed, dQΦ0 = (gV + g′X)Φ0 = (gAb sin θτ3 + g′Ab cos θτ0)Φ0 = g′Ab cos θ(τ3 + τ0)Φ0. Since (τ3 + τ0)Φ0 = 0, this
implies dQΦ0 = 0. From dQΦ0 = 0, it is easy to see that (2.13) solves (2.7) - (2.8).

6This nomenclature will be explained in the discussion following equation (3.10).
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Theorem 1. The homogeneous vacuum solution (2.13) is linearly stable for b < b∗ and unstable for

b > b∗.

Theorem 2. Let L be a lattice satisfying 0 < 1− M2
W

2π |L| � 1 and assume that MZ < MH .7 Then the

following holds:

(a) Equations (2.7) - (2.8) have a non-trivial solution UL ∈ H2
L in a neighbourhood of the vacuum

solution (2.13);

(b) UL is unique, up to gauge symmetry, in a neighbourhood of the vacuum solution (2.13);

(c) UL has energy per unit area less than the vacuum solution (2.13): EL(UL) < EL(U b∗).

The solutions described in this theorem can be reinterpreted geometrically as representing a section

(Φ(x)) and a connection ((V (x), X(x))) on a vector bundle over a torus (cf. [18]). In the present situation

of the gauge group U(2), it is natural to consider vector bundles over a torus. However, vector bundles

over a torus are topologically equivalent to direct sums of line bundles. In our case, this equivalence

follows from equations (3.5) - (3.7) below.

For the next result, we introduce the standard parameterization of lattices in R2. Identifying R2

with C via (x1, x2) ↔ x1 + ix2, we can view a lattice L ⊂ R2 as a subset of C. It is a well-known fact

(see e.g. [4]) that any lattice L ⊂ C can be given a basis r, r′ such that the ratio τ = r′

r belongs to the

set

{τ ∈ C : Im τ > 0, |τ | ≥ 1, −1

2
< Re τ ≤ 1

2
}, (2.17)

which is the fundamental domain, H/SL(2,Z), of the modular group SL(2,Z) acting on the Poincaré

half-plane H. For a given L, the parameter τ is unique and is used as a parameterization (up to scaling)

of the lattices. This gives the space of (normalized) lattices a topology.

Theorem 3. For MZ < MH , the lattice shape for which the average energy per lattice fundamental

domain is minimized approaches the hexagonal lattice as b→ b∗ in the sense that the shape parameter τ

of the lattice L approaches τhexagonal = eiπ/3 in C.

Our approached is based on a careful examination of the linearization of the WS equations on the

homogeneous vacuum. The spectrum of the linearized problem determines the domains of the linear,

or energetic, stability and the transition threshold. In the instability domain, we apply an equivariant

bifurcation theory. Though main steps of this approach are fairly standard, there are many subtle points

to be dealt with. This gives Theorem 2(a) and (b). For Theorems 2(c) and 3, we carefully study the

asymptotic behaviour of the energy functions for small values of the bifurcation parameter.

7This assumption is justified experimentally since MZ = 91.1876± 0.0021GeV/c2 [15] and MH = 125.09± 0.31GeV/c2

[13]



Chapter 3

Gauge fixing and W and Z bosons

In this section, we choose a particular gauge and pass from the fields (one-forms) V and X to more

suitable gauge fields. We eliminate a part of the gauge freedom by assuming that the Higgs field Φ is

of the form

Φ = (0, ϕ), (3.1)

with ϕ real (this can be done using only the SU(2) part of the gauge group). Then

τaΦ 6= 0, a = 0, 1, 2, 3, (3.2)

where, recall, τa, a = 1, 2, 3, are the Pauli matrices generating the Lie algebra su(2), and τ0 = 1.

However, there is one linear combination of τa’s (unique up to a scalar multiple) which annihilates Φ:

(τ3 + τ0)Φ = 0. (3.3)

Thus, for the gauge Φ = (0, ϕ) the symmetries generated by τ1, τ2, τ3− τ0 are broken and the U(1) sym-

metry generated by τ3+τ0 remains unbroken. The unbroken gauge symmetry is given by transformations

(2.11) with

h1(x) :=e−
i
2γ(x)τ3 ∈ SU(2), h2(x) := e−

i
2γ(x)τ0 ∈ U(1), (3.4)

where γ ∈ C1(R3,R).

Continuing in the gauge Φ = (0, ϕ) and writing V = − i
2τaV

a and X = − i
2τ0X

0, where X0 and

V a, a = 1, 2, 3, are real fields (since V takes values in su(2)), we pass to the new fields corresponding to

the broken and unbroken generators, τ3 − τ0 and τ3 + τ0, respectively:

Z = V 3 cos θ −X0 sin θ and A = V 3 sin θ +X0 cos θ, (3.5)

where, recall, θ is Weinberg’s angle, defined by tan θ = g′/g. Note that Z and A are real fields (real

one-forms). Moreover, it is convenient to pass from the remaining two components, V 1, V 2, of V to a

single complex field (complex one-form):

W =
1√
2

(V 1 − iV 2). (3.6)

7



Chapter 3. Gauge fixing and W and Z bosons 8

The gauge invariance under (2.11) of the original field equations with the unbroken gauge symmetry

given by transformations (2.11) with (3.4) leads to the invariance under following gauge transformations:

T̃ gaugeγ : (W,A,Z, ϕ) 7→ (eiγW,A− 1

e
dγ, Z, ϕ), (3.7)

for γ ∈ C1(R3,R), where, as usual, eiγW =
∑
eiγWidx

i for W =
∑
Widx

i, e := g sin θ (= g′ cos θ =
gg′√
g2+g′2

) is the electron charge.

In terms of W,Z and A fields, the vacua (2.13) of the Weinberg-Salam model become (up to a gauge

symmetry):

(0, Ab(x), 0, ϕ0), (3.8)

where, recall, Ab(x) is a magnetic potential for the constant magnetic field of strength b in the x3-

direction, dAb(x) = bdx1 ∧ dx2, and ϕ0 is a positive constant from (2.1) (Φ0 := (0, ϕ0)). We choose the

gauge so that Ab(x) is of the form

Ab(x) =
b

2
(−x2dx1 + x1dx2). (3.9)

We will show that for a large magnetic field b, these homogeneous vacua become unstable and new,

inhomogeneous vacua emerge from them. This is a bifurcation problem from the branch of gauge-

translationally invariant (homogeneous) solutions, (3.8).

From now on we consider the Weinberg-Salam (WS) model in R2 with the fields independent of the

third dimension x3, and correspondingly choose the gauge with V3 = X3 = 0 (and hence W3 = A3 =

Z3 = 0).

Also, we will work in a fixed coordinate system, {xi}2i=1 and write the fields as W = Widx
i, Z = Zidx

i

and A = Aidx
i. For ease of comparing our arguments with earlier results, and given that we use the

standard Euclidean metric in R2, we identify (complex) one-forms W,Z and A with the (complex) vector

fields (W1,W2), (Z1, Z2) and (A1, A2). With this, we show in Appendix E that in this case Weinberg-

Salam energy functional (2.1) can be written as

EWS
Ω (W,A,Z, ϕ) =

∫
Ω

[
| curlgV 3 W |2 +

1

2
| curlZ|2 +

1

2
| curlA|2

+
1

2
g2ϕ2|W |2 +

1

2
κg2ϕ2|Z|2 +

g2

2
|W ×W |2

+ ig(curlV 3)W ×W + |∇ϕ|2 +
1

2
λ(ϕ2 − ϕ2

0)2
]
, (3.10)

where κ := g2

2 cos2 θ , curlU W := ∇1W2 − ∇2W1, ∇i := ∂i − iUi (for a u(1)−valued vector-field U),

ξ × η := ξ1η2 − ξ2η1, curlV 3 := ∂1V
3
2 − ∂2V

3
1 and recall, V 3 = Z cos θ +A sin θ.

Expanding (3.10) in ϕ around ϕ0, we see that the W , Z and φ (Higgs) fields have the masses

MW := 1√
2
gϕ0, MZ := 1√

2 cos θ
gϕ0 and MH = 2

√
λϕ0, respectively.

Using the relation ξ × η = Jξ · η, where J is the symplectic matrix,

J :=

(
0 −1

1 0

)
, (3.11)

we find the Euler-Lagrange equations for (3.10), which give the Weinberg-Salam equations in 2D in
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terms of the fields W , A, Z and ϕ

[curl∗gV 3 curlgV 3 +
g2

2
ϕ2 − ig(curlV 3)J + g2(W ×W )J ]W = 0, (3.12)

curl∗ curlA+ 2e Im[(curlgV 3 W )JW − curl∗(W 1W2)] = 0, (3.13)

[curl∗ curl+κϕ2]Z + 2g cos θ Im[(curlgV 3 W )JW − curl∗(W 1W2)] = 0, (3.14)

[−∆ + λ(ϕ2 − ϕ2
0) +

g2

2
|W |2 +

1

2
κ|Z|2]ϕ = 0, (3.15)

where, recall, κ = g2

2 cos2 θ , V 3 = Z cos θ + A sin θ and ∆ is the standard Laplacian. (For a derivation

of (3.15) - (3.12) from (3.10), see Appendix E and also [23, 35].) Of course, (3.15) - (3.12) can also be

derived directly from Equations (2.7) - (2.8).

In terms of the (W,A,Z, ϕ) fields, the gauge - periodicity (2.14) is expressed as

(T̃ gaugeγs )−1T transs (W,A,Z, ϕ) = (W,A,Z, ϕ), (3.16)

for all s ∈ L, where γs ∈ C1(R2,R) for all s ∈ L, and T transs is the group of translations, T transs f(x) =

f(x+ s). We say that (W,A,Z, ϕ) is an L-equivariant state. By evaluating the effect of translation by

s+ t in two different ways, we see that the family of functions γs has the co-cycle property1

γs+t(x)− γs(x+ t)− γt(x) ∈ 2πZ, ∀s, t ∈ L. (3.17)

Since T transs is an Abelian group, the co-cycle condition (3.17) implies that, for any basis {j1, j2} in L,

the quantity

c(γs) =
1

2π
(γj2(x+ j1) + γj1(x)− γj1(x+ j2)− γj2(x)) (3.18)

is independent of x and of the choice of the basis {j1, j2}, and is an integer. This topological invariant

is equal to the degree of the corresponding line bundle.

One can show using Stokes’ Theorem, for any A satisfying (3.16) - (3.18), the magnetic flux through

any fundamental domain Ω of the lattice L is quantized:

e

2π

∫
Ω

dA = n, (3.19)

where e is defined after (3.7) and n = c(γs) ∈ Z defined in (3.18). The left-hand side of (3.19) is called

the Chern number of the line bundle corresponding to γs. (We note that n is independent of the choice

of Ω.)

The vacuum state (3.8) is L-equivariant if and only if the magnetic field b is given by the relation

b =
2π

e|L|
n, (3.20)

where, by definition, |L| = |Ω| for any fundamental cell Ω. In particular, b is quantized. For such b, the

vector field 1
eA

b satisfies (3.19).

Furthermore, due to the reflection symmetry of the problem, we may assume that b ≥ 0. Clearly, we

1A function γs : L × R2 → G satisfying the co-cycle property (3.17) is called the automorphy exponent and eiγs , the
automorphy factor.



Chapter 3. Gauge fixing and W and Z bosons 10

have:

Lemma 4. Equations (2.7) - (2.8) for L-equivariant fields (2.14) in the gauge Φ = (0, ϕ) are equiv-

alent to Equations (3.12) - (3.15) for L-equivariant fields (3.16), with the equivalence realized by the

transformation (3.5) - (3.6).

Finally, we use the invariance of (3.12) - (3.15) under the gauge transformation (3.7) to choose a

convenient gauge for the fields W (x) and A(x). We say that the fields (W,A,Z, ϕ) and (W ′, A′, Z ′, ϕ′)

are gauge-equivalent if there is γ ∈ C1(R2,R) such that (W ′, A′, Z ′, ϕ′) = T̃ gaugeγ (W,A,Z, ϕ). Clearly, if

(W,A,Z, ϕ) and (W ′, A′, Z ′, ϕ′) are gauge-equivalent then (W,A,Z, ϕ) solves (3.12) - (3.15) if and only

if (W ′, A′, Z ′, ϕ′) solves (3.12) - (3.15). The following proposition was first used in [27] and proven in

[37] (an alternate proof is given in Appendix A of [38]):

Proposition 5. Let (W ′, A′, Z ′, ϕ′) be an L-equivariant state and let b be given by (3.20). Then there

is an L-equivariant state (W,A,Z, ϕ), gauge-equivalent to (W ′, A′, Z ′, ϕ′), which satisfies (3.16), with

χs(x) = eb
2 s ∧ x+ ks, i.e. such that

W (x+ s) = ei(
eb
2 s∧x+ks)W (x), (3.21)

A(x+ s) = A(x) +
b

2
Js ∀s ∈ L, (3.22)

divA = 0. (3.23)

Here ks satisfies the condition ks+t − ks − kt − eb
2 s ∧ t ∈ 2πZ, for all s, t ∈ L, the matrix J is given in

(3.11).

This gauge is consistent with the gauge chosen for the homogeneous vacua (3.9).

Our goal is to prove the instability of the vacuum state (3.8) and the existence of L−equivariant (in

the sense of (3.16)) solutions to Equations (3.12) - (3.15) having the properties described in Theorems

2 and 3.



Chapter 4

Rescaling

In this section, we rescale the Weinberg-Salam Equations (3.12) - (3.15) to keep the lattice size fixed.

Specifically, we define the rescaled fields (w, z, a, φ) to be

(w(x), a(x), z(x), φ(x)) := (rW (rx), rA(rx), rZ(rx), rϕ(rx)), (4.1)

r :=

√
n

eb
=

√
|Ω|
2π

. (4.2)

where in the second equality (4.2), we used (3.20). Clearly, (W (x), A(x), Z(x), ϕ(x)) is L-equivariant if

and only if (w(x), a(x), z(x), φ(x)) is L′-equivariant, where L′ := 1
rL. Now, the size of a fundamental

domain of the rescaled lattice L′ is fixed as |Ω′| = 2π.

Plugging the rescaled fields into (3.12) - (3.15) gives the rescaled Weinberg-Salem equations:

[curl∗ν curlν +
g2

2
φ2 − i(curl ν)J + g2(w × w)J ]w = 0, (4.3)

curl∗ curl a+ 2e Im[(curlν w)Jw − curl∗(w1w2)] = 0, (4.4)

[curl∗ curl +κφ2]z + 2g cos θ Im[(curlν w)Jw − curl∗(w1w2)] = 0, (4.5)

[−∆ + λ(φ2 − ξ2) +
g2

2
|w|2 +

1

2
κ|z|2]φ = 0, (4.6)

where ξ := rϕ0 (with r given in (4.2)), ν := g(a sin θ + z cos θ) and, recall, curlq w = ∇1w2 − ∇2w1,

∇i := ∂i − iqi (for a u(1)−valued vector-field iq) and, recall, w × w := w1w2 − w2w1. We define the

rescaled energy by

EΩ′(w, a, z, φ; r) := r2EWS
Ω (W,A,Z, ϕ). (4.7)

with (W,A,Z, ϕ) related to (w, a, z, φ) by (4.1). Explicitly, we have

EΩ′(w, a, z, φ; r) =

∫
Ω′

(
| curlν w|2 +

1

2
| curl a|2 +

1

2
| curl z|2

+
1

2
g2φ2|w|2 +

1

2
κφ2|z|2 +

g2

2
|w × w|2

+ i(curl ν)w × w + |∇φ|2 +
1

2
λ(φ2 − ξ2)2

)
. (4.8)

11
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We note that after rescaling, the vacuum solution (3.8) becomes

mn,r := (0,
1

e
an, 0, ξ), (4.9)

where an(x) ≡ An(x) = n
2 Jx, and that the average magnetic flux per fundamental domain is now n/e.

Furthermore, (3.16) and Proposition 5 imply that (w, a, z, φ) satisfy

w(x+ s) = ei(
n
2 s×x+cs)w(x) for all s ∈ L, (4.10)

a(x+ s) = a(x) +
n

2e
Js for all s ∈ L, (4.11)

div a = 0, (4.12)

z(x+ s) = z(x), φ(x+ s) = φ(x) for all s ∈ L, (4.13)

where cs satisfies the condition cs+t − cs − ct − n
2 s× t ∈ 2πZ, for all s, t ∈ L.



Chapter 5

The linearized problem

In this section we prove Theorem 1, describing the linear stability/instability of the vacuum (3.8).

Let m := (w, a, z, φ) and denote by G(b,m) ≡ G(m) the map given by the left-hand side of (4.3) -

(4.6), given explicitly as

G(b,m) ≡ G(m) = (G1(m), . . . , G4(m)), (5.1)

G1(m) := [curl∗ν curlν +
g2

2
φ2 − i(curl ν)J + g2(w × w)J ]w, (5.2)

G2(m) := curl∗ curl a+ 2e Im[(curlν w)Jw − curl∗(w1w2)], (5.3)

G3(m) := [curl∗ curl +κφ2]z + 2g cos θ Im[(curlν w)Jw − curl∗(w1w2)], (5.4)

G4(m) := [−∆ + λ(φ2 − ξ2) +
g2

2
|w|2 +

1

2
κ|z|2]φ, (5.5)

where, recall, J is the symplectic matrix given in (3.11), ξ := rϕ0 (with r given in (4.2)), ν := g(a sin θ+

z cos θ), ∆ is the standard Laplacian and the parameter b enters through periodicity conditions (4.10) -

(4.13). Now, the Weinberg-Salam equations can be written as G(m) = 0.

Applied to the rescaled Weinberg-Salam equations (4.3) - (4.6), the definition of stability states that

the vacuum solution (4.9) (mn,r := (0, 1
ea
n, 0, ξ)) is linearly stable (respectively unstable) if and only if

the spectrum of the linearization of G(m) at mn,r is non-negative (respectively, has a negative infimum).

In what follows we use the notation ⊕jAj for diagonal operator-matrices with the operators Aj on

the diagonal. Furthermore, we denote the total Gâteaux derivative by δ, and the partial (real) Gâteaux

derivatives with respect to # by δ#.

Consider the Gâteau derivative (linearization) Ln,µ := δG(mn,r) of G(v) at the rescaled vacuum

mn,r. We compute it explicitly, while passing from the parameter ξ = rϕ0, or r, to the parameter

13
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µ := g2ξ2/2 and using that ν
∣∣
a=an/e,z=0

= 1
ea
ng sin θ = an:

Ln,µ = ⊕4
j=1Hj , (5.6)

H1(µ) := curl∗an curlan +µ− niJ, (5.7)

H2(µ) := curl∗ curl, (5.8)

H3(µ) := curl∗ curl +
µ

cos2 θ
, (5.9)

H4(µ) := −∆ +
4λµ

g2
, (5.10)

where, recall, curlq w = ∇1w2 −∇2w1, ∇i := ∂i − iqi. (Note that the matrix iJ is self-adjoint.)

The operator Ln,µ is the Hessian for the energy (4.8), considered as a functional of w, a, z, φ, or the

Gâteaux derivative (linearization) of the left-hand side of (4.3) - (4.6), with ξ =
√

2µ/g, at the rescaled

vacuum solution mn,r := (0, 1
ea
n, 0, ξ) of (4.9). Note that

Ln,µ=nGf = 0, Gf := (0,∇f, 0, 0). (5.11)

We consider the operator Ln,µ on a space X tangent to the space of H2
loc functions of the form

(w, a, z, φ) satisfying the gauge - periodicity conditions (4.10) - (4.13). Explicitly,

X := H2
n ×H2

0 ×H2
0 ×H2, (5.12)

where Hsn, Hs0 and Hs are the respective Sobolev spaces for the L2-spaces

L2
n := {w ∈ L2

loc(R2,C2) : w(x+ s) = ei(
n
2 s×x+cs)w(x) ∀s ∈ L}, (5.13)

L2
0 := {α ∈ L2

loc(R2,R2) : α(x+ s) = α(x) ∀s ∈ L, divα = 0}, (5.14)

L2 := {ψ ∈ L2
loc(R2,R) : ψ(x+ s) = ψ(x) ∀s ∈ L} (5.15)

(see (4.10) - (4.12)), with inner products given (for s ∈ Z≥0) by

〈w,w′〉Hsn :=
1

|Ω′|

2∑
i=1

∑
|γ|≤s

∫
Ω′

(∇an)γwi(∇an)γw′i, (5.16)

〈a, a′〉Hs0 :=
1

|Ω′|

2∑
i=1

∑
|γ|≤s

∫
Ω′
∂γai∂

γa′i, (5.17)

〈ψ,ψ′〉Hs :=
1

|Ω′|
∑
|γ|≤s

∫
Ω′
∂γψ∂γψ′, (5.18)

where w# = (w#
1 , w

#
2 ), a# = (a#

1 , a
#
2 ), Ω′ is an arbitrary fundamental domain of the lattice L′ and γ

is a multi-index. The L′-equivariance of the above functions implies that these inner products do not

depend on the choice of fundamental domain Ω′.

For a null vector Gf defined in (5.11) to be in X , f must satisfy div(df) = −∆f = 0. This implies

that f is a linear function, f(x) = c · x+ d for some c ∈ R2 and d ∈ R, and so

Gf ∈ X =⇒ Gf = (0, c, 0, 0). (5.19)
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In this section we shall prove the following result implying Theorem 1:

Theorem 6. The operator Ln,µ on the space X has purely discrete spectrum. For µ 6= n, Lµ,n has the

simple eigenvalue 0 and corresponding eigenfuction (0, c, 0, 0), c ∈ R2 (see (5.19)), and smallest non-zero

eigenvalue given by µ− n, having multiplicity n. For µ = n, the eigenvalue 0 has the multiplicity n+ 1.

Theorem 6 follows from Propositions 7 and 8 given below. �

Proposition 7. The operators H2(µ), H3(µ) and H4(µ) are non-negative on their respective domains

with purely discrete spectra. Furthermore, H3(µ) and H4(µ) are strictly positive and H2(µ) has a null

space of dimension 1 consisting of the constant functions.

Proof. The strict positivity of H3(µ) and H4(µ) and the non-negativity of H2(µ) are obvious. The

discreteness of the spectra and the form of the null space of H2(µ) follow from the discreteness of the

spectrum of the Laplacian on compact domains and the identity curl∗ curl v = −∆v when div(v) = 0.

Let ∇q := ∇− iq = (∇1,∇2), ∇i := ∂i − iqi. We have

Proposition 8. (i) H1(µ) is a self-adjoint operator on H2
n and its spectrum is given by

σ(H1(µ)) = {(2m− 1)n+ µ : m ∈ Z≥0} ∪ {µ}, (5.20)

where n := eb|L|/2π.

(ii) The eigenspace of the eigenvalue −n + µ is n-dimensional and is spanned by functions of the

form

χ = (η, iη), curlan χ = i∂̄anη = 0, (5.21)

i.e. Null (H1(µ)− µ+ n) = {χ = (η, iη) : curlan χ = 0}, and the eigenspace of the eigenvalue µ is of the

form

Null (H1(µ)− µ) = {∇anf : f ∈ H3
n}. (5.22)

Proof. Recall that the operator H1(µ) acts on complex vectors w = (w1, w2). We write it as check 2n

H1(µ) := h1 + µ, h1 := curl∗an curlan −niJ. (5.23)

First, we will show that H2
n = Y ⊕ Z, where

Y :={w ∈ H2
n : divan w = 0}, (5.24)

Z :={w ∈ H2
n : w = ∇anf for some f ∈ H3

n}, (5.25)

with divan w := (∇an)1w1 + (∇an)2w2. Indeed, since ∆an := divan ∇an , then, for any w ∈ H2
n we may

write w = w0 + ∇anf , where divan w0 = 0 and f ∈ H3
n solves ∆anf = divan w (this solution exists

and is unique, since by Proposition 36, 0 is not in the spectrum of ∆an). The relations curlan ∇an =

[(∇an)1, (∇an)2] = −in and curl∗an = −J∇an yield that h1∇anf = 0, which proves that the µ-eigenspace

of H1(µ) is of the form (5.22). Furthermore, since divan w0 = 0, we have that h1w0 = (−∆an−2niJ)w0,

for w0 ∈ Y. Hence, we may write h1 : Y ⊕ Z → Y ⊕Z as

h1(w0 ⊕∇anf) = (h10w0)⊕ 0, (5.26)

h10 := −∆an − 2niJ. (5.27)
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(Here h10 sends Y to Y because divan h10w0 = (−∆an) divan w0 = 0.)

Identifying one-forms with vector-fields, we compute

U∗(iJ)U =

(
−1 0

0 1

)
, U :=

1√
2

(
1 1

−i i

)
, (5.28)

which gives

U∗h10U =

(
−∆an + 2n 0

0 −∆an − 2n

)
. (5.29)

By Proposition 36, we know that

σ(−∆an) = { (2m+ 1)n : m ∈ Z≥0} (5.30)

and so the spectrum of H1(µ) = h1 + µ is given by (5.20). Furthermore, by (5.29) and (5.30), any

eigenvector χ of h10 corresponding to the eigenvalue 0 must be of the form

χ = U(0, η) =
1√
2

(η, iη), (5.31)

where η satisfies

−∆anη = nη. (5.32)

Since curlan χ = i∂anη, by (I.7) of Appendix I, this gives

curlan χ = i∂anη = 0. (5.33)

Furthermore, by Proposition 36, the space of such functions is n-dimensional. Thus (after rescaling η

by a factor of
√

2) χ is of the desired form. This together with (5.23) gives the desired result.

We see that the operatorH1(µ) is non-negative for small magnetic fields (b < b∗ := g2ϕ2
0/2e = M2

W /e)

and acquires a negative eigenvalue µ− n = (b∗/b− 1)n of multiplicity n as the magnetic field increases.

Theorem 1 follows by undoing the rescaling (4.1) - (4.2).



Chapter 6

Setup of the bifurcation problem

We substitute a = 1
ea
n + α (with div(α) = 0), φ = ξ + ψ, ν = an + ν̃ and ξ =

√
2µ/g into (4.3) - (4.6)

and relabel the unknowns w,α, z, ψ as u1, u2, u3, u4 to obtain the system

Hiui = −Ji(µ, u), i = 1, . . . , 4, (6.1)

where u = (u1, u2, u3, u4) ≡ (w,α, z, ψ), the operators Hi on the left-hand side are defined in (5.7) -

(5.10), and

J1(µ, u) := Mw +
g2

2
ψ2w + g

√
2µψw − i(curl ν̃)Jw

+ g2(w × w)Jw, (6.2)

J2(µ, u) := 2e Im[curlν wJw − curl∗(w1w2)], (6.3)

J3(µ, u) := 2g cos θ Im[curlν wJw − curl∗(w1w2)]

+
2κ

g

√
2µψz + κψ2z, (6.4)

J4(µ, u) := 3λ

√
2µ

g
ψ2 + λψ3 +

g2

2
|w|2(

√
2µ

g
+ ψ) +

1

2
κ|z|2(

√
2µ

g
+ ψ), (6.5)

with ν̃ := g(α sin θ + z cos θ), ξ × η := ξ1η2 − ξ2η1, recall, curlq w = ∇1w2 −∇2w1, ∇i := ∂i − iqi and,

recalling that w : R2 → C2,

M := curl∗ν curlν − curl∗an curlan =

(
M22 −M21

−M12 M11

)
, (6.6)

with Mij := iν̃i(∇an)j + iν̃j(∇an)i + i∂iν̃j + ν̃iνj .

Note that system (6.1) can be also written as G(mn,r + u)|ξ=√2µ/g = 0, where G is defined in (5.1)

and mn,r := (0, 1
ea
n, 0, ξ).

Applying div to the second equation in (6.1), we find a solution (µ, u) should satisfy div J2(µ, u) = 0.

To prove that a solution (µ, u) satisfies this constraint, we consider the following auxiliary problem

F (µ, u) = 0, where F (µ, u) := Ln,µu+ P ′J(µ, u), (6.7)

17
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where P ′ = 1 ⊗ P0 ⊗ 1 ⊗ 1, with P0 the orthogonal projection onto the divergence-free vector fields

(P0 = 1
−∆ curl∗ curl), and, recall, Ln,µ = ⊕Hi and J(µ, u) given in (5.6) and

J(µ, u) := (J1(µ, u), . . . , J4(µ, u)). (6.8)

We consider F (µ, u) as a map from the space R>0×X , where X := H2
n⊕H2

0⊕H2
0⊕H2, to the space

Y := L2
n ⊕ L2

0 ⊕ L2
0 ⊕ L2, and let F = (F1, . . . , F4), where

Fi(µ, u) = Hiu+ δi,2P0Ji(µ, u), i = 1, . . . , 4. (6.9)

Proposition 9. Assume (µ, u) is a solution of the system (6.7) satisfying the gauge - periodicity condi-

tions (4.10) - (4.13). Then div J(µ, u) = 0 and therefore (µ, u) solves the original system (6.1).

Proof. We follow [38]. Assume χ ∈ H1
loc and is L−periodic (we say, χ ∈ H1

per). The gauge invariance

implies that

EΩ′(e
isχw, a+ s∇χ, z, φ) = EΩ′(w, a, z, φ), (6.10)

where EΩ′(w, a, z, φ) is given in (4.8). Differentiating this equation with respect to s at s = 0 gives

δwEΩ′(w, a, z, φ)(iχw) + δaEΩ′(w, a, z, φ)(∇χ) = 0. Now, we use the fact that the partial Gâteaux

derivative with respect to w vanishes, δwEΩ′(w, a, z, φ) = 0, and that curl∇χ = 0, and integrate by

parts, to obtain

〈J(µ, u),∇χ〉 = 0. (6.11)

(Due to conditions (4.10) - (4.13) and the L−periodicity of χ, there are no boundary terms.) Since the

last equation holds for any χ ∈ H1
per, we conclude that div J(µ, u) = 0.

In Sections 7 - 8 we solve equation (6.7), subject to conditions (4.10) - (4.13).

In conclusion of this section, we investigate properties of the map F (µ, u). For f = (f1, f2, f3, f4)

and δ ∈ R, define the global transformation

Tδf = (eiδf1, f2, f3, f4). (6.12)

Proposition 10. F (µ, u) has the following properties:

(i) F : R>0 ×X → Y is continuously differentiable of all orders;

(ii) F (µ, 0) = 0 for all µ ∈ R>0;

(iii) δuF (µ, 0) = Ln,µ for all µ ∈ R>0;

(iv) F (µ, Tδu) = TδF (µ, u) for all δ ∈ R;

(v) 〈u, F (µ, u)〉Y ∈ R (respectively 〈w,F1(µ, u)〉L2
n
∈ R) for all u ∈ X (respectively w ∈ H2

n).

Proof. (i) follows because F is a polynomial in the components of u and their first- and second-order

(covariant) derivatives. (ii), (iii) and (iv) follow from an easy calculation (in fact, u and Ln,µ were

defined so that (ii) and (iii) hold). For (v), it suffices to show that 〈w,F1(µ, u)〉L2
n
∈ R. To simplify
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notation we return to the coordinates (w, a, z, φ) = (w, 1
ea
n + α, z,

√
2µ
g + ψ). Then

〈w,F1(µ, u)〉L2
n

=
1

|Ω′|

∫
Ω′
| curlν w|2 +

1

|Ω′|

∫
Ω′

g2

2
φ2|w2|

+
1

|Ω′|

∫
Ω′
i(curl ν)(w × w) +

1

|Ω′|

∫
Ω′
g2|w × w|2. (6.13)

The first, second and fourth terms are clearly real, while the third term is real because ν is real and

w × w is imaginary.



Chapter 7

Reduction to a Finite-Dimensional

Problem

In this section we shall reduce solving equation (6.7), i.e. F (µ, u) = 0, with u = (u1, u2, u3, u4) ≡
(w,α, z, ψ) and F : R>0 ×X → Y defined in (6.7) - (6.8)), to a finite-dimensional problem.

Recall that Ln,µ is defined in (5.6). Let P be the orthogonal projection onto K := Null(Ln,µ=n),

which can be written explicitly as

P = P1 ⊕ P2 ⊕ 0⊕ 0, (7.1)

P1w := − 1

2πi

∮
γn

(H1(n)− z)−1w dz, (7.2)

P2α := 〈α〉, (7.3)

where H1(n) is defined in (5.7), γn is any simple closed curve in C containing the eigenvalue 0 and no

other eigenvalues of H1(n) (see Proposition 8), and 〈α〉 is the mean value of α in Ω′, 〈α〉 := 1
|Ω′|

∫
Ω′
α.

P1 is a projection onto Null(H1(n)) (spanned by vectors of the form (5.21)). Since H1(n) is self-adjoint,

P1 is an orthogonal projection (relative to the inner product of L2
n). By Theorem 6, K := Null(Ln,µ=n)

is (n+ 1)-dimensional.

Let P⊥ = 1− P be the projection onto the orthogonal complement of K. Then we may rewrite the

equation F (µ, u) = 0 (see (6.7)) as

PF (µ, v + u′) = 0, (7.4)

P⊥F (µ, v + u′) = 0, (7.5)

where v := Pu, u′ := P⊥u.

Our next goal is to solve (7.5) for u′ in terms of µ and v. First, we shall need the following proposition

to bound the polynomials of functions appearing below:

Proposition 11. Let X be one of the spaces H2
n, H0 or H2 defined before equation (5.13). Let

p(x1, ..., xn) be a polynomial with positive coefficients and let f1, ..., fn ∈ X. Then ||p(f1, ..., fn)||X .
p(||f1||X , ..., ||fn||X).

Proof. Write p(x1, ..., xn) =
∑
|α|≤N pαx

α, where α = (α1, ..., αn) is a multi-index and xα =
∏n
i=1 x

αi
i .

20
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Since by the Sobolev Embedding Theorem (see e.g. [2]), X is a Banach algebra, we have

||p(f1, ..., fn)||X ≤
∑
|α|≤N

pα||fα||X (7.6)

.
∑
|α|≤N

pα

n∏
i=1

||fi||αiX (7.7)

= p(||f1||X , ..., ||fn||X), (7.8)

which implies the desired result.

Recall that we denote the partial (real) Gâteaux derivatives with respect to # by δ#. Let X⊥ :=

P⊥X = X 	K and Y⊥ := P⊥Y = Y 	 K, and let ∂i ≡ ∂xi .

Lemma 12. There is a neighbourhood U ⊂ R>0 × K of (n, 0) such that for every (µ, v) ∈ U , equation

(7.5) for u′ has a unique solution u′ = u′(µ, v). Furthermore, this solution u′ = (u′1, u
′
2, u
′
3, u
′
4) has the

following properties:

u′ : R>0 ×K → X⊥ is continuously differentiable of all orders; (7.9)

‖(∇an)mj u
′
1‖H2

n
. ‖v‖2X ; (7.10)

‖∂mj u′k‖H2
k
. ‖v‖2X ; (7.11)

||δvi(∇an)mj u
′
1(µ, vî)||H2

n
. ||vî||X ; (7.12)

||δvi∂mj u′k(µ, vî)||H2
k
. ||vî||X ; (7.13)

||∂µu′(µ, v)||X . ||v||2X , (7.14)

where i = 1, ...4, m = 0, 1, j = 1, 2, k = 2, 3, 4, vî ≡ v|vi=0, for v = (v1, v2, v3, v4) and i = 1, ..., 4, and

H2
k = H2

0, H2
0, H2 for k = 2, 3, 4.

Proof. Define F⊥ : R>0 ×K ×X⊥ → Y⊥ by

F⊥(µ, v, u′) := P⊥F (µ, v + u′). (7.15)

By Proposition 10 (i) and (ii), F⊥ is continuously differentiable of all orders as a map between Banach

spaces and F⊥(µ, 0, 0) = 0 for all µ ∈ R>0. Furthermore,

δu′F
⊥(µ, 0, 0) = P⊥Ln,µP

⊥|X⊥ , (7.16)

which is invertible for µ = n because P⊥ is the projection onto the orthogonal complement of K =

Null(Ln,µ=n). By the Implicit Function Theorem (see e.g. [14]), there exists a function u′(µ, v) with

continuous derivatives of all orders such that for (µ, v) in a sufficiently small neighbourhood U ⊂ R>0×K
of (n, 0), (µ, v, u′) solves (7.5) if and only if u′ = u′(µ, v). This proves the first statement and property

(7.9).

We define the operator

L⊥n,µ := P⊥Ln,µP
⊥|X⊥ : X⊥ → Y⊥. (7.17)
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Then by (6.7) and (7.16), we can write equation (7.5) as L⊥n,µu
′ = −P⊥P ′J(µ, u). By Theorem 6 and

the relation K := Null(Ln,µ=n) = Null(Ln,µ − µ+ n), for µ in a neighbourhood of n, the operator L⊥n,µ

has a uniformly bounded inverse (L⊥n,µ)−1 : Y⊥ → X⊥. Hence equation L⊥n,µu
′ = −P⊥P ′J(µ, u), with

(µ, v) ∈ U (replacing U with a smaller neighbourhood if necessary), is equivalent to

u′ = −(L⊥n,µ)−1P⊥P ′J(µ, u); (7.18)

hence

‖u′‖X . ‖J(µ, u)‖Y , (7.19)

uniformly in µ. Recall that X = H2
n⊕H2

0⊕H2
0⊕H2 and Y = L2

n⊕L2
0⊕L2

0⊕L2. J(µ, u) is a polynomial

in the components of u and their first-order (covariant) derivatives consisting of terms of degree at least

2, so the left-hand side of (7.19) can be bounded above by a sum of products of one L2-norm and at

least one L∞-norm of these terms. H1 is trivially continously embedded in L2, and by the Sobolev

Embedding Theorem, H1 is continuously embedded in L∞. Therefore,

‖J(µ, u)‖Y . ‖u‖2X . (7.20)

Recalling that u = v+ u′, this proves (7.10) and (7.11) when m = 0. The other case is proven similarly.

For v = (v1, . . . , v4), we let v̂i ≡ v|vi=0, i = 1, . . . , 4. By the Taylor theorem for Banach spaces (see

e.g. [14]), we have

u′(µ, v) = u′(µ, v̂i) + δviu
′(µ, v̂i)vi +R2(µ, v̂i)(vi), (7.21)

R2(µ, v̂i)(vi) :=

∫ 1

0

(1− t)δ2
viu
′(µ, v̂i + tvi)(vi, vi)dt. (7.22)

Let (µ, v) ∈ U with ||v̂i|| = ||vi|| = 1, and let ε > 0. Then

||δviu′(µ, εv̂i)εvi||X = ||u′(µ, εv)− u′(µ, εv̂i)−R2(µ, εv̂i)(εvi)||X
≤ ||u′(µ, εv)||X + ||u′(µ, εv̂i)||X
+ ε2||vi||2 sup

0≤t≤1
(1− t)||δ2

viu
′(µ, εv̂i + tεvi)||2X∗⊗X∗⊗X

. ε2. (7.23)

with the norm taken in the appropriate space for vi. Taking the supremum over all vi with ||vi|| = 1

gives

||δviu′(µ, εv̂i)||X . ε, ‖v̂i‖X = 1, (7.24)

proving (7.12) - (7.13) for m = 0. The other cases are proven in exactly the same way.
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Again by Taylor’s Theorem,

∂µu
′(µ, v) = ∂µu

′(µ, 0) + ∂µδvu
′(µ, 0)v + R̃2(µ, 0)(v), (7.25)

R̃2(µ, 0)(v) :=

∫ 1

0

(1− t)∂µδ2
vu
′(µ, tv)(v, v)dt. (7.26)

By Equations (7.11) and (7.12) - (7.13) with m = 0, we have u′(µ, 0) = 0 and δvu
′(µ, 0) = 0, so

||∂µu′(µ, v)||X = ||R̃2(µ, 0)(v)||X (7.27)

≤ ||v||2X sup
0≤t≤1

(1− t)||∂µδ2
vu
′(µ, tv)||2X∗⊗X∗⊗X (7.28)

. ||v||2X , (7.29)

proving (7.14).

We plug the solution u′ = u′(µ, v) into equation (7.4) to get the bifurcation equation

γ(µ, v) := PF (µ, v + u′(µ, v)) = 0. (7.30)

Corollary 13. In a neighbourhood of (n, 0) in R>0×X , the pair (µ, u) solves (6.7) if and only if (µ, v)

solves the finite-dimensional equation (7.30). Moreover, a solution of (6.7) can be constructed from a

solution (µ, v) of (7.30) by setting u = v + u′(µ, v), where u′(µ, v) is given by Lemma 12.

Since F : R>0 × X → Y and u′ : R>0 × K → Y⊥ have been shown to be continuously differentiable

of all orders, we conclude:

Corollary 14. γ : R×K → K is continuously differentiable of all orders.

Furthermore, γ(µ, v) inherits the following symmetry of F (µ, u), which we will use to find a solution

of (7.30):

Lemma 15. Let Tδ be given by (6.12). For every δ ∈ R and (µ, v) in a neighbourhood of (n, 0), we have

u′(µ, Tδv) = Tδu
′(µ, v), (7.31)

γ(µ, Tδv) = Tδγ(µ, v). (7.32)

Proof. For equation (7.31), we note that by Proposition 10 (iv)

P⊥F (µ, Tδv + Tδu
′(µ, v)) = P⊥TδF (µ, v + u′(µ, v)) (7.33)

= TδP
⊥F (µ, v + u′(µ, v)) = 0.

(Here we used P⊥Tδ = TδP
⊥, which follows because Tδ = eiδ ⊕ 1 ⊕ 1 ⊕ 1 and P⊥ = 1 − P where P is

defined in (7.1).) Since u′ = u′(µ, Tδv) is the unique solution to P⊥F (µ, Tδv + u′) = 0 for (µ, v) in a

neighbourhood U ⊂ R×K of (n, 0), we conlcude that u′(µ, Tδv) = Tδu
′(µ, v).

For equation (7.32), we note that by (7.31) and Proposition 10 (iv),

γ(µ, Tδv) = PF (µ, Tδv + u′(µ, Tδv)) = PF (µ, Tδ(v + u′(µ, v)))

= TδPF (µ, v + u′(µ, v)) = Tδγ(µ, v) (7.34)
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(where again we used PTδ = TδP ).



Chapter 8

The bifurcation result when n = 1

Theorem 16. Assume that n = 1 and |1 − b∗/b| � 1, b∗ := M2
W /e. Then there exists ε > 0 and a

branch (µs, us) := (µs, ws, αs, zs, ψs), with s ∈ [0,
√
ε), of non-trivial solutions of equation (6.1), unique

modulo a gauge symmetry in a sufficiently small neighbourhood of the rescaled vacuum solution (4.9) in

R>0 ×X , such that 

ws = sχ+ sg1(s2),

αs = g2(s2),

zs = g3(s2),

ψs = g4(s2),

µs = n+ g5(s2),

(8.1)

where χ solves the eigenvalue problem H1(n)χ = 0 (see Proposition 8), µ := g2ξ2/2 = g2r2ϕ2
0/2,

g1 : [0, ε) → H2
n and is orthogonal to Null(H1(n)), g2 : [0, ε) → H2

0, g3 : [0, ε) → H2
0, g4 : [0, ε) → H2,

g5 : [0, ε) → R>0, and gj for j = 1, · · · , 5 are functions, continuously differentiable of all orders in s,

such that gj(0) = 0.

Proof of Theorem 16. For the proof below, recall that we denote the partial (real) Gâteaux derivatives

with respect to # by δ#, and let ∂i ≡ ∂xi .

By Proposition 9, solving equation (6.1) is equivalent to solving (6.7). By Corollary 13, solving (6.7)

is equivalent to solving the bifurcation equation (7.30). Hence, we address the latter equation.

Recall that P is the projection onto K = NullLn,µ=n = Null(H1(n))×{constants}× {0}× {0}. The

projection onto constant vector fields in H2
0 can be written as the mean value 〈α〉 := 1

|Ω′|
∫

Ω′
α. Since

dim Null(H1(n)) = 1 for n = 1, we may choose χ ∈ Null(H1(n)) such that

P (w,α, z, ψ) = (sχ, c, 0, 0), (8.2)

s := 〈χ,w〉L2
n
∈ C, c := 〈α〉 ∈ R2, (8.3)

and χ satisfies ‖χ‖2L2
n

= 〈|χ|2〉 = 1 (see (5.16)), where, recall, χ is described in (5.21). Hence we may

write the γ from the bifurcation equation (7.30) as γ = (γ̃1χ, γ̃2, 0, 0), where γ̃1, γ̃2 : R>0 ×C×R2 → C

25
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are given by

γ̃1(µ, s, c) := 〈χ, F1(µ, v(s, c) + u′(µ, v(s, c))〉L2
n
, (8.4)

γ̃2(µ, s, c) := 〈F2(µ, v(s, c) + u′(µ, v(s, c))〉, (8.5)

where, recall, Fj , j = 1, . . . , 4 are defined by (6.9), s ∈ C, c ∈ R2 and (see (8.2))

v(s, c) := (sχ, c, 0, 0). (8.6)

Note that γ̃1 and γ̃2 are continuously differentiable of all orders in µ, s and c by Corollary 14. (γ̃2 is

independent of µ.) The bifurcation equation (7.30) is then equivalent to the equations

γ̃1(µ, s, c) = 0, (8.7)

γ̃2(µ, s, c) = 0. (8.8)

Lemma 17. There exists a neighbourhood U ⊂ R>0 × R>0 of (n, 0) and a unique function c : U → R2

with continuous derivatives of all orders such that

γ̃2(µ, s, c(µ, s2)) = 0 (8.9)

and

||∂lµc(µ, s2)||R2 = O(|s|2), l = 0, 1. (8.10)

Proof. Recall that F2(µ, u) = H2(µ)α+P0J2(µ, u) (see Equation (6.7)), with P0 the projection onto the

divergence-free vector fields and

u = (w,α, z, ψ) = v + u′, (8.11)

where v = v(s, c) and u′ = u′(µ, v) solves (7.5). By definition, (1 − P0)f = ∆−1∇div f and therefore

〈(1− P0)f〉 = 0. Hence 〈P0f〉 = 〈f〉. This and the relation 〈H2(µ)α〉 = 1
|Ω′|

∫
Ω′

curl∗ curlα = 0 give

γ̃2(µ, s, c) = 〈J2(µ, v(s, c) + u′(µ, v(s, c)))〉. (8.12)

Using (6.3), ν = an + ν̃, curlan w = curlan w − iν̃ × w and that the final term in (6.3) vanishes after

taking the mean, we find

〈J2(µ, u)〉 = 2e Im〈(curlan w − iν̃ × w)Jw〉. (8.13)

Recall u′ = (w′, α′, z′, ψ′). Then (8.6) and (8.11) give w = sχ + w′ and (using that e = g sin θ)

ν̃ = ec + ν′. Using these relations and curlan χ = 0 (by (5.21)) and (8.12) and (8.13), we find for
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γ2(µ, s, c) := (2e)−1|s|−2γ̃2(µ, s, c)

γ2(µ, s, c) := −e〈Re[(c× χ)Jχ]〉+ Im s−1〈(curlan w
′)Jχ〉 (8.14)

+ Im〈R̄2(µ, s, c)〉, (8.15)

R̄2(µ, s, c) := |s|−2[−i(ec× sχ)Jw′ − i(ec× w′)Jw′ (8.16)

− i(ec× w′)Jsχ− i(ν′ × w′)Jsχ− i(ν′ × sχ)Jw′ (8.17)

− i(ν′ × sχ)Jsχ− i(ν′ × w′)Jw′ + (curlan w
′)Jw′]. (8.18)

Note that we expect (8.14) = O(|s|2) and (8.15) = O(|s|4). We now simplify (8.14). For the first term

on the right-hand side, we use (5.21) and the condition 〈|χ|2〉 = 1 to compute

〈Re[(c× χ)Jχ]〉 = −1

2
c. (8.19)

For the second term on the right-hand side of (8.14), we use 〈fJχ〉 = 〈f(iη, η)〉 = 〈fη̄〉(i, 1) =

〈η, f〉(i, 1) and integrate by parts to compute

〈(curlan w
′)Jχ〉 = 〈η, curlan w

′〉(i, 1) = 〈curl∗an η, w
′〉(i, 1). (8.20)

Abusing notation, we write in what follows w(µ, s, c) ≡ w(µ, v(s, c)). Then (8.14) becomes

γ2(µ, s, c) =
1

2
ec+ Im s−1〈curl∗an η, w

′(µ, s, c)〉〉(i, 1) + Im〈R̃2(µ, s, c)〉. (8.21)

Now, Equation (7.10), with m = 0, implies that

| Im〈curl∗an η, w
′(µ, s, c)〉〉| = O(|s|2). (8.22)

Furthermore, we show below the following estimate on the remainder:

|| Im〈∂lcR̃2(µ, s, c)〉||R2 = O(|s|2−l), l = 0, 1. (8.23)

Hence γ2(µ, 0, 0) = 0. To apply the Implicit Function Theorem to solve for c as a function of µ and s,

we have to estimate the derivative

∂cγ2(µ, s, c) =
1

2
e1 + Im s−1〈curl∗an η, ∂cw

′(µ, s, c)〉(i, 1)

+ Im〈∂cR̃2(µ, s, c)〉. (8.24)

at (n, s, 0). At the first step, we use the following

Lemma 18. Using Dirac’s bra-ket notation, we have

(∂cw
′)(n, s, 0) = −n−1es| curl∗an η〉〈(1, i)|+O(|s|2). (8.25)

Proof of Lemma 18. By definition (7.2), P⊥1 projects onto the orthogonal complement of the eigenspace

of H1(n) corresponding to the eigenvalue 0 and therefore the operator H⊥1 (n) is invertible on RanP⊥1 .

Hence (6.1) with i = 1 can be rewritten as w′ = −(H⊥1 (n))−1P⊥1 J1(n, u) (which is the first component
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of (7.18)), which gives

∂cw
′ = −(H⊥1 (n))−1P⊥1 ∂cJ1(n, u), (8.26)

where u ≡ u(s, c) := v(s, c) + u′(µ, v(s, c)). By (6.2) and (6.6), we have

∂cJ1(n, u) = ∂c[curl∗ν curlν w]. (8.27)

Using w = sχ + w′, ν = an + ec + ν′ and curlν = curlan +iJ(ec + ν′)·, curl∗ν = curl∗an −iJ(ec + ν′) and

that ν′ = O(|s|2), we compute

∂cJ1(n, u)c′ = s∂c[curl∗ν curlν ]χc′ +O(|s|2)

= sie[−Jc′ curlν + curl∗ν Jc
′·]χ+O(|s|2) (8.28)

= sie[−Jc′ curlan+ec + curl∗an+ec Jc
′·]χ+O(|s|2). (8.29)

Since curlan χ = ∇1iη −∇2η = i∂̄anη = 0 and Jc′ · χ = (−c′2, c′1) · (η, iη) = −c′2η + c′1iη = i(c′1 + ic′2)η

and therefore curl∗an Jc
′ · χ = i curl∗an η(c′1 + ic′2), this yields

∂cJ1(n, u)c′
∣∣
c=0

= −se curl∗an η(c′1 + ic′2) +O(|s|2). (8.30)

By Proposition 8(ii), Null (H1(µ)− µ+ n) = {χ = (η, iη) : curlan χ = i∂̄anη = 0}. The relation

curlan χ = 0 implies also 〈χ, curl∗an χ〉 = 〈curlan χ, χ〉 = 0, which, for n = 1, gives that P⊥1 ∂cJ1(n, u)c′ =

∂cJ1(n, u)c′ and therefore

P⊥1 ∂cJ1(n, u)c′ = −se curl∗an η(c′1 + ic′2) +O(|s|2). (8.31)

By (5.21), we have curl∗an η = i∇anη, and by (5.22), we haveH1(n)∇anη = n∇anη; hence (H⊥1 (n))−1 curl∗an η =

n−1 curl∗an η. This relation, together with (8.26) and (8.31), yields

∂cw
′c′ = sen−1 curl∗an η(c′1 + ic′2) +O(|s|2), (8.32)

which gives (8.25).

Using Equation (8.25), we calculate the second term on the right-hand side of (8.24) at (n, s, 0):

Im s−1〈curl∗an η, ∂cw
′(µ, s, c)c′〉(i, 1)

= en−1 Im〈curl∗an η, curl∗an η〉(c′1 + ic′2)(i, 1). (8.33)

The inner product term is real. Integrating it by parts and using that, by Equation (5.32), η satisfies

curlan curl∗an η = −∆anη = nη and using that ‖η‖2L2
n

= 1
2‖χ‖

2
L2
n

= 1
2 , gives

〈curl∗an η, curl∗an η〉 =〈η,−∆anη〉L2
n

=
1

2
n. (8.34)
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The last two equations and the relation Im(c′1 + ic′2)(i, 1) = Im

(
i −1

1 i

)
c′ = 1c′ imply

Im s−1〈curl∗an η, ∂cw
′(µ, s, c)〉(i, 1) =

1

2
e1. (8.35)

This, together with (8.24), gives

∂cγ2(n, s, 0) =
1

2
e1 +

1

2
e1 + Im〈∂cR̃2(n, s, 0)〉. (8.36)

Therefore, (8.36) and (8.23) (with l = 1) imply

∂cγ2(n, 0, 0) = e1, (8.37)

proving that ∂cγ2(n, 0, 0) is invertible, as required.

Recall that, by (8.21), (8.22) and (8.23) (with l = 0), we have

γ2(n, 0, 0) = 0. (8.38)

Since ∂cγ2(n, 0, 0) is invertible, by the Implicit Function Theorem there exists a unique function c̃ :

R>0×C→ R2 with continuous derivatives of all orders such that γ2(µ, s, c̃(µ, s)) = 0 for (µ, s) in a suffi-

ciently small neighbourhood of (n, 0). Furthermore, the symmetry (7.32) implies that γ2(µ, |s|, c̃(µ, s)) =

γ2(µ, ei arg s|s|, c̃(µ, s)) = γ2(µ, s, c̃(µ, s)) = 0, so by the uniqueness of the branch c̃(µ, s) we have

c̃(µ, s) = c̃(µ, |s|). (8.39)

In particular, ∂lµc̃(µ, s), l = 0, 1, restricted to s ∈ R are even functions with continuous derivatives of

all orders; thus ∂s∂
l
µc̃(µ, 0) = 0 and hence ∂lµc̃(µ, s) = O(|s|2), since the first two terms of the Taylor

expansion are 0. We define c : R>0 × R>0 → R2 by c(µ, s) := c̃(µ,
√
s), which is a function with

continuous derivatives of all orders satisfying ||∂lµc(µ, s2)||R2 = O(|s|2), l = 0, 1, and γ̃2(µ, s, c(µ, s2)) =

|s|2γ2(µ, s, c(µ, s2)) = 0, as required.

Lemma 19. For ε > 0 sufficiently small, there exists a unique function µ : [0, ε)→ R>0 with continuous

derivatives of all orders such that

γ̃1(µ(s2), s, c(µ(s2), s2)) = 0. (8.40)

Proof. To simplify notation for this lemma, we set u = vs + u′s, with v ≡ vs ≡ (sχ, c(µ, s2), 0, 0), u′ ≡
u′s ≡ u′(µ, vs), c ≡ c(µ, s2).

We first show that γ̃1(µ, s, c) ∈ R for s ∈ R. Since u′ by definition solves P⊥1 F1(µ, v+ u′) = 0, where

P⊥1 w
′ = w′ and P⊥1 is self-adjoint, we have

〈w′, F1(µ, v + u′)〉L2
n

= 〈w′, P⊥1 F1(µ, v + u′)〉L2
n

= 0. (8.41)
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Therefore, for s 6= 0, we find

γ̃1(µ, s, c) = s−1〈sχ, F1(µ, v + u′〉L2
n

= s−1〈sχ+ w′, F1(µ, v + u′)〉L2
n
, (8.42)

which is real by Proposition 10 (v). Furthermore, by equations (7.32) and (8.39), we have γ̃1(µ, s, c(µ, s2)) =

eiarg(s)γ̃1(µ, |s|, c(µ, |s|2)), so we may restrict s to be real.

Next, we show that

γ̃1(n, s, c(n, s2)) = O(|s|2) (8.43)

Indeed,

|γ̃1(n, s, c(n, s2))| ≤ ||χ||L2
n
||F1(n, v + u′)||L2

n

≤ ||χ||L2
n

[
||H1(n)(sχ+ w′)||L2

n

+ ||J1(n, v + u′)||L2
n
)
]
. (8.44)

Recall that H1(n)χ = 0, so that

|γ̃1(n, s, c(n, s2))| ≤ ||χ||L2
n

[
||H1(n)||L2

n⊗(L2
n)∗ ||w′||L2

n

+ ||J1(n, v + u′)||L2
n

]
. (8.45)

By the definition v ≡ vs ≡ (sχ, c(µ, s2), 0, 0) and equation (8.10), ||v||X = O(|s|); hence by Lemma 12,

||w′||L2
n
≤ ||w′||H2

n
= O(|s|2). (8.46)

Furthermore, by equation (7.20) and recalling that H1(n)χ = 0,

||J1(n, v + u′)||L2
n
≤ ||J1(n, v + u′)||H2

n
. ||v + u′||2X = O(|s|2). (8.47)

This proves that (8.45) is O(|s|2), as required.

In light of equation (8.43), we can define a function γ1 : R>0×R>0 → R with continuous derivatives

of all orders by

γ1(µ, s) ≡

s−1γ̃1(µ, s, c(µ, s2)), s 6= 0,

0, s = 0.
(8.48)

We now find a non-trivial branch of solutions (µ, s) = (µ̃(s), s) by applying the Implicit Function Theorem

to γ1.

Lemma 20. There exists ε > 0 and a unique function µ̃ : (−
√
ε,
√
ε)→ R>0 with continuous derivatives

of all orders such that µ̃(0) = n and µ = µ̃(s) solves γ1(µ, s) = 0 for s ∈ (−
√
ε,
√
ε). Moreover, µ̃ is an

even function: µ̃(s) = µ̃(−s).

Proof. Recall that F1(µ, u) = H1(µ)w+J1(µ, u) (where H1(µ) and J1(µ, u) are defined in (5.7) and (6.2)).

Using that ∂µF1(µ, u) = (1 + g
2
√

2µ
ψ)w and setting u = vs + u′s, with v ≡ vs ≡ (sχ, c(µ, s2), 0, 0), u′ ≡
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u′s ≡ u′(µ, vs), c = c(µ, s2), we compute

∂µ[s−1F1(µ, v + u′)] = s−1(1 +
g

2
√

2µ
ψ′)(sχ+ w′)

+ s−1
4∑
i=1

δuiF1w(µ, v + u′)(∂µvi + ∂µu
′
i)

= s−1(1 +
g

2
√

2µ
ψ′)(sχ+ w′) + s−1δαF1(µ, v + u′)∂µc

+ s−1
5∑
i=1

δuiF1(µ, v + u′)∂µu
′
i. (8.49)

By Lemma 17, ‖∂lµc‖R2 = O(|s|2), l = 0, 1. Since ||v||X is O(|s|), by Lemma 12, the terms ||∂lµu′i|| (l =

0, 1, i = 1, . . . , 4, with the norms taken in the appropriate spaces), are O(|s|2). By Proposition 11, this

implies that all terms in (8.49) containing c, w′, α′, z′, ψ′ or their µ-derivatives vanish at (µ, s) = (n, 0).

Therefore

∂µ[s−1F1(µ, v + u′)]|(µ,s)=(n,0) = χ (8.50)

and hence

∂µγ1(n, 0) = 〈χ, ∂µ[s−1F1(µ, s)] |(µ,s)=(n,0)〉L2
n

= ‖χ‖2L2
n
6= 0. (8.51)

Since γ1(µ, s) is continuously differentiable of all orders in µ and s, by the Implicit Function Theorem,

we obtain the first statement of the lemma.

By the symmetry γ1(µ,−s) = −γ1(µ, s) of γ1 and the uniqueness of the branch µ̃(s), we have

µ̃(s) = µ̃(−s), which gives the second statement.

We define µ(s) ≡ µ̃(
√
s), which is a function with continuous derivatives of all orders for s ∈ [0, ε)

for the same reasons that c(µ, s) := c̃(µ,
√
s) was shown to be continuously differentiable of all orders

in Lemma 17. Furthermore, µ satisfies γ̃1(µ(s2), s, c(µ(s2), s2)) = sγ1(µ(s2), s, c(µ(s2), s2)) = 0, as

required.

We will now use the branch of solutions to (8.7) - (8.8), provided by Lemmas 17 and 19, and Corollary

13 to obtain the corresponding unique branch, (µs, us), of solutions to (6.7), with

µs ≡ µ(s2), us ≡ vs + u′s, (8.52)

vs ≡ (sχ, cs, 0, 0), cs ≡ c(µs, s2), (8.53)

u′s ≡ u′(µ, vs). (8.54)

(8.52) - (8.54) have continuous s-derivatives of all orders because each component function has continuous

derivatives of all orders. Symmetry (7.31) with δ = π and the relation Tπ(f1, f2, f3, f4) = (−f1, f2, f3, f4)

imply that (u′s)1 is an odd function of s and (u′s)2, (u′s)3 and (u′s)4 are even functions of s. Arguing as

in the case of Lemma 17 above shows that the functions:

g1(s) :=

 1√
s
(u′√

s
)1, s 6= 0,

0, s = 0,
g2(s) := c√s + (u′√s)2, (8.55)

g3(s) := (u′√s)3, g4(s) := (u′√s)4, g5(s) := µ√s − n, (8.56)
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are well-defined for s ≥ 0 and have continuous derivatives of all orders. By Lemma 12, these functions

have the properties listed in Theorem 16. The above definitions and equations (8.52) - (8.54) imply

us = (sχ, 1
ea
n, 0, 0) + (g1(s), . . . , g4(s)). Hence, this solution is of the form (8.1). Now, by Proposition

9, this also solves system (4.3) - (4.6), completing the proof.



Chapter 9

Proof of Theorem 2(a), (b)

Recall that MW , MZ , MH are the masses of the W , Z and Higgs bosons, respectively, and that τ is the

shape parameter of the lattice L (see the paragraph before Theorem 3 of Section 2). We will need the

following function:

α(MZ ,MH ; τ) := 〈UMZ ,MH
(|Xr|2)|Xr|2〉/〈|Xr|2〉2, (9.1)

where

Xr(x) := r−1χ(r−1x), (9.2)

with χ given in (5.21), and for f ∈ L2
loc,

UM1,M2
(f)(ρ) :=

1

2π

∫ M2

M1

∫
|ρ− ρ′|K1(M |ρ− ρ′|)f(ρ′)d2ρ′ dM, (9.3)

with K1 a modified Bessel function of the third kind. α is related to the η function appearing in [23] by

η(MZ ,MH ; τ) = [M2
Wα(MZ ,MH ; τ) + sin2 θ]−1.1 (9.4)

Theorem 21. If MZ < MH , the parameter s of the branch (8.1) is related to the magnetic field strength

by

s2 =
eb

g2〈|Xr|2〉
η(MZ ,MH ; τ)[1− M2

W

eb
] +Rs([1−

M2
W

eb
]), (9.5)

where Rs(λ) is a real function with continuous derivatives of all orders satisfying Rs(λ) = O(|λ|2), so

that

Rs([1−
M2
W

eb
]) = O(|1− M2

W

eb
|2). (9.6)

1The authors of [23] used the notation η(MZ/MH), remarking that η only depends on the ratio MZ/MH to the order
of magnitude they were calculating.
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Before proving Theorem 21, we shall see how it implies statements (a) and (b) of Theorem 2. Since

K1 is positive, when MZ < MH , the function

UMZ ,MH
(|Xr|2)(ρ) is a positive function; in particular, α(MZ ,MH ; τ) (and hence η(MZ ,MH , τ)) is

positive. Furthermore, when the right-hand side of (9.5) is positive, we may take the square root, solving

for s as a function of b, s = s(b), having continuous derivatives of all orders. When |1− M2
W

eb | � 1, the

right-hand side of (9.5) is positive if and only if 1− M2
W

eb > 0.2 Plugging s = s(b) into (8.1) (i.e. passing

from the bifurcation parameter s to the physical parameter b), undoing the rescaling (4.1), and recalling

that b∗ =
M2
W

e , we arrive at the branch, UL ≡ (Wb, Ab, Zb, ϕb), of solutions of (3.12) - (3.15), which has

the properties listed in statements (a) and (b) of Theorem 2. �

The following statement follows from the proof above:

Proposition 22. UL is continuously differentiable of all orders in b for b in an open right half-interval

of b∗

In the proof below, we will use the following result:

Proposition 23. Let L2
per denote any of the spaces (5.13) - (5.15), and let H2

per denote the corresponding

Sobolev space. Suppose that fs, gs : R → H2
per satisfy ||fs||H2

per
= O(|s|k) and ||gs||H2

per
= O(|s|l) for

some k, l ∈ Z. Then for i, j = 1, 2 and p, q = 0, 1,

|
∫

Ω′
∂pi fs∂

q
j gs| = O(|s|k+l). (9.7)

Furthermore, if fs and gs have continuous derivatives of all orders in s, then so does the above integral.

Proof. Equation (9.7) follows from the following chain of inequalities:

|
∫

Ω′
∂pi fs∂

q
j gs| . ||∂

p
i fs||L2

per
||∂qj gs||L2

per

. ||fs||H2
per
||gs||H2

per
= O(|s|k+l). (9.8)

If fs and gs have continuous derivatives of all orders in s, then their s-derivatives of all orders are in

H2
per. In particular, this means that ∂ks (fsgs), k ∈ Z≥0, remains integrable, so the s−derivatives of the

above integral (obtained by differentiation under the integral sign) are well-defined.

Proof of Theorem 21. Consider the solution branch (µs, ws, as, zs) given in equation (8.1) and described

in Theorem 16. Using Taylor’s Theorem for Banach spaces (see e.g. [14]) and recalling the relation

ξ =
√

2µ/g, we may expand this branch in s as follows:

ws = sχ+ s3w′ +O(|s|5),

as = 1
ea
n + s2a′ + s4a′′ +O(|s|6),

zs = s2z′ +O(|s|4),

ψs := φs − ξs = s2ψ′ +O(|s|4),

ξs :=
√

2µs/g =
√

2n/g + s2ξ′ +O(|s|4),

(9.9)

2The condition 0 < 1− M2
W
eb
� 1 is equivalent to the condition 0 < 1− M2

W
2π
|L| � 1 of Theorem 2.
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where w′, a′, z′, ψ′, ξ′ and a′′ are the coefficients of s2 and s4, respectively, in the Taylor expansion of

gj(s
2), j = 0, ..., 5, in (8.1). Here O(|s|p) stand for various error terms which, together with their

(covariant) derivatives, have norms of order O(|s|p) when taken in the appropriate spaces.

To rewrite the asymptotics in terms of the parameter b, we analyze how s depends on b. For this,

we use the definitions ξs =
√

2µs/g and µ := 1
2 (gξ)2 = 1

2 (grϕ0)2, with r :=
√

n
eb (see (4.2)) to find the

following equation for s2:

ξs =

√
n

eb
ϕ0. (9.10)

To solve this equation for s2, we use the Implicit Function Theorem. By (9.9), we can write ξs =√
2n/g + gξ(s

2), where recall, gξ(0) = 0 and g′ξ(0) = ξ′. Hence, we have to show that ξ′ 6= 0.

Lemma 24. We have ξ′ 6= 0.

Proof. We find relations between ψ′, a′ and z′ entering (9.9). Plugging (9.9) into Equations (4.4) - (4.6),

we obtain at order s4 
−∆a′ − e curl∗ |χ|2 = 0

(−∆ + n
cos2 θ )z′ − g cos θ curl∗ |χ|2 = 0

(−∆ + 4λn
g2 )ψ′ + g

2

√
2n|χ|2 = 0,

(9.11)

which have the solutions 
a′ = e curl∗ U0(|χ|2)− 1

2e〈|χ|
2〉x⊥,

z′ = g cos θ curl∗ Umz (|χ|2),

ψ′ = − g2
√

2n Umh(|χ|2),

(9.12)

where, recall, x⊥ := −x2dx1 + x1dx2, mz :=
√
n

cos θ and mh :=
√

4λn
g are the masses of the rescaled Z and

Higgs boson (Φ) fields, z and φ, respectively, and for f ∈ L2
loc,

UM (f)(ρ) :=

 1
2π

∫
K0(M |ρ− ρ′|)f(ρ′)d2ρ′, M > 0

1
2π

∫
−ln(|ρ− ρ′|)f(ρ′)d2ρ′, M = 0

with K0 a modified Bessel function of the third kind. Note that UM satisfies

(−∆ +M2)UM (f) = f and M2〈UM (f)〉 = 〈f〉 (M 6= 0). (9.13)

Plugging equations (9.12) into the relation∫
Ω′
g
√

2nξ′|χ|2 =

∫
Ω′
−g
√

2nψ′|χ|2 + curl ν′|χ|2 − g2|χ|4, (9.14)

proven in Appendix F, and taking ν′ := g(a′ sin θ + z′ cos θ), gives

g
√

2nξ′〈|χ|2〉 = −g2[m2
w〈Umz,mh(|χ|2)|χ|2〉+ sin2 θ〈|χ|2〉2], (9.15)
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where mw :=
√
n is the mass of the rescaled W boson field w, and for f ∈ L2

loc,

UM1,M2(f)(ρ) :=
1

2π

∫ M1

M2

∫
|ρ− ρ′|K1(M |ρ− ρ′|)f(ρ′)d2ρ′dM

=UM1(f)(ρ)− UM2(f)(ρ), (9.16)

with K1 a modified Bessel function of the third kind. We solve for ξ′ and simplify the solution as follows:

ξ′ = − g√
2n
〈|χ|2〉η′−1, (9.17)

where

η′ ≡ η′(mz,mh; τ, r) := [m2
wα
′(mz,mh; τ, r) + sin2 θ]−1, (9.18)

with, recall, mw :=
√
n, mz :=

√
n

cos θ and mh :=
√

4λn
g the masses of the rescaled W, Z and Higgs boson

fields, w, z and φ, respectively, and

α′(mz,mh; τ, r) := 〈Umz,mh(|χ|2)|χ|2〉/〈|χ|2〉2. (9.19)

Since K1 is a positive function, α′(mz,mh; τ, r) (and hence η′) is positive if and only if mz < mh

(equivalently, MZ < MH), in which case ξ′ < 0.

We now derive the estimate (9.5) - (9.6) for s2. Equations (9.9) and (9.10) give ξs as a function of s

and b respectively, yielding

ξ2
s = [

√
2n

g
+ gξ(s

2)]2 =
n

eb
ϕ2

0, (9.20)

which can be rearranged to give

2
√

2n

g
gξ(s

2) + gξ(s
2)2 =

2n

g2
[1− M2

W

eb
], (9.21)

where, recall, MW = 1√
2
gϕ0. Recall that gξ(0) = 0 and g′ξ(0) = ξ′. We have

d

ds2
|s2=0[

2
√

2n

g
gξ(s

2) + gξ(s
2)2] =

2
√

2n

g
ξ′. (9.22)

Since ξ′ 6= 0 and gξ(s
2) is continuously differentiable of all orders (see Theorem 16), by the Implicit

Function Theorem, we may solve (9.21) for s2, with the solution, s2 = σ(1 − M2
W

eb ), σ : R → R, having

continuous derivatives of all orders. Explicitly, (9.21) - (9.22) give

s2 =
g

2
√

2n
ξ′−1 2n

g2
[1− M2

W

eb
] +O(|1− M2

W

eb
|2). (9.23)

Plugging (9.17) into (9.23) gives

s2 =
n

g2

[1− M2
W

eb ]

〈|χ|2〉
η′ + R̃s(1−

M2
W

eb
), (9.24)
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where R̃s(λ) satisfies R̃s(λ) = O(|λ|2). Furthermore, since the solution s2 = σ(1− M2
W

eb ) is continuously

differentiable of all orders in b, so is the remainder term R̃s(1− M2
W

eb ).

To derive (9.5) from (9.24), we prove the following lemma in Appendix G:

Lemma 25. η(MZ ,MH ; τ) is related to η′(mz,mh; τ, r) by

η′(mz,mh; τ, r) = η(MZ ,MH ; τ) +Rη(1− M2
W

eb
), (9.25)

where Rη(λ) is a real function with continuous derivatives of all orders satisfying Rη(λ) = O(|λ|), so

that

Rη(1− M2
W

eb
) = O(|1− M2

W

eb
|). (9.26)

Equation (9.5) follows by plugging 〈|χ|2〉 = r2〈|Xr|2〉 = n
eb 〈|Xr|2〉 and (9.25) into (9.24).
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Asymptotics of the Weinberg-Salam

energy near b = M2
W/e

The main result of this section is the following:

Theorem 26. If MZ < MH , then the WS energy (D.1) of the branch of solutions (8.1) has the following

expansion:

1

|Ω|
EWS

Ω (Wb, Ab, Zb, ϕb) =
1

2
b2 − 1

2
b2 sin2 θ η(MZ ,MH , τ)[1− M2

W

eb
]2

+RE(1− M2
W

eb
), (10.1)

where RE(λ) is a real function with continuous derivatives of all orders satisfying RE(λ) = O(|λ|3) so

that

RE(1− M2
W

eb
) = O(|1− M2

W

eb
|3). (10.2)

Before proving Theorem 26, we shall see how it implies Theorem 2 (c). Since η(MZ ,MH , τ) is

positive,1 the second term in Equation (10.1) is negative, and so for 0 < 1 − M2
W

eb << 1, EWS
Ω is less

than the vacuum energy 1
2b

2|Ω|. This proves Theorem 2 (c).

Proof. Let E ′(ws, as, zs, ψs + ξs; r) := 1
|Ω′|EΩ′(ws, as, zs, ψs + ξs; r), where EΩ′ is the rescaled WS energy

given in (4.8). In Appendix H, we derive the following expansion of E ′ evaluated at family (9.9) of

solutions, up to order s4:

1See the discussion following Theorem 21 for details.
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E ′(ws, as, zs, ψs + ξs; r) =
1

2

n2

e2
+ s4 1

|Ω′|

∫
Ω′

1

2
| curl z′|2

+
1

2
| curl a′|2 + g

√
2n(ψ′ + ξ′)|χ|2 +

n

2 cos2 θ
|z′|2

+|∇ψ′|2 +
4λn

g2
ψ′2 − |χ|2 curl ν′ +

g2

2
|χ|4

+Rε(s), (10.3)

where Rε(s) = O(|s|6) and has continuous derivatives of all orders, ν′ := g(a′ sin θ+ z′ cos θ) and, recall,

ξs =
√

2µs/g.

To simplify notation, in what follows, we shall suppress the arguments (ws, as, zs, ψs + ξs; r) of E ′.
We claim the following relation:

E ′ =
1

2

n2

e2
− s4 g

2

2
〈|χ|2〉2η′−1 +Rε(s), (10.4)

where, recall, η′ = η′(mz,mh; τ, r) :=
[
m2
wα(mz,mh, τ)+sin2 θ

]−1
and α′(mz,mh; τ, r) is given in (9.19).

Proof of (10.4). We simplify the integral at order s4 in (10.3) by applying equations (9.11) for a′, z′ and

ψ′ to convenient groupings of terms.

First, we address the z′ terms. Integrating by parts and factoring out z′ gives

1

|Ω′|

∫
Ω′

1

2
| curl z′|2 +

n

cos2 θ
|z′|2 =

1

|Ω′|

∫
Ω′

1

2
z′ · (−∆ +

n

cos2 θ
)z′. (10.5)

Applying (9.11) for z′ gives

1

|Ω′|

∫
Ω′

1

2
| curl z′|2 +

n

cos2 θ
|z′|2 =

1

|Ω′|

∫
Ω′

1

2
z′ · g cos θ curl∗ |χ|2. (10.6)

Integrating by parts again gives

1

|Ω′|

∫
Ω′

1

2
| curl z′|2 +

n

cos2 θ
|z′|2 =

1

|Ω′|

∫
Ω′

1

2
g cos θ(curl z′)|χ|2. (10.7)

Next, we address the a′ term. Integrating by parts gives

1

|Ω′|

∫
Ω′

1

2
| curl a′|2 =

1

|Ω′|

∫
Ω′

1

2
a′ · (−∆)a′. (10.8)

Applying (9.11) for a′ gives

1

|Ω′|

∫
Ω′

1

2
| curl a′|2 =

1

|Ω′|

∫
Ω′

1

2
a′ · e curl∗ |χ|2. (10.9)

Integrating by parts again gives

1

|Ω′|

∫
Ω′

1

2
| curl a′|2 =

1

|Ω′|

∫
Ω′

1

2
g sin θ(curl a′)|χ|2. (10.10)
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Next, we address the ψ′ terms. Integrating by parts and factoring out ψ′ gives

1

|Ω′|

∫
Ω′
|∇ψ′|2 +

4λn

g2
ψ′2 + g

√
2nψ′|χ|2

=
1

|Ω′|

∫
Ω′
ψ′(−∆ +

4λn

g2
+ g
√

2n|χ|2)ψ′. (10.11)

Applying (9.11) for ψ′ gives

1

|Ω′|

∫
Ω′
|∇ψ′|2 +

4λn

g2
ψ′2 + g

√
2nψ′|χ|2 =

1

|Ω′|

∫
Ω′

g

2

√
2nψ′|χ|2. (10.12)

The ξ′ term is addressed by (9.14).

Finally, there are two remaining terms of the integral at order s4 in (10.3), which we will not presently

simplify:

1

|Ω′|

∫
Ω′
−|χ|2 curl ν′ +

g2

2
|χ|4. (10.13)

Adding equations (9.14), (10.7), (10.10), (10.12) and (10.13) gives

E ′ =
1

2

n2

e2
+ s4 1

|Ω′|

∫
Ω′

1

2
g
√

2nψ′|χ|2 − 1

2
curl ν′|χ|2 +

1

2
g2|χ|4. (10.14)

Equations (9.12) and (9.13) imply that

curl ν′ = g2|χ|2 − eg sin θ〈|χ|2〉 − g2m2
z cos2 θ Umz (|χ|2). (10.15)

Recall that e = g sin θ and m2
w = m2

z cos2 θ = n. Plugging Equation (10.15) for curl ν′ and (9.12) for ψ′

into (10.14) gives Equation (10.4), as required.

Plugging (9.24) into (10.4) gives

E ′ =
1

2

n2

e2
−1

2

n2

g2
[1− M2

W

eb
]2η′(mz,mh; τ, r) + R̃ε(1−

M2
W

eb
), (10.16)

where R̃ε(λ) has continuous derivatives of all orders and satisfies R̃ε(λ) = O(|s|3).

To compute the WS energy (3.10), evaluated at (Wb, Ab, Zb, ϕb), we recall that EWS
Ω = 1

r2 EΩ′ , which

implies

1

|Ω|
EWS

Ω =
|Ω′|
r2|Ω|

E ′ =
e2b2

n2
E ′, r =

√
|Ω|
|Ω′|

=

√
n

eb
. (10.17)

Equation (10.1) follows by plugging (10.16) and (9.25) into (10.17). Since the remainder terms R̃s, Rα

and R̃ε (of (9.24), (9.25) and (10.16), respectively) have continuous derivatives of all orders, so does the

remainder term RE .



Chapter 11

Shape of lattice solutions

In this section we shall prove Theorem 3. Recall the shape parameter τ described in the paragraph

preceding (2.17). We return briefly to working with the rescaled fields to prove that EΩ′(u; r) (and hence

EWS
Ω (U)), given in (4.8), is continuously differentiable of all orders in the shape parameter τ (restricted

to domain (2.17)), which enters through Ω′ and Ω, as well as the spaces containing u and U . Below, we

write

uτ,b(x) ≡ (wτ,b(x), aτ,b(x), zτ,b(x), φτ,b(x)), (11.1)

E(τ, b, u) ≡ EΩ′(u; r), (11.2)

Uτ,b(x) ≡ (Wτ,b(x), Aτ,b(x), Zτ,b(x), ϕτ,b(x)), (11.3)

E(τ, b, U) ≡ EWS
Ω (U), (11.4)

Xτ ≡ X , (11.5)

to emphasize the dependence of the family of solutions (9.9), the corresponding energy (4.8) (respectively

(3.10)) and the space (5.12) containing these solutions on the shape parameter τ , the magnetic field

strength b and the position in space x ∈ R2. Also, recall the notation r :=
√
n/eb.

To get rid of the dependency of the space Xτ containing uτ,b, on the shape parameter τ , we make

the change of coordinates y = m−1
τ x with mτ = 1√

Im(τ)

(
1 Re(τ)

0 Im(τ)

)
. This defines a function

Mτ : Xτ → X1,

(Mτu)(x) = u(mτx), (11.6)

that is linear in u (this change of coordinates transforms Ω′ into a square of area 2π). This in turn allows

us to define the following functions on the fixed space X1:

G′ : C× R×X1 → C× R× Y1

G′(τ, b, v) = MτG(b,M−1
τ v), (11.7)

41
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and

Σ : C× R×X1 → C× R× Y1

Σ(τ, b, v) = MτεWS(b,M−1
τ v), (11.8)

where, recall, G(b, v) is the map given by the left-hand side of (4.3) - (4.6), given explicitly in (5.1), and

εWS(b, u) := εWS(u; r) is the rescaled energy density given by the integrand in (4.8) (εWS depends on

the magnetic field strength b but does not directly depend on the shape parameter τ).

Lemma 27. G′(τ, b, v) and Σ(τ, b, v) are continuously differentiable of all orders in Re(τ), Im(τ), b and

v.

Proof. Since G(b, u) and εWS(b, u) have continuous b and u derivatives of all orders, and Mτ is a linear

map independent of b and v, it follows that G′(τ, b, v) and Σ(τ, b, v) have continuous b- and v-derivatives

of all orders.

For the τ -derivatives, note that

Mτ ◦ ∂x1
◦M−1

τ (vj)(x) =
1√

Im(τ)
∂x1

vj(x), j = 1, ..., 4, (11.9)

and

Mτ◦∂x2
◦M−1

τ (vj)(x)

=
1√

Im(τ)
(Re(τ)∂x1vj(x) + Im(τ)∂x2vj(x)), j = 1, ..., 4, (11.10)

are continuously differentiable of all orders in Re(τ) and Im(τ). Since G(b, u) and εWS(b, u) are poly-

nomials in the components of u and their (covariant) derivatives, G′ and Σ are simply G and εWS with

the coefficients of the derivative-containing terms multiplied by smooth functions of Re(τ) and Im(τ).

Therefore G′(τ, b, v) and Σ(τ, b, v) have continuous Re(τ)- and Im(τ)-derivatives of all orders.

Lemma 28. vτ,b := Mτuτ,b is continuously differentiable of all orders in Re(τ) and Im(τ).

Proof. Let τ0 be an arbitrary shape parameter, and recall that δ# denotes the partial (real) Gâteaux

derivative with respect to #. Then G′(τ0, b, vτ0,b) =

Mτ0G(b, uτ0,b) = 0, δvG(τ0, b, vτ0,b) = Mτ0 ◦ δuG(b, uτ0,b) ◦M−1
τ0 is invertible, and by Lemma 27, G′ is

continuously differentiable of all orders in τ , b and v. Therefore, by the Implicit Function Theorem, the

unique solution vτ,b to the equation G(τ, b, v) = 0 is continuously differentiable of all orders in Re(τ)

and Im(τ) near (Re(τ), Im(τ)) = (Re(τ0), Im(τ0)). Since τ0 was arbitrary, this proves the result.

Proposition 29. E(τ, b, Uτ,b) is continuously differentiable of all orders in Re(τ) and Im(τ).

Proof. To get rid of the dependency of E(τ, b, uτ,b) on the domain of integration Ω′, we again make the

change of coordinates y = m−1
τ x. Then

E(τ, b, uτ,b) =

∫
Ω′
εWS(b, uτ,b)(x) d2x

=

∫ √2π

0

∫ √2π

0

Σ(τ, b, vτ,b)(y)d2y. (11.11)
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By Lemma 28, vτ,b has continuous Re(τ)- and Im(τ)-derivatives of all orders, and by Lemma 27, Σ

has continuous derivatives of all orders mapping C × R × X1 to C × R × Y1. In particular, the Re(τ)-

and Im(τ)-derivatives of Σ(τ, b, vτ,b) remain integrable, so we conclude that E(τ, b, uτ,b) (and hence

E(τ, b, Uτ,b)) is continuously differentiable of all orders in Re(τ) and Im(τ).

Theorem 30. When MZ < MH , the minimizers τb of EWS(τ, b, Uτ,b) are related to the maximizers τ∗

of η(MZ ,MH ; τ) as τb − τ∗ = O(|1− M2
W

eb |
1
2 ). In particular, τb → τ∗ as b→ b∗ = M2

W /e.

Proof. By Theorem 26, the minimizers of E(τ, b, Uτ,b) are equivalent to the minimizers of the energy

functional

Ẽ(τ, Uτ,b) := [1− M2
W

eb
]−2(E(τ, b, Uτ,b)−

1

2
b2)

= −1

2
b2 sin2 θ η(MZ ,MH ; τ) +O(|1− M2

W

eb
|).

Since ∂τ Ẽ(τ, Uτ,b)|τ=τb = 0, we have the expansion

Ẽ(τ∗, Uτ∗,b)− Ẽ(τb, Uτb,b) =
1

2
∂2
τ Ẽ(τ, Uτ,b)|τ=τb [τ∗ − τb]2 +O([τ∗ − τb]3)

=− 1

4
b2 sin2 θ (∂2

τη)|(MZ ,MH ,τb) [τ∗ − τb]2

+O([τ∗ − τb]3) +O(|1− M2
W

eb
|). (11.12)

For both expansions to hold, we must have τb − τ∗ = O(|1− M2
W

eb |
1
2 ), as required.

The maximizer of η(MZ ,MH ; τ), defined in (9.4), was found numerically in [23] (cf. [26, 3]):

Theorem 31 ([23]). When MZ < MH , η(MZ ,MH ; τ) has a maximum at τ∗ = eiπ/3.

Theorem 3 follows from Theorems 30 and 31.



Appendix A

Covariant derivatives and curvature

In this appendix, we briefly review some basic definitions from gauge theory. In what follows, we use

the Einstein summation convention of summing over repeated indices.

Let V be an inner product vector space, G a Lie group acting transitively on V via a unitary

representation ρ : g 7→ ρg, and let g be the Lie algebra of G acting on V via the representation

ρ̃ : A 7→ ρ̃A induced by ρ.

To simplify notation below, we take V = Cm and G a matrix group, acting on V by matrix rules

(and similarly for g) and write ρgΨ = gΨ and ρ̃AΨ = AΨ. Moreover, we assume that G is either U(m)

or a Lie subgroup of U(m).

Let M be an open subset in a finite-dimensional vector space, with local coordinates {xi}, and let

∂i ≡ ∂xi .
For a g-valued connection (one-form) A ≡ Aidxi on M , we define the covariant derivatives:

- ∇A, mapping functions (sections), Ψ : M → V , into g-valued one-forms, as

∇AΨ := dΨ +AΨ ≡ (∂iΨ +AiΨ)dxi; (A.1)

- dA, mapping g-valued functions f into g-valued one-forms

dAf := df + [A, f ] ≡ (∂if + [Ai, f ])dxi; (A.2)

- dA, mapping g-valued one-forms into g-valued two-forms

dAB := dB + [A,B], (A.3)

with [A,B] defined in local coordinates {xi} as

[A,B] := [Ai, Bj ]dx
i ∧ dxj ≡ [B,A], (A.4)

for A = Aidx
i and B = Bjdx

j .1

1More generally, if A is a g−valued p−form and B is a g−valued q−form, written as A = Aa ⊗ γa and B = Bb ⊗ γb,
where Aa and Bb are p− and q−forms and {γa} is a basis in g, then

[A,B] := (Aa ∧Bb)⊗ [γa, γb] = (−1)pq+1[B,A]. (A.5)
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The curvature form of the connection A is the g-valued two-form given by the formula

FA = dA+
1

2
[A,A]. (A.6)

It is related to the curvature operator (denoted by the same symbol) FA := dA ◦ dA. As a simple

computation shows, this operator is a matrix-multiplication operator given by the matrix-valued 2-form

(A.6).

Let U be a vector space (V or g in our case) and let ΩpU ≡ U ⊗ Ωp denote the space of U -valued

p-forms. On ΩpU , one defined the inner product, 〈·, ·〉ΩpU as

〈A,B〉ΩpU := 〈Aα, Bα〉U , (A.7)

where A = Aαdx
α and Bαdx

α are U -valued p-forms, α is an p-index and 〈·, ·〉U is the inner product on

U .

Above, we did not display the coupling constants. Doing so would change the covariant derivative

to dAΨ = (d+ gA)Ψ, if G is simple. If G is not simple, then each simple and U(1) component of G gets

its own coupling constant, as was done in the main text for G = SU(2)× U(1).



Appendix B

The time-dependent

Yang-Mills-Higgs system

In this appendix, we briefly review the Yang-Mills-Higgs theory, including the derivation of the energy

functional (2.1). In what follows, we use the Einstein summation convention of summing over repeated

indices. Furthermore, we use the convention of raising or lowering an index by contracting a tensor T

with the metric tensor:

Tαi,β = ηijT
j,α
β (B.1)

where η is the Minkowski metric of signature (+,−, ...,−) on M ⊂ Rd+1 and α, β are multi-indices.

Lagrangian. Let M = Ω × [0, T ] ⊂ Rd+1 be spacetime equipped with the Minkowski metric η of

signature (+,−, ...,−) and V and G be as in Appendix A. The theory involves a Higgs field Ψ : M → V

interacting with the gauge field A, a connection (one-form) on M with values in the algebra g. The

dynamics are given by the Lagrangian

L(Ψ, A) :=

∫
Ω

〈∇AΨ,∇AΨ〉Ω1
V
− U(Ψ) + 〈FA, FA〉Ω2

g
, (B.2)

with corresponding action S :=
∫ T

0
L(Ψ, A)dt, T > 0, given explicitly by

S(Ψ, A) =

∫
M

〈∇AΨ,∇AΨ〉Ω1
V
− U(Ψ) + 〈FA, FA〉Ω2

g
, (B.3)

where U : V → R+ is a self-interaction potential, which is assumed to be gauge invariant: U(ρgΨ) =

U(Ψ) (a typical example of U(Ψ) is U(Ψ) = 1
2λ(1−‖Ψ‖2)2). For convenience, we assume that Ψ and A

are T -periodic in t.
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Euler-Lagrange equations. The Euler-Lagrange equations (called Yang-Mills-Higgs equations) for

the fields Ψ and A are

∇∗A∇AΨ = U ′(Ψ), (B.4)

d∗AFA = J(Ψ, A), (B.5)

where ∇∗A and d∗A are the adjoints of ∇A and dA in the appropriate inner products and J(Ψ, A) is the

YMH current given by

J(Ψ, A) := Re〈γaΨ,∇Ψ〉V γa (B.6)

= Re〈γaΨ,∇iΨ〉V γa ⊗ dxi, (B.7)

where γa is an orthonormal basis of g and ∇i := ∂i+Ai, so that ∇AΨ = ∇iΨdxi. (B.5) is the Yang-Mills

equation.

Proof of (B.4) - (B.5). We assume periodic or Dirichlet boundary conditions and calculate the Gâteaux

derivatives formally.

Recall that δ# denotes the partial (real) Gâteaux derivative with respect to #. First we calculate

the (complex) Gâteaux derivative of (B.3) in the Ψ-direction. Define ∂z ≡ 1
2 (∂Re z − i∂Im z) and δΨ ≡

1
2 (δRe Ψ − iδIm Ψ). Then δΨS(Ψ, A)Ψ′ = ∂zS(Ψz, A)|z=0, where Ψz = Ψ + zΨ′, z ∈ C. Using this, we

find

δΨS(Ψ, A)Ψ′ =

∫
M

〈∇AΨ,∇AΨ′〉Ω1
V
− 〈U ′(Ψ),Ψ′〉V . (B.8)

Integrating the first term by parts and factoring out Ψ′ gives

δΨS(Ψ, A)Ψ′ =

∫
M

〈∇∗A∇AΨ− U ′(Ψ),Ψ′〉V . (B.9)

For this derivative to be zero for every variation Ψ′, (B.4) must hold.

Next we calculate the Gâteaux derivative of (B.3) in the A-direction. Using the definition δAf(A)B =

∂sf(As)|s=0, where As = A+ sA′, s ∈ R, we find

δAS(Ψ, A)B =

∫
M

〈BΨ,∇AΨ〉Ω1
V

+ c.c.+ 2〈dAB,FA〉Ω2
g

(B.10)

= I + II. (B.11)

Writing B = Baγa = Bai dx
i ⊗ γa (with Bai real) and ∇AΨ = ∇iΨdxi, so that

〈BΨ,∇AΨ〉Ω1
V

= 〈Ba, 〈γaΨ,∇iΨ〉V dxi〉Ω1 , (B.12)

and using that BaCa = −Tr[(Bcγc)(C
aγa)] (since Tr(γ∗c γa) = −Tr(γcγa) = δca), gives

I = −
∫
M

〈B, 〈γaΨ,∇iΨ〉V γa ⊗ dxi〉Ω1
g

+ c.c.. (B.13)

which gives I =
∫
M
〈B, J(Ψ, A)〉Ω1

g
. For the second term in (B.10), integrating the last term by parts
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yields II =
∫
M
〈B, d∗AFA〉Ω1

g
. Collecting the last two equations gives

δAS(Ψ, A)B = 2

∫
M

〈B,−J(Ψ, A) + d∗AFA〉Ω1
g
. (B.14)

For this derivative to be zero for every variation B, (B.5) must hold.

Conserved energy. Again, the Gâteaux derivative calculations in the following subsection are formal.

Recall that M := Ω× [0, T ] ⊂ Rd+1.

Proposition 32. The Legendre transform of (B.2) yields the conserved energy

E(Ψ, A) :=

∫
Ω

‖∇AΨ‖2Ω1
V

+ U(Ψ) + ‖FA‖2Ω2
g
, (B.15)

where the norms are taken using the Euclidean metric on Rd+1 (rather than the Minkowski metric).

Note that for static (time-indepent) fields, E(Ψ, A) = −L(Ψ, A).

Proof. Let ∂# denote the partial derivative with respect to the symbol #, and recall that δ# denotes

the partial (real) Gâteaux derivative with respect to #. The Legendre transform of (B.2) is given by

E(Ψ, A) = ∂∇0ΨL(Ψ, A)∇0Ψ + ∂∇0ΨL(Ψ, A)∇0Ψ

+

d∑
i=1

∂F0i
L(Ψ, A)F0i − L(Ψ, A). (B.16)

We calculate

∂∇0ΨL(Ψ, A)∇0Ψ =

∫
Ω

‖∇0Ψ‖2V = ∂∇0ΨL(Ψ, A)∇0Ψ (B.17)

and

d∑
i=1

∂F0i
L(Ψ, A)F0i = 2

d∑
i=1

|F0i|2. (B.18)

(B.15) results.

It remains to show that (B.15) is conserved by the YMH equations (B.4) - (B.5). Applying the chain

rule gives

d

dt
E(Ψ, A) = δΨE(Ψ, A)∂0Ψ + δΨE(Ψ, A)∂0Ψ + δAE(Ψ, A)∂0A. (B.19)

We now calculate the first term using (B.4).

δΨE(Ψ, A)∂0Ψ =

∫
Ω

〈∇0Ψ,∇0∂0Ψ〉V +

d∑
k=1

〈∇kΨ,∇k∂0Ψ〉V

+〈U ′(Ψ), ∂0Ψ〉V . (B.20)
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Integrating the second term by parts gives

δΨE(Ψ, A)∂0Ψ =

∫
Ω

〈∇0Ψ,∇0∂0Ψ〉V +

d∑
k=1

〈∇∗k∇kΨ, ∂0Ψ〉V

+〈U ′(Ψ), ∂0Ψ〉V . (B.21)

By (B.4), we have

∇∗0∇0Ψ−
d∑
k=1

∇∗k∇kΨ = U ′(Ψ), (B.22)

so (B.21) becomes

δΨE(Ψ, A)∂0Ψ =

∫
Ω

〈∇0Ψ,∇0∂0Ψ〉V + 〈∇∗0∇0Ψ, ∂0Ψ〉V . (B.23)

Here ∇∗0 = −∂0 + A†0 = −∂0 − A0, where the second equality follows because the representation of g is

unitary. Therefore,

δΨE(Ψ, A)∂0Ψ =

∫
Ω

〈(∂0 +A0)Ψ, (∂0 +A0)∂0Ψ〉V

+ 〈(−∂0 −A0)(∂0 +A0)Ψ, ∂0Ψ〉V

=

∫
Ω

∂0〈Ψ, A0∂0Ψ〉V . (B.24)

Similarly,

δΨE(Ψ, A)∂0Ψ =

∫
Ω

∂0〈A0∂0Ψ,Ψ〉V , (B.25)

and so

δΨE(Ψ, A)∂0Ψ + δΨE(Ψ, A)∂0Ψ =

∫
Ω

∂0J0(Ψ, A), (B.26)

where J0(Ψ, A) is the time component of the YMH current (B.6).

One may show using (B.5) that

δAE(Ψ, A)∂0A = −
∫

Ω

∂0J0(Ψ, A). (B.27)

Hence, by (B.19) we have d
dtE(Ψ, A) = 0, as required.

Gauge symmetries. We define the local action, ρgA, of the group G on A, by the equation dρgA =

gdAg
−1, for all g ∈ C1(N,G), where N is either M or Ω. We compute

ρgA = gAg−1 + gdg−1. (B.28)
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Proposition 33. The Lagrangian (B.2) is invariant under the Poincaré group and the gauge transfor-

mations

T gaugeg : (Ψ, A) 7→ (gΨ, ρgA), ∀g ∈ C1(M,G). (B.29)

Proof. The invariance under the Poincaré group follows easily from the definition of this group and the

choice of the Minkowski metric on M ⊂ Rd+1.

Recall that U(Ψ) is g-invariant, and that the representations g 7→ ρg (on V ) and the adjoint repre-

sentation g 7→ adg (on g) are unitary. Therefore, to prove invariance under the gauge transformation

(B.29), it suffices therefore to show that

∇ρgAgΨ = g∇AΨ, (B.30)

FρgA = gFAg
−1. (B.31)

We shall use the equation

hdh−1 = −dhh−1, ∀h ∈ G (B.32)

which follows from d(hh−1) = 0. For (B.30) we compute

∇ρgAgΨ = d(gΨ) + (gAg−1 + gdg−1)(gΨ) (B.33)

= (dg)Ψ + gdΨ + gAΨ + gdg−1gΨ. (B.34)

Since gdg−1g = −gg−1dg = −dg, this gives ∇ρgAgΨ = g∇AΨ.

For (B.31), computing in coordinates {xi} and writting FρgA := (FρgA)ijdx
i ∧ dxj and FA :=

(FA)ijdx
i ∧ dxj , we find

(FρgA)ij =
1

2
[∂i(gAjg

−1 + g∂jg
−1)− ∂j(gAig−1 + g∂ig

−1)]

+
1

2
[gAig

−1 + g∂ig
−1, gAjg

−1 + g∂jg
−1]. (B.35)

Expanding the partial derivative and commutators gives

(FρgA)ij =
1

2
[∂igAjg

−1 + g∂iAg
−1 + gAj∂ig

−1 + ∂ig∂jg
−1 + g∂i∂jg

−1

+ (gAig
−1 + ∂igg

−1)(gAjg
−1 + g∂jg

−1)

− (i↔ j)]. (B.36)

Expanding the product on the second line gives

(FρgA)ij =
1

2
[∂igAjg

−1 + g∂iAg
−1 + gAj∂ig

−1 + ∂ig∂jg
−1 + g∂i∂jg

−1

+ gAiAjg
−1 + ∂igAjg

−1 + gAi∂jg
−1 + ∂ig∂jg

−1

− (i↔ j)]. (B.37)
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Cancelling terms symmetrical in i and j and simplifying gives

(FρgA)ij = g(
1

2
[∂iAj − ∂jAi] +

1

2
[AiAj −AjAi])g−1 (B.38)

= g(FA)ijg
−1, (B.39)

as required.

Specifying (B.15) to the WS model gives (2.1).



Appendix C

The YMH equations in coordinate

form

In what follows, we use the Einstein summation convention of summing over repeated indices. Further-

more, we use the convention of raising or lowering an index by contracting a tensor T with the metric

tensor:

Tαi,β = ηijT
j,α
β (C.1)

where η is the Minkowski metric of signature (+,−, ...,−) on Rd+1 and α, β are multi-indices. The same

equations could be reinterpreted as stationary equations by taking the Euclidean metric δij, instead of

ηij, and letting the indices range over 1, . . . , d, rather than 1, . . . , d+ 1. In this case, Tαi,β = T i,αβ .

As above, Ω is either a bounded domain in Rd or Rd+1. In the former case, we assume either periodic

or Dirichlet boundary conditions.

In coordinate form, the differential form (gauge field) entering the YMH Lagrangian (B.2) is written

as A = Aidx
i. The local coordinate expression for the curvature is FA = Fijdx

i ∧ dxj , where Fij :=
1
2 (∂iAj − ∂jAi) + 1

2 [Ai, Aj ]. Furthermore, for the covariant derivatives ∇A and dA, we have ∇AΨ =

∇iΨdxi and d∗AFA = −∇iFijdxj , where ∇iΨ := (∂i +Ai)Ψ and ∇iFij := ∂iFij + [Ai, Fij ].

For an arbitrary g-valued one-form B = Bidx
i, we have dAB = ∇iBjdxi ∧ dxj and d∗AB = −∇iBi,

where

∇iBj := ∂iBj + [Ai, Bj ]. (C.2)

We write Fij = F aijγa for an orthonormal basis γa of g and the lower case roman indices run over the

spatial components 1, 2, . . . , d. Note that Fij = [∇i,∇j ], but Fij 6= 1
2 (∇iAj −∇jAi).

Proposition 34. The Lagrangian and energy for the YMH model are given in coordinates by

L(Ψ, A) =

∫
Ω

〈∇kΨ,∇kΨ〉V − U(Ψ) +
1

2
F aijF

a,ij , (C.3)

EΩ(Ψ, A) =

∫
Ω

〈∇kΨ,∇kΨ〉V + U(Ψ) +
1

2
F aijF

a
ij (C.4)
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(with different ranges of indices as mentioned above). The YMH equations are given in coordinates by

−∇i∇iΨ = U ′(Ψ), (C.5)

−∇iFij = Re〈γaΨ,∇jΨ〉V γa. (C.6)

Proof. Equations (C.3) and (C.4) follow from the coordinate expressions dAΨ = ∇kΨdxk and FA =

F aijγa⊗ dxi ∧ dxj , together with the fact that dxk and γa⊗ dxi ∧ dxj form orthonormal bases for Ω1 and

Ω2
g, respectively.

Equations (C.5) - (C.6) follow from equations (B.4) - (B.6) and the coordinate expressions for dA

and d∗A above.

We specify equation (C.3) - (C.6) for to the Weinberg-Salam (WS) model, which has the gauge group

G = U(2) = SU(2) × U(1). In this case, there is a slight discrepancy in the definition of the covariant

derivative due to the fact that U(2) is not simple, but a (semi-)direct product of the simple group SU(2)

and U(1), with each component having a coupling constant. We choose the standard inner product

〈γ, δ〉u(2) := 2 Tr γ∗δ = −2 Tr γδ (C.7)

on u(2), for which − i
2τa, a = 0, 1, 2, 3, (where τa, a = 1, 2, 3, are the the Pauli matrices together with

τ0 := 1) form an orthonormal basis. It is customary to factor out the coefficient of − i
2 . In coordinates,

we write

∇QΦ = ∇iΦdxi, Q = − i
2
Qidx

i and FQ = − i
2
Qijdx

i ∧ dxj , (C.8)

with Qi(x), Qij(x) ∈ iu(2). Using equation (2.3), we compute Qij = 1
2 (∂iQj − ∂jQi) − i

4 [Qi, Qj ].

Furthermore, we write Q = V +X and

V = − i
2
Vidx

i and X = − i
2
Xidx

i, (C.9)

with Vi(x) ∈ isu(2) and Xi(x) ∈ iu(1). Then Qij = Vij +Xij and

∇iΦ := (∂i −
ig

2
Vi −

ig′

2
Xi)Φ, (C.10)

Vij :=
1

2
(∂iVj − ∂jVi)−

ig

4
[Vi, Vj ], (C.11)

Xij :=
1

2
(∂iXj − ∂jXi). (C.12)

Using the formulae above, we express the Lagrangian and the energy in coordinates as

L(Φ, Q) :=

∫
Ω

〈∇iΦ,∇iΦ〉C2 − U(Φ) +
1

2
TrQijQ

ij , (C.13)

E(Φ, Q) :=

∫
Ω

〈∇iΦ,∇iΦ〉C2 + U(Φ) +
1

2
TrQijQij , (C.14)

(with indices ranging from 0 to d and 1 to d, respectively, as mentioned above), and the Euler-Lagrange
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equations are written in coordinates as

−∇i∇iΦ = U ′(Φ), (C.15)

∇iQij =
1

2
g Im〈τaΦ,∇jΦ〉C2τa +

1

2
g′ Im〈τ0Φ,∇jΦ〉C2τ0. (C.16)

In Section 3, we expressed equations (C.14) - (C.16) in their standard form (D.1) - (3.15), involving

the W , Z, Higgs and electromagnetic fields defined therein.



Appendix D

The Weinberg-Salam energy in 3D

in terms of the fields W , A, Z and ϕ

We work in a fixed coordinate system, {xi}3i=1 and write the fields as W = Widx
i, Z = − i

2Zidx
i and

A = − i
2Aidx

i. We show

Lemma 35. Energy (2.1), written in terms of the fields W,A,Z and ϕ and coordinates {xi}3i=1, is given

by (see also [35]):

EWS
Ω (W,A,Z, ϕ) :=

∫
Ω

[∑
ij

(
1

2
|Wij |2 +

1

4
|Zij |2 +

1

4
|Aij |2)

+
1

2
g2ϕ2|W |2 +

1

4 cos2 θ
g2ϕ2|Z|2 + T (W,A,Z)

+ |∇ϕ|2 +
1

2
λ(ϕ2 − ϕ2

0)2
]
, (D.1)

where Wij := ∇iWj − ∇jWi, with ∇k := ∂k − igV 3
k , Zij := ∂iZj − ∂jZi, Aij := ∂iAj − ∂jAi and

T (W,A,Z) is the sum of super-quadratic terms,

T (W,A,Z) :=
g2

2

∑
ij

(|WiWj |2 −W 2
i W

2

j )− ig
∑
ij

V 3
ijWiW j , (D.2)

where V 3 := Z cos θ + A sin θ and V 3
ij := ∂iVj − ∂jVi, with the important property that T (W,A,Z) is

invariant under the gauge transformation (3.7).

Proof of (D.1). We proceed by rewriting the terms in the coordinate expression of the WS energy (C.14),

in terms of the fields W = Widx
i, Z = − i

2Zidx
i, A = − i

2Aidx
i and ϕ.

For the first term, first we calculate ∇iΦ. Recall the definition ∇iΦ := (∂i − ig
2 Vi −

ig′

2 Xi)Φ. We
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simplify the matrix representing the connection’s action on Φ:

− ig
2
Vi −

ig′

2
Xi = − ig

2
V ai τa −

ig′

2
Xiτ0

= − ig
2

(
0 V 1

i

V 1
i 0

)
− ig

2

(
0 −iV 2

i

iV 2
i 0

)

− ig

2

(
V 3
i 0

0 −V 3
i

)
− ig

2
tan θ

(
Xi 0

0 Xi

)

= − ig

2 cos θ

(
V 3
i cos θ +Xi sin θ V 1

i cos θ − iV 2
i cos θ

V 1
i cos θ + iV 2

i cos θ −V 3
i cos θ +Xi sin θ

)
. (D.3)

In terms of the fields Z, A and W (see equations (3.5) - (3.6) for the definitions of these fields), (D.3)

becomes

− ig
2
Vi −

ig′

2
Xi = − ig

2 cos θ

(
Zi cos 2θ +Ai sin 2θ

√
2 Wi cos θ√

2 W i cos θ −Zi

)
. (D.4)

Hence, for Φ = (0, ϕ),

∇iΦ =

(
− ig√

2
Wiϕ

∂iϕ+ ig
2 cos θZiϕ

)
. (D.5)

Therefore, the first term of (C.14), written in terms of the fields W,A,Z and ϕ, becomes

〈∇iΦ,∇iΦ〉C2 =
ig√

2
Wi

ig√
2
W i

+ (∂iϕ+
ig

2 cos θ
Ziϕ)(∂iϕ+

ig

2 cos θ
Ziϕ)

=
g2

2
ϕ2|W |2 + |∇ϕ|2 +

g2

4 cos2 θ
ϕ2|Z|2. (D.6)

The second term of (C.14) becomes

U(Φ) =
1

2
λ(‖Φ‖2 − ϕ2

0)2 =
1

2
λ(ϕ2 − ϕ2

0)2. (D.7)

For the third term of (C.14), we will use the fact that TrQijQ
ij = TrVijV

ij + TrXijX
ij , where

Uij :=
1

2
(∂iUj − ∂jUi)−

ig

4
[Ui, Uj ] (D.8)

with

Vi := V ai τa =

(
V 3
i

√
2 Wi√

2 W i −V 3
i

)
, (D.9)

and

Xij :=
1

2
(∂iXj − ∂jXi). (D.10)
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To simplify (D.8), we use (D.9), let Uij := ∂iUj − ∂jUi, and recall V 3
ij = ∂iV

3
j − ∂jV

3
i and W 0

ij =

∂iWj − ∂jWi, to calculate

1

2
Vij =

1

2

(
V 3
ij

√
2 Wij√

2 W
0

ji −V 3
ij

)
, (D.11)

and, with Kij := V 3
i Wi − V 3

j Wi,

− ig
4

[Vi, Vj ] = − ig
4

(
V 3
i

√
2 Wi√

2 W i −V 3
i

)(
V 3
j

√
2 Wj√

2 W j −V 3
j

)
− (i↔ j)

= − ig
4

(
V 3
i V

3
j + 2WiW j

√
2 Kij√

2 Kij −V 3
i V

3
j − 2WiW j

)
− (i↔ j)

= − ig
2

(
WiW j −W iWj

√
2 Kij√

2 Kji −WiW j +W iWj

)
. (D.12)

Adding (D.11) and (D.12), using that Wij = W 0
ij + Kij and denoting Lij := V 3

ij − ig(WiW j −W iWj)

gives

Uij =
1

2

(
Lij

√
2 Wij

−
√

2 W ij −Lij

)
. (D.13)

Since Uij and Xij are Hermitian, TrUijU
ij and TrXijX

ij are the sum of the squared absolute values

of the matrix coefficients of Uij and Xij , respectively. Thus

1

2
TrQijQ

ij =
1

2
TrUijU

ij +
1

2
TrXijX

ij

=
1

8

∑
ij

2|Lij |2 + 4|Wij |2 + 2|Xij |2. (D.14)

Using Lij = V 3
ij − ig(WiW j −W iWj) and expanding the first term gives

1

2
TrQijQ

ij =
∑
ij

1

2
|Wij |2 +

1

4
|V 3
ij |2 +

1

4
|Xij |2

+
g2

4

∑
ij

|WiW j −W iWj |2 −
ig

4

∑
ij

2V 3
ij(WiW j −W iWj). (D.15)

Recall that Aij = V 3
ij sin θ + Xij cos θ and Zij = V 3

ij cos θ −Xij sin θ. Writing the first line of (D.15) in

terms of these fields gives

1

2
TrQijQ

ij =
∑
ij

1

2
|Wij |2 +

1

4
|Zij |2 +

1

4
|Aij |2

+
g2

4

∑
ij

|WiW j −W iWj |2 −
ig

2

∑
ij

V 3
ij(WiW j −W iWj). (D.16)
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Expanding the first term of the second line, and using V 3
ij = −V 3

ij in the second term, (D.16) becomes

1

2
TrQijQ

ij =
∑
ij

1

2
|Wij |2 +

1

4
|Zij |2 +

1

4
|Aij |2

+
g2

4

∑
ij

(|Wi|2|W j |2 −W 2
i W

2

j + (i↔ j))

− ig

2

∑
ij

(V 3
ijWiW j + (i↔ j)). (D.17)

Recalling the definition (D.2) of T (W,A,Z) gives

1

2
TrQijQ

ij =
∑
ij

1

2
|Wij |2 +

1

4
|Aij |2 +

1

4
|Zij |2 + T (W,A,Z). (D.18)

Adding (D.6), (D.7) and (D.18) gives (D.1).
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The Weinberg-Salam equations in

2D in terms of the fields W , A, Z

and ϕ

Proof of (3.10). Now, we consider the Weinberg-Salam (WS) model in R2 with fields independent of

the third dimension x3, and correspondingly choose the gauge with V3 = X3 = 0 (and hence W3 = A3 =

Z3 = 0). In this case the summation in (D.1) contains only two terms, (ij) = (12) and (ij) = (21), and

we use this to simplify (D.1).

We proceed by simplifying the terms of (D.2) and the first line of (D.1); the remaining terms are

unchanged.

∑
ij

(
1

2
|Wij |2 +

1

4
|Zij |2+

1

4
|Aij |2) =

∑
i<j

(|Wij |2 +
1

2
|Zij |2 +

1

2
|Aij |2)

= | curlgV 3 W |2 +
1

2
| curlZ|2 +

1

2
| curlA|2; (E.1)

∑
ij

(|WiWj |2 −W 2
i W

2

j )

= W1W2W 1W 2 −W 2
1W

2

2 +W2W1W 2W 1 −W 2
2W

2

1

= (W 1W2 −W1W 2)(W 1W2 −W1W 2)

= |W ×W |2; (E.2)

−
∑
ij

V 3
ijWiW j =

∑
i<j

V 3
ij(−WiW j +WjW i)

= (curlV 3)W ×W. (E.3)

Replacing corresponding terms in (D.1) - (D.2) with (E.1) - (E.3) proves (3.10).

Proof of (3.12) - (3.15). We proceed by calculating the (complex) Gâteaux derivatives of (3.10).
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Let δ# denote the partial (real) Gâteaux derivative with respect to #. Let Wz = W + zW ′, z ∈ C,

and define ∂z ≡ 1
2 (∂Re z + i∂Im z) and δW ≡

1
2 (δReW + iδImW ). Then

δWE
WS
Ω (W,A,Z, ϕ)W ′ = ∂zE

WS
Ω (Wz, A, Z, ϕ)|z=0

=

∫
Ω

curlgV 3 W · curlgV 3 W ′ +
1

2
g2ϕ2W ·W ′

− ig(curlV 3)JW ·W ′ + g2(W ×W )JW ·W ′. (E.4)

Integrating the first term by parts and factoring out W and W
′

gives

δWE
WS
Ω (W,A,Z, ϕ)W ′ =

∫
Ω

[curl∗gV 3 curlgV 3 +
g2

2
ϕ2 − ig(curlV 3)J

+ g2(W ×W )J ]W ·W ′. (E.5)

For the derivative to be zero for every variation W ′, (3.12) must hold.

Let As = A+ sA′, s ∈ R. Then

δAE
WS
Ω (W,A,Z, ϕ)A′ = ∂sE

WS
Ω (W,As, Z, ϕ)|s=0

=

∫
Ω

curlgV 3 W (−ieA′ ×W ) + curlgV 3 W (−ieA′ ×W )

+ (curlA)(curlA′) + ie(curlA′)W ×W. (E.6)

Using A′ ×W = −JW ·A′ in the first two terms, and integrating the last two terms by parts, gives

δAE
WS
Ω (W,A,Z, ϕ)A′ =

∫
Ω

[−ie(curlgV 3 W )JW + ie(curlgV 3 W )JW

+ curl∗ curlA+ ie curl∗(W ×W )] ·A′, (E.7)

which simplifies to

δAE
WS
Ω (W,A,Z, ϕ)A′ =

∫
Ω

[curl∗ curlA+ 2e Im[(curlgV 3 W )JW

− curl∗(W 1W2)]] ·A′. (E.8)

For the derivative to be zero for every variation A′, (3.13) must hold.

The proof of (3.14) is essentially the same as the proof of (3.13), so we omit it.

Let ϕs = ϕ+ sϕ′, s ∈ R. Then

δϕE
WS
Ω (W,A,Z, ϕ)ϕ′ = ∂sE

WS
Ω (W,A,Z, ϕs)|s=0∫

Ω

g2ϕϕ′|W |2 +
g2

2 cos2 θ
ϕϕ′|Z|2

+ 2∇ϕ′ · ∇ϕ+ 2λ(ϕ2 − ϕ2
0)ϕϕ′

(E.9)
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Integrating the third term by parts and factoring out 2ϕ′ gives

=

∫
Ω

[
g2

2
|W |2 +

1

2
κ|Z|2

−∆ + λ(ϕ2 − ϕ2
0)]ϕ · 2ϕ′. (E.10)

For the derivative to be zero for every variation ϕ′, (3.15) must hold.



Appendix F

Proof of (9.14)

Proof of (9.14). To prove (9.14), we use the w-field Equation (4.3), and νs := g(as sin θ + zs cos θ), to

get ∫
Ω′
χ · [curl∗νs curlνs +

g2

2
(ψs + ξs)

2

− i(curl νs)J + g2(ws × ws)J ]ws = 0. (F.1)

We shall calculate each term of the integral (F.1) up to order s3 using Proposition 23 and the Taylor

expansions (9.9).

Integrating the first term of (F.1) by parts gives∫
Ω′
χ · curl∗νs curlνs ws =

∫
Ω′

curlνs χ · curlνs w. (F.2)

Plugging in the Taylor expansions (9.9) gives∫
Ω′
χ · curl∗νs curlνs ws =

∫
Ω′

[curlan χ+O(|s|2)]

·[s curlan χ− s3iν′w′ +O(|s|5)], (F.3)

where, recall, ν′ := g(a′ sin θ + z′ cos θ). Recall from Equation (5.21) that curlan χ = 0. Therefore,

applying Proposition 23 gives ∫
Ω′
χ · curl∗νs curlνs ws = O(|s|5). (F.4)

Plugging the Taylor expansions (9.9) into the second term of (F.1) gives∫
Ω′
χ · g

2

2
(ψs + ξs)

2ws =

∫
Ω′
χ · g

2

2
(

√
2n

g
+ s2(ψ′ + ξ′) +O(|s|4))2

× (sχ+O(|s|5)). (F.5)
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Expanding this product and applying Proposition 23 gives∫
Ω′
χ · g

2

2
(ψs + ξs)

2ws = s

∫
Ω′
n|χ|2 + s3

∫
Ω′
g
√

2n(ψ′ + ξ′)|χ|2

+ s3

∫
Ω′
nχ · w′ +O(|s|5). (F.6)

Recall that χ ∈ Null(H1(n)) and that w′ is orthogonal to Null H1(n). Therefore the third term vanishes:∫
Ω′
χ · g

2

2
(ψs + ξs)

2ws = s

∫
Ω′
n|χ|2 + s3

∫
Ω′
g
√

2n(ψ′ + ξ′)|χ|2

+O(|s|5). (F.7)

Plugging the Taylor expansions (9.9) into the third term of (F.1) gives∫
Ω′
χ · (−i(curl νs)Jws) =

∫
Ω′
χ · (−in− s2i(curl ν′) +O(|s|4))

× (sJχ+ s3Jw′ +O(|s|5)). (F.8)

Recall from Equation (5.21) that χ is of the form χ = (η, iη)T , so

χ · Jχ = −i|χ|2 and χ · Jw′ = −iχ · w′. Therefore (F.8) simplifies to∫
Ω′
χ · (−i(curl νs)Jws) =

∫
Ω′

(−in− s2i(curl ν′) +O(|s|4))

× (−si|χ|2 − s3iχ · w′ +O(|s|5)). (F.9)

Expanding this product and applying Proposition 23 gives∫
Ω′
χ · (−i(curl νs)Jws) = −s

∫
Ω′
n|χ|2 − s3

∫
Ω′

(curl ν′)|χ|2

− s3

∫
Ω′
nχ · w′ +O(|s|5). (F.10)

Recall that χ ∈ Null(H1(n)) and that w′ is orthogonal to Null H1(n). Therefore the third term vanishes:∫
Ω′
χ · (−i(curl νs)Jws) = −s

∫
Ω′
n|χ|2 − s3

∫
Ω′

(curl ν′)|χ|2

+O(|s|5). (F.11)

Using χ · Jws = −χ× ws, the fourth term of (F.1) becomes∫
Ω′
χ · (g2ws × ws)Jws =

∫
Ω′
−g2(χ× ws)× (ws × ws). (F.12)

Plugging in the Taylor expansions (9.9) gives∫
Ω′
χ · (g2ws × ws)Jws =

∫
Ω′
−g2(sχ× χ+O(|s|3))

× (s2χ× χ+O(|s|4)). (F.13)
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Recall from Equation (5.21) that χ is of the form χ = (η, iη)T , so χ×χ = i|χ|2. This fact and Proposition

23 gives ∫
Ω′
χ · (g2ws × ws)Jws = s3

∫
Ω′
g2|χ|4 +O(|s|5). (F.14)

The s3 terms of (F.4), (F.7), (F.11) and (F.14) must sum to 0, and so (9.14) results.



Appendix G

Proof of Lemma 25

Proof of Lemma 25. Recall the definitions (9.4) and (9.18) of η and η′, respectively. We proceed by

expressing the term α′(mz,mh; τ, r) appearing in the denominator of (9.18) in terms of the non-rescaled

masses and fields. First, from r = ξs/ϕ0 and the Taylor expansions (9.9), we have

mp/r = MP +RP (s2), p ∈ {w, z, h}, (G.1)

RP (s2) = O(|s|2), (G.2)

By (9.24) and α′(mz,mh; τ, r) > 0, s2 = O(|1− M2
W

eb |), so (G.1) - (G.2) become

mp/r = MP + R̃P (1− M2
W

eb
), p ∈ {w, z, h}, (G.3)

R̃P (1− M2
W

eb
) = O(|1− M2

W

eb
|). (G.4)

Next, we find an asymptotic relation between the numerators of α(MZ ,MH ; τ) and α′(mz,mh; τ, r) (see

Equations (9.1) and (9.19), respectively, for the definitions of these terms). Using the definition (9.3) of

U and changing the order of integration, we obtain

〈Umz,mh(|χ|2)|χ|2〉

=
1

2π|Ω′|

∫ mz

mh

∫
Ω′

∫
|χ(ρ)|2|ρ− ρ′|K1(M |ρ− ρ′|)|χ(ρ′)|2d2ρ′ d2ρ dM. (G.5)

Recall that χ(ρ) = rXr(rρ). Making the change of coordinates ς ≡ rρ, ς ′ ≡ rρ′ and M ′ ≡M/r gives

〈Umz,mh(|χ|2)|χ|2〉

=
1

2π|Ω′|

∫ mz/r

mh/r

∫
Ω′

∫
|Xr(ς)|2|ς − ς ′|K1(M ′|ς − ς ′|)|Xr(ς

′)|2d2ς ′ d2ς dM ′

=
|Ω|
|Ω′|
〈Umz/r,mh/r(|Xr|2)|Xr|2〉. (G.6)
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Define the remainder term

RU (1− M2
W

eb
) := 〈Umz/r,mh/r(|Xr|2)|Xr|2〉 − 〈UMZ ,MH

(|Xr|2)|Xr|2〉. (G.7)

We will now estimate RU . By Equation (G.3),

RU (1− M2
W

eb
)

=
1

2π|Ω|

∫
T

|Xr(ρ)|2|ρ− ρ′|K1(M |ρ− ρ′|)|Xr(ρ
′)|2d2ρ′ d2ρ dM

− 1

2π|Ω|

∫
T

|Xr(ρ)|2|ρ− ρ′|K1(M |ρ− ρ′|)|Xr(ρ
′)|2d2ρ′ d2ρ dM, (G.8)

where T := [MZ ,MZ + R̃Z ] × Ω × R. The integral kernel |ρ − ρ′|K1(M |ρ − ρ′|) defines a continuous

linear map on the space of locally square-integrable functions, hence it is bounded. Therefore, there

exists C > 0 such that

|RU (1− M2
W

eb
)| ≤ 1

2π
|
∫ MZ+R̃Z

MZ

C 〈|Xr|4〉dM |+
1

2π
|
∫ MH+R̃H

MH

C 〈|Xr|4〉dM |

=
C

2π
〈|Xr|4〉|R̃Z(1− M2

W

eb
)|+ C

2π
〈|Xr|4〉|R̃H(1− M2

W

eb
)|

= O(|1− M2
W

eb
|). (G.9)

Collecting (G.6) and (G.9) into one expression, and using |Ω|/|Ω′| = r2, we obtain:

〈Umz,mh(|χ|2)|χ|2〉 = r2〈UMZ ,MH
(|Xr|2)|Xr|2〉+ r2RU (1− M2

W

eb
), (G.10)

RU (1− M2
W

eb
) = O(|1− M2

W

eb
|). (G.11)

Similarly,

〈|χ|2〉 = r2〈|Xr|2〉. (G.12)

Recall the definitions (9.1) and (9.19) of α and α′, respectively. (G.10) - (G.12) imply

m2
wα
′(mz,mh; τ, r) = (

mw

r
)2α(MZ ,MH ; τ) +

1

r2〈|Xr|2〉2
RU (1− M2

W

eb
). (G.13)

Using Equations (G.3) - (G.4), we obtain

m2
wα
′(mz,mh; τ, r) = M2

Wα(MZ ,MH ; τ) +Rα(1− M2
W

eb
), (G.14)

Rα(1− M2
W

eb
) = O(|1− M2

W

eb
|). (G.15)

Plugging (G.14) - (G.15) into (9.18) gives (9.25) - (9.26).

It remains to show that Rα has continuous derivatives of all orders. We proceed by first showing the

remainder terms RP , R̃P and RU have continuous derivatives of all orders. The continous differentiabilty



Appendix G. Proof of Lemma 25 67

of RP follows because ξs has continuous derivatives of all orders in s. The continuous differentiability of

R̃P follows from the continuous differentiability of RP because s2 = σ(1− M2
W

eb ) and σ has continuoous

derivatives of all orders in b (see Equation (9.24) and the surrounding discussion). The continous differ-

entiabilty of RU follows because the right-hand side of (G.8) is an integral of a continuously differentiable

function whose limits have continuous derivatives of all orders in b. The continous differentiabilty of Rα

follows from (G.3) - (G.4), (G.13) and the continuous differentiability of R̃P and RU . The continuous

differentiability of Rη follows from the continuous differentiability of Rα and the definition (9.18) of η′

(since x 7→ [x+ sin2 θ]−1 is analytic in x for x > 0).



Appendix H

Proof of (10.3)

Proof of (10.3). We shall calculate each term in the integral (4.8) up to order s6 using Proposition 23

and the Taylor expansions (9.9).

Plugging the Taylor expansions (9.9) into the first term of (4.8) gives∫
Ω′
| curlν ws|2 =

∫
Ω′
|s curlan χ+O(|s|3)|2. (H.1)

Recall from Equation (5.21) that curlan χ = 0. Therefore, applying Proposition 23 gives∫
Ω′
| curlν ws|2 = O(|s|6). (H.2)

Plugging the Taylor expansions (9.9) into the second term of (4.8) gives∫
Ω′

1

2
| curl zs|2 =

∫
Ω′

1

2
|s2 curl z′ +O(|s|4)|2. (H.3)

Expanding the square and applying Proposition 23 gives∫
Ω′

1

2
| curl zs|2 = s4

∫
Ω′

1

2
| curl z′|2 +O(|s|6). (H.4)

Plugging the Taylor expansions (9.9) into the third term of (4.8) gives∫
Ω′

1

2
| curl as|2 =

∫
Ω′

1

2
| curl

1

e
an + s2 curl a′ + s4 curl a′′ +O(|s|6)|2. (H.5)

Recall that curl an = n. Expanding the square gives∫
Ω′

1

2
| curl as|2 =

∫
Ω′

[
1

2

n2

e2
+ s2n

e
curl a′ + s4n

e
curl a′′

+ s4 1

2
| curl a′|2 +O(|s|6)]. (H.6)

The second and third terms vanish because a′ and a′′ are L′-periodic. Therefore, applying Proposition

68
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23 gives ∫
Ω′

1

2
| curl as|2 =

1

2

n2

e2
|Ω′|+ s4

∫
Ω′

1

2
| curl a′|2 +O(|s|6). (H.7)

Plugging the Taylor expansions (9.9) into the fourth term of (4.8) gives∫
Ω′

1

2
g2φ2

s|ws|2 =

∫
Ω′

1

2
g2[

√
2n

g
+ s2(ξ′ + ψ′) +O(|s|4)]2

× |sχ+ s3w′ +O(|s|6)|2. (H.8)

Expanding the square terms gives∫
Ω′

1

2
g2φ2

s|ws|2 =

∫
Ω′

1

2
g2[

2n

g2
+ s22

√
2n

g
(ξ′ + ψ′) +O(|s|4)]

× [s2|χ|2 + s42 Re(χ · w′) +O(|s|6)]. (H.9)

Expanding this product and applying Proposition 23 gives∫
Ω′

1

2
g2φ2

s|ws|2 = s2

∫
Ω′
n|χ|2

+ s4

∫
Ω′

[g
√

2n(ξ′ + ψ′)|χ|2 + 2nRe(χ · w′)] +O(|s|6). (H.10)

Recall that χ ∈ Null(H1(n)) and that w′ is orthogonal to Null(H1(n)). Therefore the third term vanishes:∫
Ω′

1

2
g2φ2

s|ws|2 = s2

∫
Ω′
n|χ|2 + s4

∫
Ω′
g
√

2n(ξ′ + ψ)|χ|2 +O(|s|6). (H.11)

Plugging the Taylor expansions (9.9) into the fifth term of (4.8) and expanding the square terms

gives ∫
Ω′

1

4 cos2 θ
g2φ2

s|zs|2 =

∫
Ω′

1

4 cos2 θ
g2

× [
2n

g2
+ s22

√
2n

g
(ξ′ + ψ′) +O(|s|4)][s4|z′|2 +O(|s|6)]. (H.12)

Expanding this product and applying Proposition 23 gives∫
Ω′

1

4 cos2 θ
g2φ2

s|zs|2 = s4

∫
Ω′

n

2 cos2 θ
|z′|2 +O(|s|6). (H.13)

Plugging the Taylor expansions (9.9) into the sixth term of (4.8) gives∫
Ω′
|ws × ws|2 =

∫
Ω′
|s2χ× χ+O(|s|4)|2, (H.14)

Recall from Equation (5.21) that χ is of the form χ = (η, iη)T , so χ × χ = i|χ|2. Therefore, applying
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Proposition 23 gives ∫
Ω′
|ws × ws|2 = s4

∫
Ω′
|χ|4 +O(|s|6). (H.15)

Plugging the Taylor expansions (9.9) into the seventh term of (4.8) gives∫
Ω′
i(curl νs)ws×ws =

∫
Ω′
i[g sin θ curl

1

e
an + s2 curl ν′ +O(|s|4)]

× [sχ+ s3w′ +O(|s|5)]× [sχ+ s3w′ +O(|s|5)]. (H.16)

where, recall, ν′ := g(a′ sin θ + z′ cos θ). Recall that curl an = n and e = g sin θ. Expanding the wedge

product of the second and third terms gives∫
Ω′
i(curl νs)ws × ws =

∫
Ω′
i[
n

g

2
+ s2 curl ν′ +O(|s|4)]

× [s2χ× χ+ s4(χ× w′ + w′ × χ) +O(|s|6)]. (H.17)

Recall from Equation (5.21) that χ is of the form χ = (η, iη)T , so χ × χ = i|χ|2 and χ × w′ = iχ · w′.
Therefore ∫

Ω′
i(curl νs)ws × ws =

∫
Ω′

[in+ s2i curl ν′ +O(|s|4)]

× [s2i|χ|2 + s42 Re(iχ · w′) +O(|s|6)]. (H.18)

Expanding this product and using Proposition 23 gives∫
Ω′
i(curl νs)ws × ws = −s2

∫
Ω′
n|χ|2 − s4

∫
Ω′

[2in Im(χ · w′)

− s4

∫
Ω′

(curl ν′)|χ|2 +O(|s|6). (H.19)

Recall that χ ∈ Null(H1(n)) and w′ is orthogonal to Null(H1(n)). Therefore the second term vanishes:∫
Ω′
i(curl νs)ws × ws =− s2

∫
Ω′
n|χ|2 − s4

∫
Ω′

(curl ν′)|χ|2

+O(|s|6). (H.20)

Plugging the Taylor expansions (9.9) into the eigth term of (4.8) gives∫
Ω′
|∇φs|2 =

∫
Ω′
|s2∇ψ′ +O(|s|4)|2. (H.21)

Expanding the square and using Proposition 23 gives∫
Ω′
|∇φs|2 = s4

∫
Ω′
|∇ψ′|2 +O(|s|6). (H.22)

Plugging the Taylor expansions (9.9) into the ninth term of (4.8) and expanding the inner squares
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gives ∫
Ω′

1

2
λ(φ2

s − ξ2
s )

=

∫
Ω′

1

2
λ[

2n

g2
+ s22

√
2n

g
(ξ′ + ψ′)− 2n

g2
− s22

√
2n

g
ξ′ +O(|s|4)]2

=

∫
Ω′

1

2
λ[s22

√
2n

g
ψ′ +O(|s|4)]2. (H.23)

Expanding the outer square gives and using Proposition 23 gives∫
Ω′

1

2
λ(φ2

s − ξ2
s ) = s4

∫
Ω′

4λn

g2
ψ′2 +O(|s|6). (H.24)

Adding (H.2) - (H.24) and dividing by |Ω′| gives (10.3), where Rε collects the O(|s|6) remainder

terms. Rε has continuous derivatives of all orders because it is a sum of integrals of the form (9.7) with

fs and gs coming from the continuously differentiable remainder terms O(|s|p) of (9.9).



Appendix I

Spectral analysis of the operator

−∆an

In this appendix we shall verify the properties of −∆an used in the main text of this paper, following

Section 5 of [16]. Recall from the main text, but in vector notation, that an := n
2x
⊥, where (x1, x2)⊥ =

(−x2, x1).

Proposition 36. The operator −∆an is self-adjoint on its natural domain and its spectrum is given by

σ(−∆an) = { (2m+ 1)n : m ∈ Z≥0 }, (I.1)

with each eigenvalue is of the multiplicity n. Moreover,

Null(−∆an − n) = e
in
2 x2(x1+ix2)Vn, (I.2)

where Vn is spanned by functions of the form (below z = (x1 + ix2)/
√

2π
Im τ )

θ(z, τ) :=

∞∑
m=−∞

cme
i2πmz, cm+n = e−inπzei2mπτ cm. (I.3)

Such functions are determined entirely by the values of c0, . . . , cn−1 and therefore form an n-dimensional

vector space.

Proof. The self-adjointness of the operator −∆an is well-known. To find its spectrum, we introduce

the complexified covariant derivatives (harmonic oscillator annihilation and creation operators), ∂̄an and

∂̄∗an = −∂an , with

∂̄an := (∇an)1 + i(∇an)2 = ∂x1
+ i∂x2

+
1

2
n(x1 + ix2). (I.4)

One can verify that these operators satisfy the following relations:

[∂̄an , (∂̄an)∗] = 2 curl an = 2n; (I.5)

−∆an − n = (∂̄an)∗∂̄an . (I.6)

As for the harmonic oscillator (see e.g. [20]), this gives explicit information about the spectrum of −∆an ,
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namely (I.1), with each eigenvalue is of the same multiplicity. Furthermore, the above properties imply

Null(−∆an − n) = Null ∂̄an . (I.7)

We find Null ∂̄an . A simple calculation gives the following operator equation

e−
n
2 (ix1x2−x2

2)∂̄ane
n
2 (ix1x2−x2

2) = ∂x1
+ i∂x2

.

(The transformation on the left-hand side is highly non-unique.) This immediately proves that

∂̄anψ = 0, (I.8)

if and only if θ = e−
n
2 (ix1x2−x2

2)ψ satisfies (∂x1
+i∂x2

)θ = 0. We now identify x ∈ R2 with z = x1+ix2 ∈ C
and see that this means that θ is analytic and

ψ (x) = e−
πn

2 Im τ (|z|2−z2)θ(z, τ), z = (x1 + ix2)/

√
2π

Im τ
. (I.9)

where we display the dependence of θ on τ . The quasiperiodicity of ψ transfers to θ as follows:

θ(z + 1, τ) = θ(z, τ), θ(z + τ, τ) = e−2πinze−inπτθ(z, τ).

The first relation ensures that θ have a absolutely convergent Fourier expansion of the form θ(z, τ) =∑∞
m=−∞ cme

2πmiz. The second relation, on the other hand, leads to relation for the coefficients of the

expansion: cm+n = e−inπzei2mπτ cm, which together with the previous statement implies (I.3).

Next, we claim that the solution (I.9) satisfies

ψ(x) = ψ(−x). (I.10)

By (I.9), it suffices to show that θ(z) = θ(−z). We show this for n = 1. Denote the corresponding θ

by θ(z, τ). Iterating the recursive relation for the coefficients in (I.3), we obtain the following standard

representation for the theta function

θ(z, τ) =

∞∑
m=−∞

e2πi( 1
2m

2τ+mz). (I.11)

We observe that θ(−z, τ) = θ(z, τ) and therefore ψ0(−x) = ψ0(x). Indeed, using the expression (I.11),

we find, after changing m to −m′, we find

θ(−z, τ) =

∞∑
m=−∞

e2πi( 1
2m

2τ−mz) =

∞∑
m′=−∞

e2πi( 1
2m
′2τ+m′z) = θ(z, τ). (I.12)



Bibliography

[1] A. A. Abrikosov, On the magnetic properties of superconductors of the second group. J. Explt.

Theoret. Phys. (USSR) 32 (1957) 1147–1182.

[2] R. A. Adams and J. J. F. Fournier, Sobolev Spaces. Elsevier (2003).

[3] A. Aftalion, X. Blanc, and F. Nier, Lowest Landau level functional and Bargmann spaces for Bose

Einsein condensates. J. Fun. Anal. 241 (2006) 661-702.

[4] L. Ahlfors, Complex Analysis. McGraw-Hill (1966).

[5] J. Ambjorn and P. Olesen, Anti-screening of large magnetic fields by vector bosons, Phys. Lett. B214

(1988) 565-569.

[6] J. Ambjorn and P. Olesen, A magnetic condensate solution of the classical electroweak theory, Phys.

Lett. B218 (1989) 67, Erratum: Phys.Lett. B220 (1989) 659.

[7] J. Ambjorn and P. Olesen, On electroweak magnetism, Nucl. Phys. B315 (1989) 606-614.

[8] J. Ambjorn and P. Olesen, A condensate solution of the electroweak theory which interpolates be-

tween the broken and the symmetric phase, Nucl. Phys. B330 (1990) 193–204.

[9] J. Ambjorn and P. Olesen, Electroweak magnetism: theory and application, Int. J. Mod. Phys. A5

(1990) 4525–4558.

[10] J. Ambjorn and P. Olesen, W condensate formation in high-energy collisions, Phys. Lett. B257

(1991) 201-206.

[11] J. Ambjorn and P. Olesen, Electroweak magnetism, W condensation and antiscreening, arXiv

preprint hep-ph/9304220.

[12] J. O. Andersen, et al., Phase diagram of QCD in a magnetic field: A review, Rev.Mod.Phys. 88

(2016) 025001.

[13] ATLAS, CMS Collaborations, Combined measurement of the Higgs boson mass in pp collisions at

s =
√

7 and 8TeV with the ATLAS and CMS experiments, Phys. Rev. Lett. 114 (2015) 191803.

[14] M. S. Berger, Nonlinearity & Functional Analysis: Lectures on Nonlinear Problems in Mathematical

Analysis. Academic Press, Inc. (1977).

[15] J. Beringer et al. (Particle Data Group), Review of particle physics (2012). Phys. Rev. D 86, 010001.

74



BIBLIOGRAPHY 75

[16] I. Chenn, P. Smyrnelis and I.M. Sigal, On Abrikosov lattice solutions of the Ginzburg-Landau

equations. Mathematical Physics, Analysis and Geometry (2018) 21: 7.

[17] M. N. Chernodub, Jos Van Doorsselaere, and Henri Verschelde, Magnetic-field-induced supercon-

ductivity and superfluidity of W and Z bosons: In tandem transport and kaleidoscopic vortex states.

Physical Review D 88, 065006 (2013).

[18] D. Chouchkov, N. M. Ercolani, S. Rayan, and I. M. Sigal. Ginzburg-Landau equations on Riemann

surfaces of higher genus. Annales de l’Institut Henri Poincaré C, Analyse non linéaire, 37 (1), 79-103
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